
D-MAVT Prof. A. Iozzi
D-MATL ETH Zürich
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Solutions Serie 6

1. Consider the function

f(x) =

{
x, 0 6 x 6 π

2
π
2 , π

2 6 x 6 π

a) Extend f to an even function on the interval [−π,π] and then finally to an even,
2π-periodic function on R and call this function fe.
Sketch the graph of fe and find its Fourier series.

Solution:
The even extension fe is given, in the interval [−π,π], by

fe(x) =


π
2 , −π 6 x 6 −π2
−x, −π2 6 x 6 0
x, 0 6 x 6 π

2
π
2 , π

2 6 x 6 π. x
π
2

π 3
2π

−π2−π

period = 2π

−3
2π

fe(x)
π
2

Being even, the bn coefficients will vanish, while

a0 =
1

2π

π∫
−π

fe(x)dx =
1
π

π∫
0

fe(x)dx =
1
π

π
2∫
0

xdx+
1
π

π∫
π
2

π
2 dx =

1
2π
x2
∣∣∣∣
π
2

0
+
x

2

∣∣∣∣ππ
2

=
3π
8

,
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an =
1
π

π∫
−π

fe(x) cos(nx)dx =
2
π

π∫
0

fe(x) cos(nx)dx =

=
2
π

π
2∫
0

x cos(nx)dx+
2
π

π∫
π
2

π

2
cos(nx)dx =

=
2
π

 xn sin(nx)
∣∣∣∣
π
2

0
−

1
n

π
2∫
0

sin(nx)dx

+
1
n

sin(nx)
∣∣∣∣ππ

2

=

=
1
n

sin
(
nπ

2

)
+

2
n2π

cos(nx)
∣∣∣∣
π
2

0
+

1
n

sin(nx)
∣∣∣∣ππ

2

=

=
2
n2π

(
cos
(
nπ

2

)
− 1
)
=

{
− 2
n2π

, n = 2j+ 1
2
n2π

((−1)j − 1), n = 2j.

The Fourier series is thus

3π
8

+
2
π

+∞∑
j=1

1
(2j)2 ((−1)j − 1) cos(2jx) −

2
π

+∞∑
j=0

1
(2j+ 1)2 cos((2j+ 1)x).

b) Do the same for the odd, 2π-periodic extension1 of f (call this fo).

Solution:
The odd extension fo is given, in the interval (−π,π], by

fo(x) =


−π2 , −π < x 6 −π2
x, −π2 6 x 6 0
x, 0 6 x 6 π

2
π
2 , π

2 6 x 6 π. x
π
2

π 3
2π

−π2−π

period = 2π

−3
2π

fo(x)
π
2

1to be precise, we can’t extend f to an odd, periodic function everywhere. In fact by periodicity and
oddness we should have fo(−π) = fo(π) = −fo(−π), and therefore fo(±π) = 0, while f(π) = π. The points
in which there is a doubt about what value to assign to this new function are the odd integer multiples
of π. Let’s assign to these points the value π just to fix the convention, at the end - as you can observe -
nothing will be depend on the choice of this value, and we could have also let fo not defined.
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Therefore here the an coefficients will be all zero, while

bn =
1
π

π∫
−π

fo(x) sin(nx)dx =
2
π

π∫
0

fo(x) sin(nx)dx =

=
2
π

π
2∫
0

x sin(nx)dx+
2
π

π∫
π
2

π

2
sin(nx)dx

=
2
π

−
x

n
cos(nx)

∣∣∣∣
π
2

0
+

1
n

π
2∫
0

cos(nx)dx

−
1
n

cos(nx)
∣∣∣∣ππ

2

= −
1
n

cos
(
nπ

2

)
+

2
n2π

sin(nx)
∣∣∣∣
π
2

0
−

1
n

cos(nπ) +
1
n

cos
(
nπ

2

)
=

2
n2π

sin
(
nπ

2

)
−

1
n

cos(nπ) =

{
− 1
n , n = 2j

2
n2π

(−1)j + 1
n , n = 2j+ 1

and the Fourier series is

−

+∞∑
j=1

1
2j

sin(2jx) +
+∞∑
j=0

(
2

(2j+ 1)2π
(−1)j +

1
2j+ 1

)
sin((2j+ 1)x).

2. Consider the function x in the interval [1, 2] and extend it to an even, 2-periodic func-
tion f on R.

a) Sketch the graph of f and find its Fourier series.

Solution:
Analogously to what happened in the previous exercise, we are interested only
in the formula for f in the interval [0, 1] to find its Fourier coefficients. We have

x ∈ [0, 1] =⇒ f(x) = f(−x) = f(−x+ 2) = −x+ 2.

The graph is the following

x

1 2 3−1−2

period = 2

−3

f(x)

1

2
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The an coefficients will be

a0 =
1
2

1∫
−1

f(x)dx =

1∫
0

(2 − x)dx = 2x−
x2

2

∣∣∣∣1
0
=

3
2

and

an =

1∫
−1

f(x) cos(nπx)dx = 2

1∫
0

(2 − x) cos(nπx)dx

=
4
nπ

sin(nπx)
∣∣∣∣1
0
− 2

 x

nπ
sin(nπx)

∣∣∣∣1
0
−

1
nπ

1∫
0

sin(nπx)dx


= −

2
n2π2 cos(nπx)

∣∣∣∣1
0
=

2
n2π2 (1 − (−1)n) =

{
0, n = 2j

4
n2π2 , n = 2j+ 1

.

So the Fourier series will be
3
2
+

4
π2

∑
j>0

1
(2j+ 1)2 cos((2j+ 1)πx).

b) Will the Fourier series converge pointwise to the function f everywhere? (Justify
your answer using what learnt in the script).

Solution:
The extended function f is everywhere continuous and has left and right deriva-
tives everywhere2. Therefore the Fourier series will converge to it in every point,
and it’s legitimate to write

f(x) =
3
2
+

4
π2

∑
j>0

1
(2j+ 1)2 cos((2j+ 1)πx).

because indeed, the equality between these two functions hold for every x ∈ R.

3. Let f be the 2L-periodic extension of x from [−L,L) to the whole real line as in
Exercise 3. of Serie 5. Find its complex Fourier series

+∞∑
n=−∞ cne

inπL x

Verify that the coefficients cn of this serie are related to the real coefficients an,bn
as in the script.
If you have not computed it before: the real Fourier series of f is

+∞∑
n=1

(−1)n+1 2L
πn

sin
(nπ
L
x
)
 

{
an = 0
bn = (−1)n+1 2L

πn

2although these left and right derivatives don’t agree in the integer points x = k ∈ Z, but that’s not
relevant
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Solution:
The complex Fourier coefficients for f are, for n 6= 0,

cn =
1

2L

L∫
−L

xe−i
nπ
L x dx =

L

2π2

π∫
−π

ye−iny dy =

=
L

2π2

−
y

in
e−iny

∣∣∣∣π
−π

+
1
in

π∫
−π

e−iny dy

 =

=
L

2π2

(
−
π

in
e−inπ −

π

in
einπ +

1
n2 e

−iny

∣∣∣∣π
−π

)
=

=
L

2π2

(
−
π

in
e−inπ −

π

in
einπ +

1
n2 e

−inπ −
1
n2 e

inπ

)
=

=
(−1)nL

2π2

(
−
π

in
−
π

in
+

1
n2 −

1
n2

)
= −

(−1)nL
inπ

= i
(−1)nL
nπ

and for n = 0 is

c0 =
1

2L

∫L
−L
xdx =

x2

4L

∣∣∣∣L
−L

= 0.

Therefore the complex Fourier series of f is
∞∑

n=−∞
n 6=0

i
(−1)nL
nπ

einx.

The formula relating the real coefficients to the complex coefficients is
a0 = c0

an = cn + c−n (n > 1)
bn = i (cn − c−n)

and substituting we get indeed
a0 = c0 = 0
an = cn + c−n = i

(−1)nL
nπ − i

(−1)nL
nπ = 0

bn = i(cn − c−n) = i
(
i
(−1)nL
nπ + i

(−1)nL
nπ

)
= (−1)n+1 2L

nπ

which is what we expected.

4. Consider again the 2L-periodic extension of x as in the previous Exercise. Find the
minimum value E∗N of the square error at the step N, which is

E∗N =

L∫
−L

f2 dx− L

(
2a2

0 +

N∑
n=1

(a2
n + b2

n)

)
, a0,an,bn Fourier coefficients.
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(To check that your computation is correct) prove that

lim
N→+∞E∗N =

2
3
L3 − 4

L3

π2

+∞∑
n=1

1
n2

Solution:
The coefficients have been recalled in the previous exercise and are{

an = 0
bn = (−1)n+1 2L

πn

Therefore

E∗N =

L∫
−L

x2 dx− L

N∑
n=1

b2
n =

2
3
L3 − L

N∑
n=1

4Ln

π2n2

which in fact has limit for N→ +∞ equal to

2
3
L3 − 4

L3

π2

+∞∑
n=1

1
n2

5. Let f be any 2L-periodic function. From the script we know that if f is well behaved
(for example everywhere continuous except a discrete set of points and with left and
right derivatives at every point) then, calling by F its Fourier series, we have for every
point x0

F(x0) =
1
2
(
f+(x0) + f

−(x0)
)

, where f±(x0) = lim
x→x±0

f(x) = lim
ε→0+

f(x0 ± ε)

In particular if f is continuous in x0 then F(x0) = f(x0) because left and right limit of
f coincide.3

Let now f and g be, respectively, the 2L-periodic extensions to R of x and x2 from
[−L,L). Sketch a graph of these functions.

x
L 2L 3L−L−2L

period = 2L

−3L

f(x)

L

x
L 2L 3L−L−2L

period = 2L

−3L

L

g(x)

3This gives an answer to Exercise 2.b).
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a) Are f and g well behaved in the sense specified above?

Solution:
Yes. f is continuous everywhere except in the odd integer multiples of L (so,
anyway, a discrete set of points), and has left and right derivatives everywhere.
g is continuous everywhere and has left and right derivatives everywhere.

b) What are the points of discontinuity of f and g?

Solution:
As said before, g is continuous everywhere while f has discontinuities in the
points xk = kL, with k odd integer, that is x = L,−L, 3L,−3L, . . . .

c) What are the mean values of the left and right limit of f in its points of discon-
tinuity?

1
2
(
f+(x0) + f

−(x0)
)
= ?

Solution:
In each of these points the right limit is always −L while the left limit is L,
therefore the mean value is

1
2
(
f+(xk) + f

−(xk)
)
=

1
2
(−L+ L) = 0

d) Does the Fourier series F of f converge to these values in these points? If the
answer to 5.a) is affirmative, then yes.
Verify it explicitely.

Solution:
The answer to 5.a) is indeed affirmative so we should have that the Fourier series

F(x) =

+∞∑
n=1

(−1)n+1 2L
πn

sin
(nπ
L
x
)

converges to zero in the points xk = kL with k odd integer. Indeed for these
points

sin
(nπ
L
xk

)
= sin

(nπ
L
kL
)
= sin (nπk) = 0 =⇒ F(xk) = 0.

e) Prove that the Fourier series of g is

G(x) =
L2

3
+

+∞∑
n=1

(−1)n
4L2

π2n2 cos
(nπ
L
x
)

Solution:
g is an even function, so it will have just an coefficients. We have

a0 =
1

2L

L∫
−L

g(x)dx =
1
L

L∫
0

x2 dx =
L2

3
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The other an coefficients can be either found explicitely by integrating twice by
parts (left to you), or using the following trick.
The bn coefficients of the derivative g ′ are related to our coefficients by =

bn(g
′) =

1
L

L∫
−L

g ′(x) sin
(nπ
L
x
)
dx =

=
1
L


����������

g(x) sin
(nπ
L
x
) ∣∣∣∣∣
L

−L

−
nπ

L

L∫
−L

g(x) cos
(nπ
L
x
)
dx

 =

= −
nπ

L
an(g)

Reading this equality from right to left, we can use that bn(g ′) = 2bn(f) and
obtain

an(g) = −
L

nπ
bn(g

′) = −
2L
nπ
bn(f) = (−1)n

4L2

π2n2

from which

G(x) =
L2

3
+

+∞∑
n=1

(−1)n
4L2

π2n2 cos
(nπ
L
x
)

6. (Bonus exercise) With the same notations of the previous exercise.

a) Because g (the 2L-periodic extension of x2) is well-behaved and continuous eve-
rywhere, its Fourier series G converge to it in every point. In particular

L2 = g(L) = G(L).

Deduce from this equality the value of the Riemann Zeta function in 2

ζ(2) :=
+∞∑
n=1

1
n2 =

π2

6

Solution:
From the previous exercise

L2 = G(L) =
L2

3
+

+∞∑
n=1

(−1)n
4L2

π2n2 cos
(nπ

�L
�L
)
=
L2

3
+

+∞∑
n=1

4L2

π2n2 =

=
L2

3
+

4L2

π2 ζ(2) =⇒ ζ(2) =
π2

4L2

(
L2 −

L2

3

)
=
π2

6
.

b) Use this value to deduce that the limit of the square error for f computed in
Exercise 4. is zero.

Solution:
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Now that we have given a name to the sum of all squares, we can read the limit
of the square error found in Exercise 4. as

lim
N→+∞E∗N(f) = 2

3
L3 − 4

L3

π2

+∞∑
n=1

1
n2 =

2
3
L3 − 4

L3

π2 ζ(2) =
2
3
L3 −

2
3
L3 = 0.

c) Compute the square error for g, E∗N(g), and observe that the following are equi-
valent4

(i) lim
N→+∞E∗N(g) = 0

(ii) ζ(4) :=
+∞∑
n=1

1
n4 =

π4

90

Solution:
The coefficients for g are {

a0 = L2

3

an = (−1)n 4L2

π2n2

while the integral of its square is

L∫
−L

x4dx =
2
5
L5

therefore

E∗N(g) =
2
5
L5 − L

(
2L4

9
+

N∑
n=1

16L4

π4n4

)
=

8
45
L5 −

16L5

π4

N∑
n=1

1
n4

and

lim
N→+∞E∗N(g) = 8

45
L5 −

16L5

π4

+∞∑
n=1

1
n4 =

8
45
L5 −

16L5

π4 ζ(4)

so, indeed,

(i) lim
N→+∞E∗N(g) = 0 ⇔ 8

45
L5 −

16L5

π4 ζ(4) = 0 ⇔ ζ(4) =
π4

90
(ii).

Remark: In a similar way one can consider the periodic extension of xk for any
positive integer k, use the fact that the square error has limit zero (which is
always true for nice functions like these), and deduce the values of the Zeta
function on the even integers

ζ(2k) =
(−1)k+1B2k(2π)2k

2 · (2k)!
, B2k = 2k-th Bernoulli number.

4in fact, they are (both) true.
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