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EXAM SOLUTIONS
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Laplace Transforms: (F = L(f))

f(t) F(s) f(t) F(s) f(t) F(s)
1) 1 L5 |t%,a>0| Hefl 9) | cosh(at) | *a
2) t é 6) eat L t10) | sinh(at) | %
3) t2 % 7) | cos(wt) = 11) | u(t—a) %e*as
4) | t", neZx sﬁl 8) | sin(wt) ﬁ 12) | 8(t—a) | e @S

(T'= Gamma function, u = Heaviside function, & = Delta function)

Indefinite Integrals (you may use): (n € Z>1)

dx = cos(nx)+nxsin(nx)

i (+ constant)

1) | [ xcos(nx)

2) J-Xz COS(TLX) dx = (n?x2—2) sin(nx)+2nx cos(1nx)

o (+ constant)

3) | Jxsin(nx) dx = Sin(nx)i:fzx cos(nx) (+ constant)

4) J-Xz sin(nx) dx — (2—n2x2?) cos(nx)+2nx sin(nx)

3 (+ constant)

5 | [ H% dx = arctan(x) (+ constant)
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1. Laplace Transform (8 Points)
Find, via Laplace transform, the solution of the following initial value problem:

y"+2y  +y=et+5(t—3), t=>0

;Juczlrlljtr(lgt y(0) =1, (1)
y'(0) = 2.

[Hint: Use the pfd (= partial fraction decomposition)

S _ 1 1
(s+1)2 s+1 (s+1)2 }

Solution:
We denote by Y = Y(s) the Laplace transform of y. Recall the formula to transform a
derivative

n—1
C (y(n)) ="y = Y shlyl(o),
j=0
which in the cases of our interest (n = 1,2) reads as:

L(y') =sY—y(0),
L(y") =s*—sy(0) —y’(0).

The left-hand side of the ODE transforms as

Lly"+2y"+y) = Ly + Ly ) +L(y) = s*Y—sy(0) =y’ (0) +2 (sY —y(0)) +Y =...
(substituting the initial conditions of the problem)

=Y — s 242(sY—1)+Y =52Y —s4+24+2sY —Z+Y = (s>+25s+1)Y—s = (s +1)*Y —s.
The right-hand side instead becomes

1

L7 +8(t=3)) =L (e7") +L(8(t—3)) = - —+ e %,
and the transformed ODE becomes the algebraic equation
(s+1)2Y—s= ! +e ¥ o
s+1
1 35 pid 1 1 1 —3s
e Y=—>_4 + = :

G2 1P +12  s+1 (+12  (s+1P TG

Consider the first three terms. These are known Laplace transforms, except they are
shifted (evaluated in s + 1 instead of s).
The s-shifting property tells us that for each real number a € R and any function
g =g(t):

L (e“tg) (s) = L{g)(s —a).
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Therefore, for each integer k > 1
1 th! 1 L
— =0 —_— — =L -t 7
sk <(k—1)!> (s+ 1)k (e (k—l)!)
and the first three terms are

1 1 1 4 2
_ - 1—t+—1].
s+1 (s—|—1)2+(s+1)3 L<e ( tJFZ))

The last term is a product of a Laplace transform with an exponential, and we can
use then the t-shifting property to get

(Se:ls)z —e 3L (e ) =L (e*“ﬁ”) (t—3)u(t— 3)) .

Finally

2

y=L"1(Y)=et (1 —t+ t2> +e 3t —3)u(t—3).
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2. Wave Equation (10 Points)

a) (7 Points) Find, via d’Alembert’s formula, the solution of the wave equation:

(x, 1) e = e, t>0,xcR

u=u(x, >

such that u(x,0) =e ™ +4xtarctan(x), xeR )
ui(x,0) = —2cxe ™ + = xeR

Simplify the expression as much as possible.
[In particular, no unsolved integrals.]

Solution:
D’Alembert formula for the wave equation with initial configuration f(x) and
initial speed g(x) is

y

1 @ , x+ct , .
u(x,t)zi(f(x+ct)+f(x—ct))+i J g(s)ds:§~(1) % - (I1).
x—ct

Let’s evaluate (I) and (II) with our specific data.

() =e~ (x+et)® | 4(x 4 ct) 4+ arctan(x + ct) + e~ ¢V 4 4(x — ct) + arctan(x — ct) =

= xFet) | o—(x—et)? | gy | arctan(x + ct) + arctan(x — ct).

x+ct x+ct x+ct

. . _s2 Cc . - _s2 ) L .
I = J <2cse +1—i—sz> ds=c J (25e )ds—l—c J 1_’_szds—

x—ct x—ct x—ct
x+ct x+ct

_s2

=c-e + ¢ - arctan(s)

x—ct x—ct

=c (ef(’“r‘:t)2 — e (xmet)? arctan(x + ct) — arctan(x — ct)) .
Finally

1
‘(I)‘i‘%

(e_(x+°t)2 e gy arctan(x + ct) +M) +

u(x,t) = (I1) =

NI~ DN

+2. ( (x+ct)? M—i—arctanx—i—ct)—M):

—|e~(xFet)’ 4 4y + arctan(x + ct).
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b) (3 Points) Find, for each fixed a € R, the asymptotic limit . lir_P u(a,t).
—~+00

Solution:
For each fixed a € R, the asymptotic limit of the first addend vanishes because

lim (a+ct)> =400 — lim e (atet)’ —.
t—+o0 t—+o00

The second addend is constantly equal to 4a, while the third has limit

. 7t .
lim arctan(a+ct) = = <because lim (a+ct) = —i—oo) .
t—+oo 2 t—+oo

All three addends have limits, therefore the limit will be the sum of the three
limits and it is

lim u(a,t) = lim (ef(aJrCt)2 +4a + arctan(a + ct)) =

t—+4o0 t—+o0
— lim e (@Y’ 4 lim 4a+ lim arctan(a +ct) =0+4a + T_
55 Foo t—>+o0 t—+oo 2
Pai
=4 —.
a-+ 5
{ Only if you didn’t find the solution: }
You can find, in alternative, the asymptotic limit . lirf v(a,t) of
—+00

@@ (x +ct)?

— a—(x+ct)? g2
V(X,t) = x+c Sin (X+Ct)+m

Solution:
The first term is the same term as before, multiplied by a bounded function.
Therefore its asymptotic limit vanishes

lim e (@+etgin2(q + ct) = 0.
t—+o0
The second term instead is a rational function with both numerator and deno-
minator polynomials of degree 2 (in the variable t). The limit will be the ratio of
the coefficients of maximum degree, which is

(a+ct)? c?
im ——————— = =1.
t=+oo 1+ (a+ct)2 2
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Why this is true?
When we have a quotient of polynomials of the same degree, we can extract the terms
of highest degree from both and we get

lim ant™ + an_t" T 4. agt + ag ~ im ii( an+ 2+ L+ R _an
t—otoo bt + byt 14 bt +by ot Y by + bntfl R t:’ll % bn

Anyway, at the end we get

2
; — 1 —(a+ct)? ;.2 (a+Ct) _
Jim vla,t) = lim (o0 i e+ 0
(a+ct)?

S H —(atct)? o:.2 t li — 1=1I1
tETooe sin“(a +¢ )+t—1>Tool—|—(a—i—ct)2 0+
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3. Inhomogeneous Wave Equation (14 Points)
Find the solution of the following wave equation (with inhomogeneous boundary
conditions) on the interval [0, 7t]:

Ut = CPUxy, t>0,x €0,
. u(0,t) =3, t>0
u=u(x, B
such that ulm ) =5, t>0 3)
ux,0)=x2+12-m)x+3, xel0n
u¢(x,0) =0. x € [0, 7]
You must proceed as follows.
a) (2 Points) Find the unique function w = w(x) with w” = 0, w(0) = 3, and
w(m) = 5.
Solution:

The only functions with second derivative zero are the linear functions
w(x)=ax+p, «p <.

Imposing the boundary conditions we find the right coefficients

A
i3

{3:W(0):CX'O+B N {OCZ w(x):%X—F&

5=w(n) =0 -n+f B=3

b) (4 Points) Define v(x, t) := u(x,t) —w(x). Formulate the corresponding problem
for v, equivalent to (3).

Solution:

The ODE doesn’t change because w is independent of time and has second de-
rivative zero. The boundary conditions become homogeneous (that's why we
chose this w)

v(0,t) =u(0,t)—w(0)=3—-3=0 & v(mt)=u(mt)—w(n)=5-5=0.

The initial position of the wave changes in

v(x,0) =u(x,0) —w(x) = x2+%(2—7t2)x+$—%x—3 = Xz—l—%—ﬂx—%: X% —x,

while the initial speed doesn’t change (because, again, w is independent of time).

Finally
Vit = 2Vyy, t>0,x€(0,m
v(0,t) =v(m,t) =0, t>0
v(x,0) = x% —7x, x € [0, 7]
vi(x,0) = 0. x € [0, 7]
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¢) (8 Points)
(i) Find, using the formula from the script, the solution v(x,t) of the problem

you have just formulated.

Solution:
This is a standard homogeneous wave equation with homogeneous bounda-
ry conditions. The formula from the script is

+o00

v(x,t) = Z (Bn cos(Ant) 4 B, sin(Ant)) sin <%Tx> , Ap = ?
n=1
(L=m) +00
= (Bn cos(cnt) + B}, sin(cnt) sin(nx).
n=1

The coefficients B}, = 0, because the initial speed is zero, while the coeffi-
cients B, are the Fourier series coefficients of the odd, 2m-periodic extension
of the initial datum x2 — 7, that is:
2 7T 2 7T 7T
B, = p~ J(xz —7x) sin(nx) dx = - J 2sin(nx) dx — Zstin(nx) dx =...
0 0

0

[we can continue the computation using the indefinite integrals given at the
beginning of the text]

7T

0 )

2 ((2 —n?x?) cos(nx) + 2nx sin(nx)
o e — T 3
n

n) 5 (sin(nx) —nx cos(nx)

T . n2
2 (2 —n2m?) cos(nm) —2 (. nm cos(nm) )
m nd n2 N
_4cos(nn) — 2n’nZeostnn) — 4 + 2n’nleostny)
N mm3 a

4 4 4 (0 n=2

- = )= — ()" =) = ——

7TT13 (COS(TIT[) ) T[Tl3 (( ) ) 7TT13 {2 n=— 2] 1

Finally we get the following equivalent expressions

cos(cnt) sin(nx) =

Z (2)_11)3 cos (c(2j +1)t) sin ((2j + 1)x).
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(ii) Write down explicitly the solution u(x, t) of the original problem (3).

Solution:
We get the following equivalent expressions

+o00 n__
u(x, t) =v(x,t) +wx) = ;L—T <Z ((_1)71) cos(cnt) sin(nx)) + %x +3

no
n=1
:—§ +ZOO1cos((:(2)'+1)t)sir1((2j+1)x) +gx+3,
T\ (21 -
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4. Laplace Equation (8 Points)
Let D; = {(x,y) € R?|x*>+y? < 1} be the unit disk centred in the origin and
0D ={(x,y) € R*|x*+y% =1} its boundary.
Consider the Dirichlet problem (in polar coordinates):

u = LL(T, e) vzu = O/ in Dl (4)
such that u(1,0) = f(0), 0 € (0,27
where s
)
{6) — 0e®, 2 0 € [0,m]
(2m—0)e™ +70, 0 € [, 27]

Without explicitly finding the solution, answer the following questions.
(i) What is the maximum of u on the whole disk?

Solution:
By the maximum principle the maximum is on the boundary

maxu = max f(0).
D, 80,27
Therefore we just need to find the maximum of this function f(6) on the interval
0 € [0,27].
A few observations are necessary:.

— The function is defined by two different formulas in the two subintervals

£1(0) = 6e?’, 0 e [0,
f(0) = a
fp(0) = (2m—0)e™ 70, 0 € [, 27

so0 it’s convenient to study these functions separately and then compare their
maximumes.

- The function f;(0) is strictly increasing, while the function f(0) is strictly
decreasing. This can be either observed directly!, or computing the derivati-
ves

£1(0) = (1+26%)e® >0, 0 € 0,7
£(0) = (0—2m—1)e™ ™0 <0. 0 € [r,27]

It follows that the maximum of f1(0) is at © = 71, and same for f,(0). Of course
these values will coincide because 6 = 7t is the conjunction point between the
two subintervals,

f1(7) = me™ = fa(m),

and this is the global maximum:

2
maxu = 7te’ .
D1

1f, is a product of nonnegative, increasing functions while f, is a product of nonnegative, decreasing
functions.
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(i) Same question for the minimum.

Solution:
As for the maximum principle, there is also a minimum principle, because

)

minu = —max(—u) W _ max(—u) = minu,
D, D, 3D, 9D,
where (%) is true because also —u is harmonic.
So, we need to find the minimum of the function f(0).
For the same observations we made before it’s clear that this is reached in 6 =0
(if we look it from the first subinterval) or 6 = 27t (if we look it from the second
subinterval), with value

Therefore the answer is
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5. Heat Equation (20 Points)

a) (10 Points) Find, via separation of variables, the general solution of the heat
equation (with homogeneous boundary conditions) on the interval [0, 71] - with
initial condition on the derivative:

(1) Up = Uy, t>0,x¢cl0,mn

u = u(x, B B

such that u(0,t) =u(mt) =0, t>0 (5)
Ux(x,0) = h(x), x € [0, 7]

where h(x) is a function with fg h(x)dx = 0.

Show all the steps of the method of separation of variables.

[Remark: The solution will be a series. The coefficients must be written in terms
of the initial datum h(x).]

Solution:
We separate variables u(x, t) = F(x)G(t) and the ODE becomes

G ¥

FG =cF'G — =
‘ T 26T F

=Kk,

for some real constant k € R.

The homogeneous boundary conditions (u(0,t) = u(m,t) = 0) force F to be
zero on the boundary, otherwise G should be identically zero for each time, and
therefore also u would be. In other words we need to find

F=F(x) s.t. {F” = kF,
F(0) = F(n) = 0.

Let’s distinguish the possible cases for k.
If k > 0 then the general solution of the ODE is

F(x) = AreY* £ ae VR, AL A € R,

and the boundary conditions become

M Ao =0 T & M=A=0
AMeVRT 4 AeVET = A (e\/E“—e_‘/E”):O tee e

so the solution is trivial.
If k = 0 the general solution is

F(x) =A1x+2Ay, AL, A eER,

and again the boundary conditions force the solution to be zero

Ay =0
{2 & A =M=0
)\1717:0
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If k < 0 it’s convenient to write it in the form k = —p? (for a unique p > 0) and
the ODE F” = —p?F has general solution

F(x) = A cos(px) 4+ Csin(px).

The first boundary condition forces A = 0 while the second boundary condition
is actually a condition on the parameter p, in fact

0=F(m) =Csin(pn) & prn=nm ne€Zy; & p=n, nEZs.

So, for each n € Z>; we have a solution F,(x) = Cy, sin (nx). The ODE for the
time-dependent function becomes

G =ke?G = —p*c?G = -—n’’G = —ALG, (Ani=cn)

which has unique solution Gn (t) = Dpe Mt Putting together the constants in
a unique constant B,, = C,,D,, we have solutions

Un(x,t) = F (x)Gn(t) = By, sin (nx) e_)‘%t,

and general solution, by the superposition principle,

“+o0 +o00o s
t) = Z Un(x,t) = Z B, sin (nx) e Mt
n=1 n=1

Now we have to find the coefficients B,, by imposing the initial condition.
First we derive term by term the series, and we get

+0o0 )
= Z Bnncos (nx) e Mt

n=1
Then we impose at time zero
[e¢) ) “+o00
h(x) = uy(x,0) = Z Bnhncos (nx) e Mt = Z Bnancos (nx).
n=1 t=0 n=1

The Fourier series of the even, 2mt-periodic extension, heyen(X), is made only of
cosines

heven(X) = ag + Z an cos (nx) Z an cos (nx)

n=1

(We observed that the constant term vanishes because ag = + fg h(x)dx = 0).

7T
Therefore, comparing the two expressions above

Z Bnm cos (nx) Z an cos (nx)

n=1
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b)

we get

7T
. . coefficients of the even, 2
Ban=an = 2m-periodic extension, heven(X) ~— ¢ Jh(x) cos (nx) dx,
0
or
7T
2
Bn = — | h(x) cos (nx) dx.
nm
0
(8 Points) Consider the function h(x) = x — 7, on the interval x € [0, 7], and let

heven(x) be its even, 2m-periodic extension.
Sketch the graph of heyen(X) and find its Fourier series.
[To get full points sketch the graph at least in the interval x € [-27, 27].]

Solution:

period = 27 A

B
T
£
o
z
kP

<
€ >
1
1
1
1
1

1
/\ |
\\ ! 70 T e
1 _n
! 2
1
1
1

The even extension will have Fourier series of the form

+00 1
a0 = 7 fo 9(x) dx
ap -|-nZ_1 an cos(nx), { — %J‘ g(x)d m>1)

7T 7T
1 1 s 1 /1, = 1 (m® =
“O—NJQ(X”"—NJ("W)d"—ﬂ'<z" —z")‘o—ﬂ(z—z>—("
0 0

(as one could also observe by the graph of g(x)). For the other coefficients we
can use the primitive we have at the beginning of the text

7T 2 7T
an:Jg(x)cosnx T[J x—— cosnx)dx:
0 0
2 cos(nx) 4+ nxsin(nx) " sin(n 2
—— > — = — - (cos(nm) —1) =
e n o / , ™
2 0, =2j
= — (D" -1) = 4 : )
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The Fourier series is then given by the two equivalent expressions

+o00

2 & (1) —1) 1 ,
e e 07(2j+1)2 cos ((2j +1)x).

4
5 cos(nx) = ——
n 7T <

n=1 j=

©) (2 Points) Write down explicitly the solution u(x,t) of the problem (5) with the
function h(x) of subtask 5.b).

Solution:
With the same notations as before
1 2 0, n=2j
Bn:*an:ﬁ((*l)nfl) = 4 ]
Finally we get the two equivalent expressions
2 “+00 1 —1
u(x, t) == (=1 3 ) sim(nx)e_czn2t
s n
n=1
_ 2 ZOO sin ((2j + 1)x)e*C2(2j+1)2t,
T (2j+1)°
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