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1. Let u the unique harmonic function on the disk of radius R which on the boundary
is

u(x,y) = x2y2, (x,y) ∈ ∂DR.

Answer, without finding explicitely the function on the whole disk, the following questi-
ons.

a) What’s the value in the center of the disk u(0, 0) = ?

Solution:
We can recover the value of the function in the center of the disk just from the
boundary. In fact Poisson’s integral formula tells us that for each point (r, θ)
inside the disk

u(r, θ) =
1

2π

2π∫
0

(R2 − r2)f(φ)

R2 − 2rR cos(θ−φ) + r2 dφ

In particular the value in the center computes the average of f(φ) on the boun-
dary

u(0, 0) =
1

2π

2π∫
0

f(φ)dφ.

We rewrite our boundary condition in polar coordinates

x2y2 = (R cos(φ))2(R sin(φ))2 = R4 cos2(φ) sin2(φ),

and obtain

u(0, 0) =
1

2π

2π∫
0

R4 cos2(φ) sin2(φ)dφ =
R4

2π

2π∫
0

sin2(2φ)
4

dφ =
R4

8π

2π∫
0

sin2(2φ)dφ.

This can be either computed with usual integration by parts or using this
Alternative method: observe that

sin
(
x+

π

2

)
= − cos(x)  sin2

(
x+

π

2

)
= cos2(x). (1)
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But then changing variables ψ = φ − π/4, and using the 2π-periodicity of all
these functions we get

2π∫
0

sin2(2φ)dφ

change
of
variables

=

2π−π4∫
−
π
4

sin2
(

2ψ+
π

2

)
dψ

(1)
=

2π−π4∫
−
π
4

cos2(2ψ)dψ

2π-
periodicity

=

=

2π∫
0

cos2(2ψ)dψ.

Finally observe that the sum of these two (equal) integral is

2π∫
0

sin2(2φ)dφ+

2π∫
0

cos2(2φ)dφ =

2π∫
0

(
sin2(2φ) + cos2(2φ)

)
dφ =

2π∫
0

1dφ = 2π

and so

 

2π∫
0

sin2(2φ)dφ =

2π∫
0

cos2(2φ)dφ = π.

Coming back to the original question of the exericse

u(0, 0) =
R4

8π

2π∫
0

sin2(2φ)dφ =
R4

8�π
·�π =

R4

8
.

b) What’s the maximum of u and in which point(s) is it reached?

Solution:
By the maximum principle we know that the maximum is assumed on the boun-
dary

max
(x,y)∈DR

u(x,y) = max
(x,y)∈∂DR

u(x,y) = max
θ∈[0,2π)

u(R, θ) = max
θ∈[0,2π)

R4

4
sin2(2θ)

The maximum value for the square of the sine is assumed when

sin2(2θ) = ±1 ⇔ θ =
π

4
,

3
4
π,

5
4
π,

7
4
π.

So the maximum is reached in 4 points on the boundary and it’s equal to

Pj =

(
R,

2j+ 1
4

π

)
, j = 0, 1, 2, 3  u(Pj) ≡

R4

4

c) Same question for the minimum.
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Solution:
As the maximum principle, there is also a minimum principle. Observe that a
function u solves the Dirichlet problem{

O2u = 0, in DR
u = f on ∂DR

if and only if the function v := −u solves the Dirichlet problem{
O2v = 0, in DR
v = −f. on ∂DR

Therefore, using the maximum principle for v, and the observation that for any
function h its maximum and minimum are linked by

maxh = −min(−h) N minh = −max(−h),

we get the minimum principle: also the minimum of a harmonic function is
reached on the boundary.

min
DR

u = −max
DR

(−u) = −max
DR

v = −max
∂DR

v = −max
∂DR

(−u) = min
∂DR

u.

So we need to find the minimum

min
DR

u = min
∂DR

u = min
θ∈[0,2π)

u(R, θ) = min
θ∈[0,2π)

R4

4
sin2(2θ)

which is clearly reached in the following 4 points with value

Qj =

(
R,
j

2
π

)
, j = 0, 1, 2, 3  u(Qj) ≡ 0.

2. For each of the following problems, determine whether they admit a (at least one)
solution or not.

a) 
O2u = 0, in DR

u = xayb, on ∂DR

u(0, 0) = 0.

where a,b > 0 are integer numbers.

Solution:
The Dirichlet problem with boundary condition has a unique solution. The va-
lue in the center is determined by the average of the boundary function. In polar
coordinates our function is

xayb = (R cos(θ))a(R sin(θ))b = Ra+b cosa(θ) sinb(θ).
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Therefore the problem above has solution if and only if

1
2π

2π∫
0

Ra+b cosa(θ) sinb(θ)dθ = 0.

Let’s call, for each integers a,b > 0, the relevant part of this integral by Ia,b and
observe that, by 2π-periodicity, it is also equal to

Ia,b :=

2π∫
0

cosa(θ) sinb(θ)dθ =

π∫
−π

cosa(θ) sinb(θ)dθ.

Observe that{
cos(θ) even
sin(θ) odd

 


cosa(θ) even, ∀a

sinb(θ)

{
even, b even
odd, b odd

We can conclude that for b is odd, and any a, we integrate an odd function on
[−π,π] and therefore Ia,b = 0. We need to analyse the case b = 2k even, for
which the product is even and we have

Ia,2k =

π∫
−π

cosa(θ) sin2k(θ)dθ = 2

π∫
0

cosa(θ) sin2k(θ)dθ.

If we split the interval [0,π] in half we can notice one last simmetry, the one with
respect to the axis x = π/2, and splitting the integral in these two parts we get{

cos(π− x) = − cos(x)
sin(π− x) = sin(x)

 

π∫
0

cosa(θ) sin2k(θ)dθ =

=

π
2∫
0

cosa(θ) sin2k(θ)dθ+

π∫
π
2

cosa(θ) sin2k(θ)dθ︸ ︷︷ ︸
change of variables θ=π−x

=

π
2∫
0

cosa(θ) sin2k(θ)dθ+ (−1)a

π
2∫
0

cosa(x) sin2k(x)dx =

=

2

π
2∫
0

cosa(θ) sin2k(θ)dθ > 0, a even

0, a odd.

The reason why the first integral is greater than zero is because the integrand is
a positive function on that interval.
The conclusion is

the problem
above admits
a solution

⇔ Ia,b = 0 ⇔

{
b odd, ∀a
b even, a odd.
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b) 
O2u = 0, in DR

u(R, θ) = 3R e
(θ−π)2
θ(θ−2π) , 0 6 θ 6 2π

(
parametrising ∂DR

)
max
DR

u = π

Solution:
By the maximum principle the maximum is reached on the boundary

max
DR

u = max
∂DR

u = max
θ∈[0,2π)

u(R, θ) = 3R max
θ∈[0,2π)

e
(θ−π)2
θ(θ−2π) .

The exponential is a strictly increasing function so we just need to find the
maximum of the argument, that is

max
θ∈[0,2π)

e
(θ−π)2
θ(θ−2π) = e

max
θ∈[0,2π)

(θ−π)2
θ(θ−2π)

Analysing this rational function

g(θ) =
(θ− π)2

θ(θ− 2π)
, θ ∈ [0, 2π)

we notice that the limit approaching 0 from the right (and 2π from the left) is
−∞, and that it is always strictly negative, apart from θ = π, in which it’s zero.
Therefore

max
DR

u = 3R max
θ∈[0,2π)

e
(θ−π)2
θ(θ−2π) = 3Re

max
θ∈[0,2π)

(θ−π)2
θ(θ−2π)

= 3Re0 = 3R.

The conclusion is

the problem
above admits
a solution

⇔ 3R = π ⇔ R =
π

3

c) 
O2u = 0, in DR

u(R, θ) = sin9(θ), 0 6 θ 6 2π
(

parametrising ∂DR
)

u+ 1 > 0, in DR

Solution:
By the minimum principle (explained above), the minimum will be on the boun-
dary, therefore

min
DR

u = min
θ∈[0,2π)

sin9(θ) = −1  u+ 1 > 0 in DR,

and the answer is yes, the problem admits a solution.
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3. Consider the following Neumann problem (Laplace equation with fixed normal de-
rivative on the boundary):{

O2u = 0, in DR

∂nu(R, θ) = θ(2π− θ)(θ2 − 12), 0 6 θ 6 2π
(

parametrising ∂DR
)

a) Is there a solution?

Solution:
Let A ⊂ R2 be a (regular) region of the plane and the curve γ = ∂A its boundary.
As explained in the lecture notes, if u solves the Neumann problem on A{

O2u = 0, in A

∂nu = g, on γ

then the integral of g on the boundary must vanish because of the divergence
theorem∫
γ

gdγ =

∫
γ

(
∂nu

)
dγ =

∫
γ

(
Ou ·n

)
dγ =

∫
A

div(Ou)dA =

∫
A

(
O2u

)
dA =

∫
A

0dA = 0.

In our case the region is a disk A = DR and the integral on the boundary is

∫
γ

gdγ =

2π∫
0

θ(2π− θ)(θ2 − 12)dθ =

2π∫
0

(
− θ4 + 2πθ3 + 12θ2 − 24πθ

)
dθ =

=

(
−
θ5

5
+
πθ4

2
+ 4θ3 − 12πθ2

) ∣∣∣∣∣
2π

0

= −
32
5
π5 + 8π5 + 32π3 − 48π3 =

= −16π3 +

(
8 −

32
5

)
π5 = −16π3 +

8
5
π5 =

8
5
π3(π2 − 10) 6= 0.

This means that the problem is ill-posed and can’t have a solution.

b) If the answer is yes, how many?

Solution: There is no solution.

6


