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Solutions Serie 2

1. Find the Laplace transform F(s) := L (f)(s) of the following functions

a) f(t) = t2 + 4t+ 1

Solution:
From the lecture we know that the function gn(t) = tn, n ∈ N, has Laplace
transform, defined for each s > 0: Gn(s) = n!

sn+1 . Using the linearity of L we
have

F(s) = L (t2 + 4t+ 1)(s) = L (t2)(s) + 4L (t)(s) +L (1)(s) =
2
s3 + 4 · 1

s2 +
1
s
=

=
s2 + 4s+ 2

s3

b) f(t) =
1√
t

Solution:
For each s > 0, we make the change of variable u = st, so that dt = 1/s du, and

F(s) =

∫+∞
0

t−1/2e−stdt =
1
s

∫+∞
0

s1/2u−1/2e−udu =
1√
s
Γ

(
1
2

)
=

√
π√
s

c) f(t) = sin(ωt), ω ∈ R

Solution 1:
The Laplace transform can be computed directly by definition, integrating by
parts

L (sin(ωt))(s) =

+∞∫
0

e−st sin(ωt)dt =
����������

−
1
s
e−st sin(ωt)

∣∣∣∣+∞
0

+
ω

s

+∞∫
0

e−st cos(ωt)dt

= −
ω

s2 e
−st cos(ωt)

∣∣∣∣∞
0
−
ω2

s2

∞∫
0

e−st sin(ωt)dt

=
ω

s2 −
ω2

s2 L (sin(ωt))(s)

⇔ L (sin(ωt))(s) =
ω

s2 +ω2
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Solution 2 (slightly cheating - don’t try this at home):
The Laplace transform has been defined just for real-valued functions. It can be
defined in the same way for complex-valued functions, and also the variable s is
assumed to be complex. Of course in the particular case of real-valued functions
we have our old definition. From the lecture we know the Laplace transform of
the real-valued exponential eat, a ∈ R, but also for the imaginary exponential
eiωt, ω ∈ R, the same computation makes sense and

L
(
eiωt

)
(s) =

1
s− iω

=
s+ iω

s2 +ω2 =
s

s2 +ω2 + i
ω

s2 +ω2 , Re(s) > 0 (1)

But eiωt = cos(ωt) + i sin(ωt), thus by linearity

L (eiωt) = L (cos(ωt)) + iL (sin(ωt)). (2)

Finally comparing real and imaginary parts of equations (1) and (2) we get

L (cos(ωt))(s) =
s

s2 +ω2 , L (sin(ωt))(s) =
ω

s2 +ω2 . (3)

d) f(t) = cos(ωt), ω ∈ R

Solution 1:
We started computing the Laplace transform of sin(ωt) with

L (sin(ωt))(s) =

+∞∫
0

e−st sin(ωt)dt =
ω

s

+∞∫
0

e−st cos(ωt)dt =
ω

s
L (cos(ωt))(s)

from which we get
L (cos(ωt))(s) =

s

s2 +ω2

Solution 2:
It’s the strategy used above, from which we already got in equation (3) the
expression for the Laplace transform of both sine and cosine.

e) f(t) = sin(αt) cos(βt), α,β ∈ R

Solution:
From Exercise 4.b) of Serie 1 we know that

sin(αt) cos(βt) =
1
2
(sin((α+β)t) + sin((α−β)t))

and by Exercise 1.c) of this Serie we know the Laplace transform of the sine.
Thus

L (sin(αt) cos(βt))(s) =
1
2

(
α+β

s2 + (α+β)2 +
α−β

s2 + (α−β)2

)
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2. Given a function f(t) denote its Laplace transform by F(s) := L (f(t))(s). From the
lecture we know that (for sufficiently nice functions) multiplication by t on the time-
domain corresponds to derivative on the frequency-domain, that is

L (tf(t))(s) = −
d

ds
F(s) (1)

Using this property, prove that actually for each n ∈ N:

L (tnf(t))(s) = (−1)n
dn

dsn
F(s). (2)

As an example, for f(t) = 1, we will find the known result

L (tn)(s) =
n!
sn+1 .

Solution (by induction):
For n = 0 the equation is trivial and the case n = 1 is exactly equation (1). Suppose
now n > 2 and by inductive hypothesis equation (2) holds for n − 1 and for any
function. Then we can apply it to tf(t) and get

L (tnf(t))(s) = L (tn−1 · tf(t))(s) (2)
= (−1)n−1 d

n−1

dsn−1 L (tf(t))(s)
(1)
= (−1)n

dn

dsn
F(s).

In particular for f(t) = 1 we have L (f)(s) = 1/s and then

dn

dsn

(
1
s

)
= (−1)n

n!
sn+1

(2)
=⇒ L (tn)(s) =

n!
sn+1 .

3. Find the Laplace transform of the following functions:

a)

a b

k

Solution:
We have

f(t) =

{
k, a 6 t 6 b

0, otherwise

and then

L (f)(s) = k

b∫
a

e−st dt = −
k

s
e−st

∣∣∣∣b
a

=
k

s
(e−sa − e−sb)
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b)

b

k

Solution:
We have

f(t) =

{
k(1 − t

b), 0 6 t 6 b

0, otherwise.

Then, integrating by parts

L (f) (s) = k

b∫
0

e−st
(

1 −
t

b

)
dt = −

k

s
e−st

(
1 −

t

b

) ∣∣∣∣b
0
−
k

bs

b∫
0

e−st dt

=
k

s
+

k

bs2 e
−st

∣∣∣∣b
0
=
k

s
+

k

bs2 e
−sb −

k

bs2 =
k

bs2

(
bs+ e−sb − 1

)
c)

21

1

Solution:
We have

f(t) =


t, 0 6 t 6 1
2 − t, 1 6 t 6 2
0, otherwise.

Again, integrating by parts

L (f)(s) =

1∫
0

e−stt dt+

2∫
1

e−st(2 − t)dt = −
t

s
e−st

∣∣∣∣1
0
+

1
s

1∫
0

e−st dt−
2 − t

s
e−st

∣∣∣∣2
1
−

1
s

2∫
1

e−st dt

= −
1
s
e−s −

1
s2 e

−st

∣∣∣∣1
0
+

1
s
e−s +

1
s2 e

−st

∣∣∣∣2
1
= −

1
s2 e

−s +
1
s2 +

1
s2 e

−2s −
1
s2 e

−s

=
1
s2

(
1 − 2e−s + e−2s) = (1 − e−s)2

s2
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4. Find the inverse Laplace transform f = L −1(F) of

a) F(s) =
1
s4

Solution:

L −1
(

1
s4

)
= L −1

(
1
3!
· 3!
s4

)
=

1
3!
·L −1

(
3!
s4

)
=

1
3!
t3

b) F(s) =
1

(s− 8)10

Solution:
Remember the s-shifting property, for which

L (eatf(t))(s) = L (f)(s− a), a ∈ R.

But then

L −1
(

1
(s− 8)10

)
= L −1

(
1
9!
· 9!
(s− 8)10

)
=

1
9!
·L −1

(
9!

(s− 8)10

)
=

1
9!
e8tt9

c) F(s) =
s+ 3
s2 − 9

Solution:

s+ 3
s2 − 9

=
1

s− 3
=⇒ L −1

(
s+ 3
s2 − 9

)
= L −1

(
1

s− 3

)
= e3t

d) F(s) =
24

(s− 5)(s+ 3)

Solution:
By partial fraction decomposition

24
(s− 5)(s+ 3)

=
24
8

(
1

s− 5
−

1
s+ 3

)
= 3

(
1

s− 5
−

1
s+ 3

)
=⇒ f(t) = 3(e5t−e−3t)

e) F(s) =
1

s2 + 4

Solution:

L −1
(

1
s2 + 4

)
= L −1

(
1
2
· 2
s2 + 4

)
=

1
2
·L −1

(
2

s2 + 22

)
=

1
2

sin(2t)

f) (*) F(s) =
1

s2 + 4s+ 20
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Solution:
We would like to write s2 + 4s+ 20 in the form (s+ a)2 +ω2. In fact this is pos-
sible for a = 2,ω = 4, but then combining s-shifting property and the Laplace
transform of the sine we get

L −1
(

1
s2 + 4s+ 20

)
= L −1

(
1

(s+ 2)2 + 42

)
=

1
4
e−2t sin(4t)

g) (**) F(s) =
s+ 1

(s+ 2)(s2 + s+ 1)

Solution:
The strategy is firstly applying partial fraction decomposition and then trying
to get some expression similar to the Laplace transforms of sine and cosine.

F(s) =
s+ 1

(s+ 2)(s2 + s+ 1)
=

1
3

(
s+ 2

s2 + s+ 1
−

1
s+ 2

)
=

1
3

(
s+ 2

s2 + s+ 1

)
−

1
3

(
1

s+ 2

)
The second term is the Laplace transform of −1/3e−2t so we just have to modify
further the first term.

s+ 2
s2 + s+ 1

=
s+ 2(

s+ 1
2

)2
+ 3

4

=
s+ 2(

s+ 1
2

)2
+
(√

3
2

)2

=
s+ 1

2(
s+ 1

2

)2
+
(√

3
2

)2 +
√

3 ·

√
3

2(
s+ 1

2

)2
+
(√

3
2

)2 =⇒

=⇒ L −1
(

s+ 2
s2 + s+ 1

)
= e−1/2t

(
cos

(√
3

2
t

)
+
√

3 sin

(√
3

2
t

))
and finally the whole inverse Laplace transform will be

f = L −1
(

s+ 1
(s+ 2)(s2 + s+ 1)

)
=

1
3
e−1/2t

(
cos

(√
3

2
t

)
+
√

3 sin

(√
3

2
t

))
−

1
3
e−2t

h) (**) F(s) =
s

(s− 1)2(s2 + 2s+ 5)

Solution:
We still use first partial fraction decomposition to get terms which are known
Laplace transforms (exponential, polynomials, sine and cosine).

s

(s− 1)2(s2 + 2s+ 5)
=

1
16
· 1
s− 1

+
1
8
· 1
(s− 1)2 −

1
16
· s

s2 + 2s+ 5
−

5
16
· 1
s2 + 2s+ 5

=
1
16
· 1
s− 1

+
1
8
· 1
(s− 1)2 −

1
16
· s+ 1 − 1
(s+ 1)2 + 22 −

5
16
· 1
(s+ 1)2 + 22 =

=
1
16
· 1
s− 1

+
1
8
· 1
(s− 1)2 −

1
16
· s+ 1
(s+ 1)2 + 22 −

4
16
· 1
(s+ 1)2 + 22 =⇒

=⇒ f = L −1
(

s

(s− 1)2(s2 + 2s+ 5)

)
=
et

16
+
tet

8
−

1
16
e−t (cos(2t) + 2 sin(2t))
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5. (Bonus exercise)

a) (For those who have never seen this)
Exercise 1.b) has been asked to solve using that Γ(1/2) =

√
π, and this exercise

proves it. Let’s call I := Γ(1/2) this value.

(i) Use an opportune change of variables to prove that

I = 2
∫+∞

0
e−x

2
dx

Solution:

I = Γ

(
1
2

)
=

∫+∞
0

t−1/2e−tdt
t=x2
=

∫+∞
0

x−1e−x
2
2xdx = 2

∫+∞
0

e−x
2
dx

(ii) Note that

2
∫+∞

0
e−x

2
dx =

∫+∞
−∞ e−x

2
dx

Solution:
The function we are integrating is symmetric with respect to x = 0. Thus the
integral over all real numbers is 2 times the integral from 0 to +∞.

(iii) Compute this integral in a smart way by computing its square. Fill the dots
to get

I2 =

(∫+∞
−∞ e−x

2
dx

)(∫+∞
−∞ e−y

2
dy

)
=

∫+∞
−∞
∫+∞
−∞ e−(x2+y2)dxdy =

= · · · = π

Solution:
We fill the dots using polar coordinates, for which dxdy = rdrdϕ:

I2 =

(∫+∞
−∞ e−x

2
dx

)(∫+∞
−∞ e−y

2
dy

)
=

∫+∞
−∞
∫+∞
−∞ e−(x2+y2)dxdy =

=

∫+∞
0

∫ 2π

0
e−r

2
rdrdϕ = 2π

∫+∞
0

e−r
2
rdr = 2π ·

(
−

1
2
e−r

2
) ∣∣∣∣∣

+∞
0

= π

From (iii) must be either I = ±
√
π. But I is obtained by integrating a positive

function, therefore it must be the positive value I =
√
π.

b) Laplace transform of a finite linear combination of functions is the linear com-
bination of their Laplace transforms:

L (a1f1 + . . .am + fm) = a1L (f1) + . . .amL (fm), a1, . . . ,am ∈ R

The same thing is true for infinite linear combination of functions under oppor-
tune conditions of convergence which are all satisfied in the following cases. To
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explain better, let’s pretend we don’t know the Laplace transform of the expo-
nential and let’s compute it explicitely from its power series expression

L (eat)(s) = L

(
+∞∑
k=0

(at)k

k!

)
(s) =

+∞∑
k=0

ak

k!
L (tk)(s) =

=

+∞∑
k=0

ak

��k!
· ��k!
sk+1 =

1
s

+∞∑
k=0

(a
s

)k
=

1
s
· 1

1 − a
s

=
1

s− a

(i) Find again L (sin(ωt))(s) using the power series expansion

sin(ωt) =
+∞∑
k=0

(−1)k
(ωt)2k+1

(2k+ 1)!

and verify that the result is the same already found in Exercise 1.c).

Solution:
We have

L ( sin(ωt)(s) = L

(
+∞∑
k=0

(−1)k
(ωt)2k+1

(2k+ 1)!

)
(s) =

+∞∑
k=0

(−1)k
ω2k+1

(2k+ 1)!
L (t2k+1)(s) =

=

+∞∑
k=0

(−1)k
ω2k+1

�����(2k+ 1)!
·�����(2k+ 1)!
s2k+2 =

ω

s2

+∞∑
k=0

(
−
ω2

s2

)k
=
ω

s2 ·
1

1 + ω2

s2

=
ω

s2 +ω2

(ii) Using the same technique, prove that1

L

(
sin(t)
t

)
= arctan

(
1
s

)

Solution:

L

(
sin(t)
t

)
(s) = L

(
+∞∑
k=0

(−1)k
t2k

(2k+ 1)!

)
(s) =

+∞∑
k=0

(−1)k
1

(2k+ 1)!
L (t2k)(s) =

=

+∞∑
k=0

(−1)k
1

(2k+ 1)!
· (2k)!
s2k+1 =

+∞∑
k=0

(−1)k
1

(2k+ 1)
· 1
s2k+1 = arctan

(
1
s

)

1The power series expansion of the arctangent is

arctan(x) =
+∞∑
k=0

(−1)k
x2k+1

(2k+ 1)
.
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