Exam 25.01.2017 - Solution

1.1. We apply the Laplace transform to the PDE, using the transform's properties. We get:

$$
\begin{aligned}
\mathcal{L}\left[y^{\prime \prime}+y\right](s) & =\mathcal{L}[t+2](s) ; \\
\mathcal{L}\left[y^{\prime \prime}\right](s)+\mathcal{L}[y](s) & =\mathcal{L}[t](s)+2 \mathcal{L}[1](s) ; \\
s^{2} \mathcal{L}[y](s)-s y(0)-y^{\prime}(0)+\mathcal{L}[y](s) & =\frac{1}{s^{2}}+\frac{2}{s} ; \\
s^{2} \mathcal{L}[y](s)-s-1+\mathcal{L}[y](s) & =\frac{1}{s^{2}}+\frac{2}{s} ; \\
\left(s^{2}+1\right) \mathcal{L}[y](s) & =\frac{1}{s^{2}}+\frac{2}{s}+s+1 ; \\
\mathcal{L}[y](s) & =\frac{1+2 s+s^{2}+s^{3}}{s^{2}\left(s^{2}+1\right)}
\end{aligned}
$$

We now perform a partial fraction decomposition on the right-hand-side through the Ansatz

$$
\frac{1+2 s+s^{2}+s^{3}}{s^{2}\left(s^{2}+1\right)} \stackrel{!}{=} \frac{A s+B}{s^{2}}+\frac{C s+D}{s^{2}+1}
$$

[2 points]
We see that

$$
\frac{A s+B}{s^{2}}+\frac{C s+D}{s^{2}+1}=\frac{(A+C) s^{3}+(B+D) s^{2}+A s+B}{s^{2}\left(s^{2}+1\right)}
$$

consequently the coefficients need to satisfy the system

$$
\left\{\begin{aligned}
A+C & =1 \\
B+D & =1, \\
A & =2, \\
B & =1,
\end{aligned}\right.
$$

Recalling the Laplace transform of the most elementary functions we therefore deduce:

$$
\begin{aligned}
\mathcal{L}[y](s) & =\frac{2 s+1}{s^{2}}-\frac{s+1}{s^{2}} \\
& =\frac{2}{s}+\frac{1}{s^{2}}-\frac{s}{s^{2}+1} \\
& =2 \mathcal{L}[1](s)+\mathcal{L}[t](s)-\mathcal{L}[\cos (t)](s) \\
& =\mathcal{L}[2+t-\cos (t)](s) .
\end{aligned}
$$

Finally applying the inverse transformation, we conclude:

$$
y(t)=2+t-\cos (t) .
$$

1.2. Following the hint, we first find a particular solution v of the PDE:

$$
v_{t t}-4 v_{x x}=\sin (4 t)+x .
$$

Since on the right-hand-side space and time variables are separated, we are led to make the Ansatz $v(x, t)=v_{1}(x)+v_{2}(t)$. The PDE is then equivalent to the couple of ODEs

$$
\left\{\begin{aligned}
-4 v_{1}^{\prime \prime}(x) & =x, \\
v_{2}^{\prime \prime}(t) & =\sin (4 t),
\end{aligned}\right.
$$

a solution of which is readily found:

$$
v_{1}(x)=-\frac{x^{3}}{24} \quad \text { and } \quad v_{2}(t)=-\frac{\sin (4 t)}{16} .
$$

We have then our particular solution:

$$
v(x, t)=-\frac{x^{3}}{24}-\frac{\sin (4 t)}{16} .
$$

Now, if u solves the original problem, $w=u-v$ solves the homogeneous problem

$$
\left\{\begin{aligned}
w_{t t}-4 w_{x x} & =0 & & (x, t) \in \mathbb{R} \times \mathbb{R}_{+}, \\
w(x, 0) & =2 x^{2}+\frac{x^{3}}{24} & & x \in \mathbb{R}, \\
w_{t}(x, 0) & =6 \cos (x)+\frac{1}{4} & & x \in \mathbb{R}
\end{aligned}\right.
$$

which we solve using d'Alembert's formula:

$$
w(x, t)=\frac{w(x-2 t, 0)+w(x+2 t, 0)}{2}+\frac{1}{4} \int_{x-2 t}^{x+2 t} 6 \cos (\xi)+\frac{1}{4} \mathrm{~d} \xi
$$

[3 points]

$$
\begin{aligned}
= & \frac{1}{2}\left(2(x-2 t)^{2}+\frac{(x-2 t)^{3}}{24}+2(x+2 t)^{2}+\frac{(x+2 t)^{3}}{24}\right)+\frac{1}{4}\left[6 \sin (\xi)+\frac{\xi}{4}\right]_{x-2 t}^{x+2 t} \\
= & \frac{1}{2}\left(4 x^{2}+16 t^{2}+\frac{1}{24}\left(2 x^{3}+24 x t^{2}\right)\right) \\
& +\frac{1}{4}\left(6(\sin (x+2 t)-\sin (x-2 t))+\frac{1}{4}(x+2 t-x+2 t)\right) \\
= & 2 x^{2}+8 t^{2}+\frac{x^{3}}{24}+\frac{x t^{2}}{2}+3 \cos (x) \sin (2 t)+\frac{t}{4}
\end{aligned}
$$

where we used the trigonometric identity $\sin (\alpha+\beta)-\sin (\alpha-\beta)=2 \cos (\alpha) \sin (\beta)$ in the last equality. We conclude that u is

$$
u(x, t)=v(x, t)+w(x, t)=2 x^{2}+8 t^{2}+\frac{x t^{2}}{2}+\frac{t}{4}-\frac{\sin (4 t)}{16}+3 \cos (x) \sin (2 t) .
$$

[1 point]
Alternative solution: We use directly d'Alembert's formula for the non homogeneous wave equation:

$$
\begin{aligned}
u(x, t)= & \frac{2(x-2 t)^{2}+2 u(x+2 t)^{2}}{2} \\
& +\frac{1}{4} \int_{x-2 t}^{2+2 t} 6 \cos (\xi) \mathrm{d} \xi \\
& +\frac{1}{4} \int_{0}^{t} \int_{x-2(t-\tau)}^{x+2(t-\tau)} \sin (4 \tau)+\xi \mathrm{d} \xi \mathrm{~d} \tau .
\end{aligned}
$$

We then compute:

$$
\frac{2(x-c t)^{2}+2 u(x+c t)^{2}}{2}=2 x^{2}+8 t^{2}
$$

$$
\frac{1}{4} \int_{x-2 t}^{2+2 t} 6 \cos (\xi) \mathrm{d} \xi=3 \cos (x) \sin (2 t)
$$

and

$$
\frac{1}{4} \int_{0}^{t} \int_{x-2(t-\tau)}^{x+2(t-\tau)} \sin (4 \tau)+\xi \mathrm{d} \xi \mathrm{~d} \tau=\frac{1}{4}\left(t+2 t^{2} x-\frac{1}{4} \sin (4 t)\right) .
$$

[2 points]
We then conclude that the solution is, as before

$$
u(x, t)=v(x, t)+w(x, t)=2 x^{2}+8 t^{2}+\frac{x t^{2}}{2}+\frac{t}{4}-\frac{\sin (4 t)}{16}+3 \cos (x) \sin (2 t) .
$$

[1 point]

1.3.

(a) Denote by F the 4 -periodic extension of f. By construction, F is an even function, so its Fourier series has the form

$$
\frac{a_{0}}{2}+\sum_{n=1}^{+\infty} a_{n} \cos \left(\frac{\pi n x}{2}\right)
$$

Where

$$
\begin{aligned}
a_{n} & =\frac{2}{P} \int_{0}^{P} f(x) \cos \left(\frac{2 \pi n x}{P}\right) \mathrm{d} x \\
& =\frac{1}{2} \int_{0}^{4} \frac{x^{2}}{2} \cos \left(\frac{\pi n x}{2}\right) \mathrm{d} x=\frac{1}{2} \int_{0}^{2} x^{2} \cos \left(\frac{\pi n x}{2}\right) \mathrm{d} x .
\end{aligned}
$$

We now compute the a_{n} 's. As for a_{0} we get

$$
a_{0}=\frac{1}{2} \int_{0}^{2} x^{2} \mathrm{~d} x=\frac{4}{3} .
$$

As for $a_{n}, n \geq 1$ we get, using integration by parts,

$$
\begin{aligned}
a_{n} & =\frac{1}{2} \int_{0}^{2} x^{2} \cos \left(\frac{\pi n x}{2}\right) \mathrm{d} x \\
& =\frac{1}{2}(\underbrace{\left.\frac{x^{2} \sin (\pi n x / 2)}{\pi n / 2}\right|_{0} ^{2}}_{=0}-\int_{0}^{2} \frac{2 x \sin (\pi n x / 2)}{\pi n / 2} \mathrm{~d} x) \\
& =\frac{1}{2}\left(\left.\frac{2 x \cos (\pi n x / 2)}{(\pi n / 2)^{2}}\right|_{0} ^{2}-\int_{0}^{2} \frac{2 \cos (\pi n x / 2)}{(\pi n / 2)^{2}} \mathrm{~d} x\right) \\
& =\frac{1}{2}((-1)^{n} \frac{16}{\pi^{2} n^{2}}-\underbrace{\left.\frac{2 \sin (\pi n x / 2)}{(\pi n / 2)^{3}}\right|_{0} ^{2}}_{=0})=(-1)^{n} \frac{8}{\pi^{2} n^{2}} .
\end{aligned}
$$

We conclude

$$
F(x) \sim \frac{2}{3}+\sum_{n=1}^{+\infty}(-1)^{n} \frac{8}{\pi^{2} n^{2}} \cos \left(\frac{\pi n x}{2}\right) .
$$

(b) Since F is continuous and piecewise differentiable, its Fourier series converges uniformly, and we can thus exchange " \sim " with " $=$ ".
[1 point]
In order to compute the requested series, we see that it is convenient to evaluate in 0 F, so that

$$
0=F(0)=\frac{2}{3}+\sum_{n=1}^{+\infty}(-1)^{n} \frac{8}{\pi^{2} n^{2}} \quad \Rightarrow \quad-\frac{\pi^{2}}{12}=\sum_{n=1}^{+\infty}(-1)^{n} \frac{1}{n^{2}} .
$$

Multiplying both hand-sides by -1 leads to the result:

$$
\frac{\pi^{2}}{12}=\sum_{n=1}^{+\infty}(-1)^{n+1} \frac{1}{n^{2}} .
$$

1.4. Let us recall that for $a>0$ there holds

$$
\mathcal{F}\left[e^{-a x^{2}}\right](\xi)=\int_{\mathbb{R}} e^{-a x^{2}} \mathrm{e}^{i \xi x} \mathrm{~d} x=\sqrt{\frac{\pi}{a}} \mathrm{e}^{-\frac{\xi^{2}}{4 a}} .
$$

So in our case where $a=2$ we get

$$
\mathcal{F}\left[e^{-2 x^{2}}\right](\xi)=\sqrt{\frac{\pi}{2}} \mathrm{e}^{-\frac{\xi^{2}}{8}} .
$$

From the well-known relation between derivatives and Fourier transform:

$$
\frac{\mathrm{d}^{k} \mathcal{F}[f](\xi)}{\mathrm{d} \xi^{2}}=(-i)^{k} \mathcal{F}\left[x^{k} f(x)\right](\xi),
$$

we deduce, in our case where $k=2$ that

$$
\int_{\mathbb{R}} x^{2} f(x) \mathrm{d} x=-\frac{\mathrm{d}^{k} \mathcal{F}[f](0)}{\mathrm{d} \xi^{2}},
$$

Now, there holds

$$
\begin{aligned}
\frac{\mathrm{d} \mathcal{F}[f](\xi)}{\mathrm{d} \xi} & =-\sqrt{\frac{\pi}{2}} \frac{2 \xi}{8} \mathrm{e}^{-\frac{\xi^{2}}{8}}, \\
\frac{\mathrm{~d}^{2} \mathcal{F}[f](\xi)}{\mathrm{d}^{2} \xi} & =\sqrt{\frac{\pi}{2}}\left(-\frac{2}{8} \mathrm{e}^{-\frac{\xi^{2}}{8}}+\left(\frac{2 \xi}{8}\right)^{2} \mathrm{e}^{-\frac{\xi^{2}}{8}}\right),
\end{aligned}
$$

We conclude that

$$
\int_{\mathbb{R}} x^{2} f(x) \mathrm{d} x=\frac{1}{4} \sqrt{\frac{\pi}{2}} .
$$

1.5.

(a) From the Maximum principle, we know that u attains its maximum and minimum on the boundary.

Being there $u(x, y)=1+x^{2}$, we clearly see that the minimum value is attained at the points where x^{2} is minimum, for example $(x, y)=(0,2)$. We then see that $u(0,2)=1$. An identical strategy applies for the maximum: it is attained where x^{2} is maximum, for example, at the point $(x, y)=(2,0)$, where we see that $u(2,0)=5$.

We conclude that $1 \leq u \leq 5$ on $B_{2}(0)$.
(b) Following the hint we switch to polar coordinates:

$$
\left\{\begin{array}{l}
x=r \cos (\theta), \\
y=r \sin (\theta),
\end{array} \text { for }(r, \theta) \in(0,2) \times(0,2 \pi)\right.
$$

As we know from the method of separation of variables, if we expand the boundary datum in Fourier series

$$
u(2, \theta) \rightarrow \frac{a_{0}}{2}+\sum_{n=1}^{+\infty} a_{n} \cos (n \theta)+b_{n} \sin (n \theta)
$$

then $u(r, \theta)$ will be given by

$$
\frac{a_{0}}{2}+\sum_{n=1}^{+\infty}\left(\frac{r}{2}\right)^{n}\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right)
$$

Now, the boundary datum takes the form:

$$
u(2, \theta)=1+4 \cos ^{2}(\theta)
$$

which, thanks to the trigonometric identity

$$
\cos ^{2}(\alpha)=\frac{1+\cos (2 \alpha)}{2}
$$

we can rewrite as $u(2, \theta)=3+2 \cos (2 \theta)$.
We conclude that

$$
u(r, \theta)=3+\frac{r^{2}}{2} \cos (2 \theta)
$$

[2 points]
We remark that, reverting to Cartesian coordinates, the above expression becomes

$$
u(x, y)=3+\frac{x^{2}-y^{2}}{2}
$$

