Exam Analysis III d-mavt, d-matl

Please fill!

Surname:	
First Name:	
Student Card Nr.:	

Please do not fill!

Exercise	Value	Points	Control
1	8		
2	10		
3	14		
4	8		
5	20		
Total	60		

Please do not fill!

Completeness	
--------------	--

Important: Before the exam starts, please

- Turn off any mobile phone/device and place it inside your bag.
- Put your bags on the floor. No bags on the desk!
- Place your Student Card (Legi) on the desk.
- Fill in the front page of the exam with your generalities.

During the exam, please

- Start every exercise on a new piece of paper.
- Put your name on the top right corner of every page.
- You are expected to motivate your answers. Please write down calculations and intermediate results.
- Provide at most **one** solution to each exercise.
- Do not write with pencils. Do not use any red or green ink pens.

Allowed aids:

- 20 pages (= 10 sheets) DIN A4 handwritten or typed personal summary.
- An English (or English-German) dictionary.

Not allowed:

No further aids are allowed. In particular neither communication devices, nor pocket calculators.

Advice: Have a look at the whole exam.

Most exercises are made of multiple subtasks.

The exam is written in such a way you can often solve a subtask even if you didn't solve the previous ones.

Good Luck!

Laplace mansforms. $(1 - \lambda(1))$										
	f(t)	F(s)			f(t)	F(s)			f(t)	F(s)
1)	1	$\frac{1}{s}$		5)	t ^a , a > 0	$\frac{\Gamma(a+1)}{s^{a+1}}$		9)	$\cosh(at)$	$\frac{s}{s^2-a^2}$
2)	t	$\frac{1}{s^2}$		6)	e ^{at}	$\frac{1}{s-a}$		10)	$\sinh(at)$	$\frac{a}{s^2-a^2}$
3)	t ²	$\frac{2}{s^3}$		7)	$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$		11)	u(t-a)	$\frac{1}{s}e^{-as}$
4)	$\mathfrak{t}^{\mathfrak{n}}$, $\mathfrak{n}\in\mathbb{Z}_{\geqslant0}$	$\frac{n!}{s^{n+1}}$		8)	$sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$		12)	$\delta(t-a)$	e ^{-as}

Laplace Transforms: $(F = \mathcal{L}(f))$

(Γ = Gamma function, u = Heaviside function, δ = Delta function)

Indefinite Integrals (you may use): $(n \in \mathbb{Z}_{\geq 1})$

$$1) \int x \cos(nx) dx = \frac{\cos(nx) + nx \sin(nx)}{n^2} \quad (+ \text{ constant})$$

$$2) \int x^2 \cos(nx) dx = \frac{(n^2x^2 - 2)\sin(nx) + 2nx\cos(nx)}{n^3} \quad (+ \text{ constant})$$

$$3) \int x \sin(nx) dx = \frac{\sin(nx) - nx\cos(nx)}{n^2} \quad (+ \text{ constant})$$

$$4) \int x^2 \sin(nx) dx = \frac{(2 - n^2x^2)\cos(nx) + 2nx\sin(nx)}{n^3} \quad (+ \text{ constant})$$

$$5) \int \frac{1}{1 + x^2} dx = \arctan(x) \quad (+ \text{ constant})$$

1. Laplace Transform (8 Points)

Γ

Find, via Laplace transform, the solution of the following initial value problem:

$$y = y(t)$$

such that
$$\begin{cases} y'' + 2y' + y = e^{-t} + \delta(t-3), & t \ge 0\\ y(0) = 1, & \\ y'(0) = -2. \end{cases}$$
 (1)

[*Hint:* Use the pfd (= partial fraction decomposition)

$$\frac{s}{(s+1)^2} = \frac{1}{s+1} - \frac{1}{(s+1)^2}.$$

Please turn!

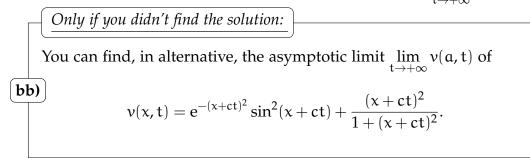
2. Wave Equation (10 Points)

a) (*7 Points*) Find, via d'Alembert's formula, the solution of the wave equation:

$$\begin{array}{ll} u = u(x,t) \\ \text{ such that } \end{array} & \begin{cases} u_{tt} = c^2 u_{xx}, & t \ge 0, \, x \in \mathbb{R} \\ u(x,0) = e^{-x^2} + 4x + \arctan(x), & x \in \mathbb{R} \\ u_t(x,0) = -2cxe^{-x^2} + \frac{c}{1+x^2}. & x \in \mathbb{R} \end{cases}$$
 (2)

Simplify the expression as much as possible. [In particular, no unsolved integrals.]

b) (3 *Points*) Find, for each fixed $a \in \mathbb{R}$, the asymptotic limit $\lim_{t \to +\infty} u(a, t)$.



3. Inhomogeneous Wave Equation (14 Points)

Find the solution of the following wave equation (with inhomogeneous boundary conditions) on the interval $[0, \pi]$:

$$u = u(x, t)$$

such that
$$\begin{cases} u_{tt} = c^2 u_{xx}, & t \ge 0, x \in [0, \pi] \\ u(0, t) = 3, & t \ge 0 \\ u(\pi, t) = 5, & t \ge 0 \\ u(x, 0) = x^2 + \frac{1}{\pi}(2 - \pi^2)x + 3, & x \in [0, \pi] \\ u_t(x, 0) = 0. & x \in [0, \pi] \end{cases}$$
(3)

You must proceed as follows.

- a) (2 *Points*) Find the unique function w = w(x) with w'' = 0, w(0) = 3, and $w(\pi) = 5$.
- **b)** (4 *Points*) Define v(x, t) := u(x, t) w(x). Formulate the corresponding problem for v, equivalent to (3).
- **c)** (8 *Points*)
 - (i) Find, using the formula from the script, the solution v(x, t) of the problem you have just formulated.
 - (ii) Write down explicitly the solution u(x, t) of the original problem (3).

4. Laplace Equation (8 Points)

Let $D_1 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}$ be the unit disk centred in the origin and $\partial D_1 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$ its boundary.

Consider the Dirichlet problem (in polar coordinates):

$$\begin{aligned} \mathfrak{u} &= \mathfrak{u}(r, \theta) \\ \text{such that} \qquad \begin{cases} \nabla^2 \mathfrak{u} &= 0, & \text{ in } D_1 \\ \mathfrak{u}(1, \theta) &= \mathfrak{f}(\theta), & \theta \in [0, 2\pi] \end{cases}$$

where

$$\mathsf{f}(heta) = egin{cases} heta \mathrm{e}^{ heta^2}, & heta \in [0,\pi] \ (2\pi - heta) \mathrm{e}^{\pi^2 + \pi - heta}. & heta \in [\pi, 2\pi] \end{cases}$$

Without explicitly finding the solution, answer the following questions.

- (i) What is the maximum of u on the whole disk?
- (ii) Same question for the minimum.

5. Heat Equation (20 Points)

a) (10 Points) Find, via separation of variables, the general solution of the heat equation (with homogeneous boundary conditions) on the interval [0, π] - with initial condition on the derivative:

$$\begin{array}{l} u = u(x,t) \\ \text{such that} \end{array} \quad \begin{cases} u_t = c^2 u_{xx}, & t \ge 0, \, x \in [0,\pi] \\ u(0,t) = u(\pi,t) = 0, & t \ge 0 \\ u_x(x,0) = h(x), & x \in [0,\pi] \end{cases}$$
 (5)

where h(x) is a function with $\int_0^{\pi} h(x) dx = 0$.

Show all the steps of the method of separation of variables.

[*Remark:* The solution will be a series. The coefficients must be written in terms of the initial datum h(x).]

- **b)** (8 *Points*) Consider the function $h(x) = x \frac{\pi}{2}$, on the interval $x \in [0, \pi]$, and let $h_{even}(x)$ be its even, 2π -periodic extension. Sketch the graph of $h_{even}(x)$ and find its Fourier series. [To get full points sketch the graph at least in the interval $x \in [-2\pi, 2\pi]$.]
- c) (2 *Points*) Write down explicitly the solution u(x, t) of the problem (5) with the function h(x) of subtask 5.b).