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1

Computing with Matrices and Vectors

1.1 Numerics & Error Analysis

In numerical methods, we leave the discrete world of int’s and long’s to describe real-
world quantities by float’s or double’s. This transition brings challenges, as the real-world
quantities are in general only approximated by finite representations on the computer.

Note. Computers cannot compute “properly” in R : numerical computations may not
respect the laws of analysis and linear algebra!

The reason why computers must fail to execute exact computations with real numbers is
clear:�� ��Computer = finite automaton −→

�� ��can handle only finitely many numbers, not R

Essential property. M, the set of machine numbers, is a finite, discrete subset of R.
Therefore, roundoff errors (ger.: Rundungsfehler) are inevitable.

The set of machine numbers M cannot be closed under elementary arithmetic operations
+,−, ·, /, that is, when performing the addition, multiplication, etc., of two machine num-
bers, the result may not belong to M. The results of elementary operations with operands
in M have to be mapped back to M, by an operation called rounding.

Let’s look at the following simple example.

1



1 Computing with Matrices and Vectors

Code Snippet 1.1: Machine Arithmetic Example
10 #include <iostream>
11 using namespace std ;
12
13 double a = 1 . 0 ;
14 double b = a / 9 . 0 ;
15 if ( a==b ∗ 9 . 0 ) cout << "They are equal" ;
16 else cout << "They are not equal" ;
17 /*

The output will be "They are not equal", because of the roundoff error which occurs in
each computation. The exact query == can be changed to an approximate equality, as in
the code below, which will print "They are equal":

Code Snippet 1.2: Machine Arithmetic Example
10 #include <limits>
11 #include <iostream>
12 using namespace std ;
13
14 double a = 1 . 0 ;
15 double b = a / 9 . 0 ;
16 if ( fabs ( a−b ∗ 9 . 0 ) <numeric_l imits <double > : : eps i lon )
17 cout << "They are equal" ;
18 else cout << "They are not equal" ;
19 /*

1.1.1 Representation of numbers

The most straightforward way to store a fractional number is using a fixed decimal point
system.

Fixed Point Representation

0. 73125︸ ︷︷ ︸
digits of mantissa

· 10︸︷︷︸
base

12 ← exponent∈Z

• Range: 10−k to 10l l, k ∈ Z

• Digits: k + l + 1 where k digits appear after the decimal point

• Advantage: simple implementation of arithmetic operations , for example a + b =
(a · 10k + b · 10k) · 10−k

• Disadvantage: precision issue, for example k = 1, the operation 0.1× 0.1 will output
0

2



1.1 Numerics & Error Analysis

This system can be used in cases that favor time over accuracy (e.g. some GPU systems).
However, the “default” representation used is the Floating Point Representation.

Floating Point Representation

In various applications it is of utmost importance to have a reliable system which is suf-
ficiently flexible for frequent changes of scales. For example, in chemistry the scale of
computation could easily go from 10−31 to 1024. Therefore, in many applications, a unified
representation is desirable.

Definition 1.1.1 (Machine numbers/floating point numbers). Given:

• Basis B ∈N \ {1}

• exponent range {emin, . . . , emax}, emin, emax ∈ Z and emin < emax

• number m ∈N of digits (for mantissa)

the corresponding set of machine numbers is:

M := {d · BE: d = i · B−m, i = Bm−1, . . . , Bm − 1, E ∈ {emin, . . . , emax}} .

machine number ∈ M : x = ±
︸︷︷︸

sign

0 . 1

never = 0 !

1 1 1 1 . . . 1 1

︸ ︷︷ ︸

m digits for mantissa

· B

1 1 . . . 1 1

︸ ︷︷ ︸

digits for exponent

IEEE 754/IEC 559 standard for machine numbers

The standardisation of machine numbers is important because it ensures that the same
numerical algorithm, executed on different computers will produce the same result.

The IEEE 754 standard includes 5 basic formats.

• 3 binary formats

– binary32: single

– binary64: double

– binary128: quadruple

• 2 decimal formats

– decimal64: double

– decimal128: quadruple

The two most common formats are binary32 and binary64 which have the following pa-
rameters:

3



1 Computing with Matrices and Vectors

single precision : m = 24∗,E ∈ {−125, . . . , 128} → 4 bytes

double precision : m = 53∗,E ∈ {−1021, . . . , 1024} → 8 bytes

∗: including 1 bit indicating the sign

Special cases in IEEE standard:

E = emax, M 6= 0 =̂ NaN = Not a number→ exception

E = emax, M = 0 =̂ Inf = Infinity→ overflow

E = 0 =̂ Non-normalized numbers→ underflow

E = 0, M = 0 =̂ number 0

Code Snippet 1.3: Querying characteristics of double numbers → GITLAB
10 #include <limits>
11 #include <iostream>
12 #include <iomanip>
13
14 using namespace std ;
15
16 int main ( ) {
17 cout << std : : numeric_l imits <double > : : i s _ i e c 5 5 9 << endl
18 << std : : d e f a u l t f l o a t << numeric_l imits <double > : : min ( ) << endl
19 << std : : h e x f l o a t << numeric_l imits <double > : : min ( ) << endl
20 << std : : d e f a u l t f l o a t << numeric_l imits <double > : : max ( ) << endl
21 << std : : h e x f l o a t << numeric_l imits <double > : : max ( ) << endl ;
22 }
23 /*

Remark. Machine numbers are not evenly spaced! Gaps are bigger for large number:

B
emin−1

spacing B
emin−m spacing B

emin−m+1 spacing B
emin−m+2

0

Gap partly filled with non-normalized numbers

1.1.2 Roundoff errors

Example 1.1.1: Input Errors and Roundoff Errors

The following computations would always result in 0, if done in exact arithmetic.

Code Snippet 1.4: Demonstration of roundoff errors → GITLAB
9 #include <iostream>

10 int main ( ) {

4
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1.1 Numerics & Error Analysis

11 std : : cout . p r e c i s i o n ( 1 5 ) ;
12 double a = 4 . 0 / 3 . 0 , b = a−1, c = 3∗b , e = 1−c ;
13 std : : cout << e << std : : endl ;
14 a = 1 0 1 2 . 0 / 1 1 3 . 0 ; b = a−9; c = 113∗b ; e = 5+c ;
15 std : : cout << e << std : : endl ;
16 a = 8 3 8 1 0 2 0 6 . 0 / 6 7 8 9 . 0 ; b = a−12345; c = 6789∗b ; e = c−1;
17 std : : cout << e << std : : endl ;
18 }
19 /*

Output:
1 2.22044604925031 e−16
2 6.75015598972095 e−14
3 −1.60798663273454e−09

Can you devise a similar calculation, whose result is even farther off zero? Apparently
the rounding that inevitably accompanies arithmetic operations in M can lead to results
that are far away from the true result.

For the discussion of errors introduced by rounding we need important notions.

Definition 1.1.2 (Absolute and relative error). Let x̃ ∈ C be an approximation of x ∈ C.
Then its absolute error is given by

εabs := |x− x̃| ,

and its relative error is defined as

εrel :=
|x− x̃|
|x| .

Definition 1.1.3 (Number of Correct Digits). The number of correct (significant, valid) digits
of an approximation x̃ of x ∈ C is defined through the relative error:

If εrel := |x−x̃|
|x| ≤ 10−` , then x̃ has ` correct digits, ` ∈N0 .

1.1.3 Floating Point Operations

We may think of the elementary binary operations +,−, ∗, / in M as comprising of two
steps:

Ê Compute the exact result of the operation.

Ë Perform rounding of the result of Ê to map it back to M.

Definition 1.1.4 (Correct rounding). Correct rounding (“rounding up”) is given by the func-
tion

rd :

 R → M

x 7→ max argminx̃∈M |x− x̃| .

5



1 Computing with Matrices and Vectors

(Recall that argminx F(x) is the set of arguments of a real valued function F that makes it
attain its (global) minimum.)

Of course, Ê above is not possible in a strict sense, but the effect of both steps can be
realised and yields a floating point realization of ? ∈ {+,−, ·, /}.

. Notation: Write ?̃ for the floating point realization of ? ∈ {+,−, ·, /}:

Then Ê and Ë may be summed up into

For ? ∈ {+,−, ·, /}: x ?̃ y := rd(x ? y) .

Remark (Breakdown of Associativity). As a consequence of rounding, addition +̃ and mul-
tiplication ∗̃, as implemented on computers, fail to be associative. They will usually be
commutative, though this is not guaranteed.

1.1.4 Estimating Roundoff Errors

Let us denote by EPS the largest relative error (see Definition 1.1.2) incurred through round-
ing:

EPS := max
x∈I\{0}

| rd(x)− x|
|x| ,

where I = [min(M+), max(M+)] is the range of positive machine numbers, and M+ :=
{x ∈M: x > 0} is the set of strictly positive machine numbers.

For machine numbers according to definition 1.1.1, EPS can be computed from the defining
parameters B (base) and m (length of mantissa) [1, p. 24]:

EPS = 1
2 B1−m .

However, when studying roundoff errors, we do not want to delve into the intricacies of
the internal representation of machine numbers. This can be avoided by just using a single
bound for the relative error due to rounding, and, thus, also for the relative error potentially
suffered in each elementary operation.

Assumption 1.1.1 (“Axiom” of roundoff analysis). There is a small positive number EPS, the
machine precision, such that, for the elementary arithmetic operations ? ∈ {+,−, ·, /} and “hard-
wired” functions ∗ f ∈ {exp, sin, cos, log, . . .}, the following holds

x ?̃ y = (x ? y)(1 + δ) , f̃ (x) = f (x)(1 + δ) ∀x, y ∈M ,

with |δ| < EPS.

Note. The relative roundoff errors of elementary steps in a program are bounded by the
machine precision.

∗this is an ideal, which may not be accomplished even by modern CPUs

6



1.1 Numerics & Error Analysis

Example 1.1.2: Machine Precision for IEEE Standard

In C++ we can get the machine precision as following:

Code Snippet 1.5: Finding out EPS in C++ → GITLAB
9 #include <iostream>

10 #include <limits> // get various properties of arithmetic types
11 int main ( ) {
12 std : : cout . p r e c i s i o n ( 1 5 ) ;
13 std : : cout << std : : numeric_l imits <double > : : eps i lon ( ) << std : : endl ;
14 }
15 /*

Output:

1 2.22044604925031 e−16

Knowing the machine precision can be important for checking the validity of computations
or coding termination conditions for iterative approximations.

Example 1.1.3: Adding EPS to 1

Code Snippet 1.6: 1 + EPS

14 cout . p r e c i s i o n ( 2 5 ) ;
15 double eps = numeric_l imits <double > : : eps i lon ( ) ;
16 cout << f i x e d << 1 . 0 + 0 . 5∗ eps << endl
17 << 1 . 0 − 0 . 5∗ eps << endl
18 << ( 1 . 0 + 2/eps ) − 2/eps << endl ;
19 /*

Output:

1 1.0000000000000000000000000
2 0.9999999999999998889776975
3 0.0000000000000000000000000

EPS is the smallest positive number ∈M for which 1+̃EPS 6= 1 (in M).

Note. We have to worry about roundoff errors because of accumulation and/or amplifica-
tion.

7
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1 Computing with Matrices and Vectors

Remark (Testing Equality With Zero). Since results of numerical computations are almost
always polluted by roundoff errors, tests like if (x == 0) are pointless and even danger-
ous (if x contains the result of a numerical computation).
Instead test: if (abs(x) < eps*s) , with some positive number s which is small com-
pared to |x|.

Overflow and Underflow

overflow : |result of an elementary operation| > max{M}

IEEE standard: Inf

underflow : 0 < |result of an elementary operation| < min{M+}

IEEE standard: Use subnormal numbers

Subnormal numbers are introduced to fill the gap between 0 and min{M+}. This is done
by allowing general digit strings for the mantissa (leading entry does not have to be non-
zero). The axiom of roundoff analysis (Assumption 1.1.1) does not hold once subnormal
numbers are encountered:

Code Snippet 1.7: Demonstration of over-/underflow → GITLAB
9 # include <iostream >

10 # def ine _USE_MATH_DEFINES
11 # include <cmath>
12 # include < l i m i t s >
13 using namespace std ;
14 int main ( ) {
15 cout . p r e c i s i o n ( 1 5 ) ;
16 double min = numeric_l imits <double > : : min ( ) ;
17 double res1 = M_PI∗min/123456789101112;
18 double res2 = res1 ∗123456789101112/min ;
19 cout << res1 << endl << res2 << endl ;
20 }
21 /*

Output:
1 5.68175492717434 e−322
2 3.15248510554597

Underflow and overflow should be avoided.

Example 1.1.4: Avoiding overflow
A simple example showing how to avoid overflow during the computation of the norm
of a 2D vector [1, Ex. 2.9]:

r =
√

x2 + y2 .
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Straightforward evaluation: there is an overflow when |x| >
√

max |M| or |y| >√
max |M|.

Whereas for

r =


|x|
√

1 +
( y

x
)2 , if |x| ≥ |y| ,

|y|
√

1 +
(

x
y

)2
, if |y| > |x| ,

there is no overflow.

Note. So far, we have only discussed roundoff errors. Other error sources exist such as
discretization error, modelling error, measurement error.

Note. Relative or absolute errors are in general not computable since the true solution will
be unknown. Therefore, we have to use other means to estimate the errors such as:

1. Worst case estimates

2. Compute backward error

Example 1.1.5: LSE Ax = b
A good example for explaining the backward error is a linear system of equations of
the form Ax = b.

Suppose we want to solve for x in Ax = b and we have obtained an approximate
solution xapp. We can define the corresponding right-hand side

bapp := Axapp .

Then, with xex being the exact solution to Ax = b, we can introduce two error terms

Forward : xex − xapp ,
Backward : bex − bapp .

While in practice, xex and hence the forward error is unknown, the backward error can
be easily computed.

In practice: Stop when backward error Axapp − b is small.

However: Small backward error ; small forward error.

In the case of a linear system of equations, the condition number of the system ma-
trix indicates the reliability of the backward error: If the condition number (see Defini-
tion 1.1.5 below) is small, then a small backward error guarantees a small forward error.
But for large condition numbers, the forward error can be large even if the backward
error is very small.
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Definition 1.1.5 (Condition number of a matrix). Suppose A ∈ Rn,n is a matrix with largest
singular value σmax and smallest singular value σmin. Then the condition number can be
calculated as follows:

cond(A) =
σmax

σmin
.

1.2 Fundamentals

1.2.1 Notations

We now introduce some basic notation used throughout this course. Notations in textbooks
may be different, beware!

. Notation for generic field of numbers: K

In this course, K will designate either R (real numbers) or C (complex numbers); complex
arithmetic [2, Sect. 2.5] plays a crucial role in many applications, for instance in signal
processing.

Vector notations

• Vectors are n-tuples (n ∈N) with components in K.

vector = one-dimensional array (of real/complex numbers)

. Notation for vectors: small bold symbols: a, b, . . . , x, y, z

• Default in this lecture: vectors are column vectors
x1
...

xn

 ∈ Kn
[

x1 · · · xn

]
∈ K1,n

column vector row vector

Kn =̂ vector space of column vectors with n components in K.

Remark. Unless stated otherwise, in mathematical formulas vector components are
indexed starting from 1.

10
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• Transposing:

 column vector 7→ row vector

row vector 7→ column vector


x1
...

xn


>

=
[

x1 · · · xn

]
,
[

x1 · · · xn

]>
=


x1
...

xn


. Notation for row vectors: x>, y>, z>

• Addressing vector components:

. Notation: x = [x1 . . . xn]
> → xi, i = 1, . . . , n

x ∈ Kn → (x)i, i = 1, . . . , n

• Selecting sub-vectors:

. Notation: x = [x1 . . . xn]
> → (x)k:l = (xk, . . . , xl)

>, 1 ≤ k ≤ l ≤ n

• j-th unit vector: ej =
[
0, . . . , 1, . . . , 0

]>
, (ej)i = δij, i, j = 1, . . . , n.

. Notation: Kronecker symbol δij := 1, if i = j; δij := 0, if i 6= j.

Notations and notions for matrices

• Matrices = two-dimensional arrays of real/complex numbers

A :=


a11 . . . a1n
...

...

am1 . . . amn

 ∈ Km,n , m, n ∈N .

vector space of m× n-matrices: (m =̂ number of rows, n =̂ number of columns)

. Notation: bold CAPITAL roman letters, e.g., A, S, Y

Kn,1 ↔ column vectors, K1,n ↔ row vectors

• Writing a matrix as a tuple of its columns or rows

ci ∈ Km, i = 1, . . . , n → A = [c1, c2, . . . , cn] ∈ Km,n ,

11



1 Computing with Matrices and Vectors

ri ∈ Kn, i = 1, . . . , m → A =


r>1
...

r>m

 ∈ Km,n .

• Addressing matrix entries & sub-matrices:

A :=


a11 . . . a1n
...

...

am1 . . . amn


→ entry (A)i,j = aij ,

→ i-th row: ai,: = (A)i,: ,

→ j-th column: a:,j = (A):,j ,

→ matrix block

(sub-matrix)

(aij) i=k,...,l
j=r,...,s

= (A)k:l,r:s ,
1 ≤ k ≤ l ≤ m ,

1 ≤ r ≤ s ≤ n .

• Transposed matrix:

A> =


a11 . . . a1n
...

...

am1 . . . amn


>

:=


a11 . . . am1
...

...

a1n . . . anm

 ∈ Kn,m .

• Adjoint matrix (Hermitian transposed):

AH :=


a11 . . . a1n
...

...

am1 . . . amn


H

:=


a11 . . . am1
...

...

a1n . . . anm

 ∈ Kn,m .

. Notation: aij = Re(aij)− iIm(aij) denotes the complex conjugate of aij.

1.2.2 Classes of matrices

Most matrices occurring in mathematical modelling have a special structure. This section
presents a few of these. More will come up throughout the remainder of this chapter; see
also [1, Sect. 4.3].

Diagonal and triangular matrices

A little terminology to quickly refer to matrices whose non-zero entries occupy special
locations:

12
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Definition 1.2.1 (Types of matrices). A matrix A = (aij) ∈ Rm,n is

• diagonal matrix, if aij = 0 for i 6= j,

• upper triangular matrix if aij = 0 for i > j,

• lower triangular matrix if aij = 0 for i < j.

A triangular matrix is normalized, if aii = 1, i = 1, . . . , min{m, n}.

 0

0



 0





0


diagonal matrix upper triangular lower triangular

Symmetric matrices

Definition 1.2.2 (Hermitian/symmetric matrices). A matrix M ∈ Kn,n, n ∈N, is Hermitian,
if MH = M. If K = R, the matrix is called symmetric.

Definition 1.2.3 (Symmetric positive definite matrices). A matrix M ∈ Kn,n, n ∈ N, is
symmetric (Hermitian) positive definite (s.p.d.), if

M = MH and ∀x ∈ Kn: xHMx > 0 ⇔ x 6= 0 .

If xHMx ≥ 0 for all x ∈ Kn, we say that M is positive semi-definite.

Lemma 1.2.1 (Necessary conditions for s.p.d.). For a symmetric/Hermitian positive definite
matrix M = MH ∈ Kn,n the following holds true:

1. mii > 0, i = 1, . . . , n,

2. miimjj − |mij|2 > 0 ∀1 ≤ i < j ≤ n,

3. all eigenvalues of M are positive. (← also sufficient for symmetric/Hermitian M)

1.3 Software and Libraries

Whenever algorithms involve matrices and vectors (in the sense of linear algebra) it is
advisable to rely on suitable code libraries or numerical programming environments.

13
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1.3.1 Eigen

Currently, the most widely used programming language for the development of new sim-
ulation software in scientific and industrial high-performance computing is C++. In this
course we are going to use and discuss Eigen as an example of a C++ library for numerical
linear algebra (“embedded” domain specific language: DSL). Eigen is a header-only C++
template library designed to enable easy, natural and efficient numerical linear algebra: it
provides data structures and a wide range of operations for matrices and vectors, see be-
low. Eigen also implements many more fundamental algorithms (see the documentation
page or the discussion below).

Eigen relies on expression templates to allow the efficient evaluation of complex expres-
sions involving matrices and vectors. Refer to the example given in the Eigen documenta-
tion for details.

Compilation of codes using Eigen

Compiling and linking on Mac OS X 10.10:

clang -D_HAS_CPP0X -std=c++11 -Wall -g \
-Wno-deprecated-register -DEIGEN3_ACTIVATED \
-I/opt/local/include -I/usr/local/include/eigen3 \
-o main.cpp.o -c main.cpp

/usr/bin/c++ -std=c++11 -Wall -g -Wno-deprecated-register \
-DEIGEN3_ACTIVATED -Wl,-search_paths_first \
-Wl,-headerpad_max_install_names main.cpp.o \
-o executable /opt/local/lib/libboost_program_options-mt.dylib

Of course, different compilers may be used on different platforms. In all cases, basic Eigen

functionality can be used without linking with a special library. Usually the generation of
such elaborate calls of the compiler is left to a build system like Cmake.

“Eigen Cheat Sheet” (quick reference relating to Matlab commands) can be found here:
http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt

Matrix and vector data types in Eigen

A generic matrix data type is given by the templated class

1 Matrix <typename Sca lar ,
2 int RowsAtCompileTime , int ColsAtCompileTime>

Here Scalar is the underlying scalar type of the matrix entries, which must support the
usual operations ’+’,’-’,’*’,’/’, and ’+=’, ’*=’, ’/=’, etc. Usually the scalar type will be ei-
ther double, float , or complex<>. The cardinal template arguments RowsAtCompileTime and
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ColsAtCompileTime can pass a fixed size of the matrix, if it is known at compile time. There
is a specialization selected by the template argument Eigen::Dynamic supporting variable
size “dynamic” matrices.

Code Snippet 1.8: Vector types and their use in Eigen

1 #include <Eigen/Dense >
2
3 template<typename Sca lar >
4 void eigenTypeDemo ( unsigned int dim )
5 {
6 // General dynamic (variable size) matrices
7 using dynMat_t = Eigen : : Matrix <Sca lar , Eigen : : Dynamic , Eigen : : Dynamic >;
8 // Dynamic (variable size) column vectors
9 using dynColVec_t = Eigen : : Matrix <Sca lar , Eigen : : Dynamic , 1 > ;

10 // Dynamic (variable size) row vectors
11 using dynRowVec_t = Eigen : : Matrix <Sca lar , 1 , Eigen : : Dynamic >;
12 using index_t = typename dynMat_t : : Index ;
13 using e n t r y _ t = typename dynMat_t : : S c a l a r ;
14
15 // Declare vectors of size ’dim’; not yet initialized
16 dynColVec_t co lvec ( dim ) ;
17 dynRowVec_t rowvec ( dim ) ;
18 // Initialisation through component access
19 for ( index_t i =0 ; i < co lvec . s i z e ( ) ; ++ i ) co lvec ( i ) = ( S c a l a r ) i ;
20 for ( index_t i =0 ; i < rowvec . s i z e ( ) ; ++ i ) rowvec ( i ) = ( S c a l a r ) 1/( i +1) ;
21 colvec [ 0 ] = ( S c a l a r ) 3 . 1 4 ; rowvec [ dim−1] = ( S c a l a r ) 2 . 7 1 8 ; //
22 // Form tensor product , a matrix
23 dynMat_t vecprod = colvec ∗rowvec ; //
24 const int nrows = vecprod . rows ( ) ;
25 const int ncols = vecprod . c o l s ( ) ;
26 }

Note that in line 23 we could have relied on automatic type deduction via auto vecprod = ... .
However, it is often safer to forgo this option and specify the type directly.

The following convenience data types are provided by Eigen, see documentation:

• MatrixXd : generic variable size matrix with double precision entries,

• VectorXd, RowVectorXd : dynamic column and row vectors
(= dynamic matrices with one dimension equal to 1),

• MatrixNd with N = 2, 3, 4 for small fixed size square N × N-matrices (type double),

• VectorNd with N = 2, 3, 4 for small column vectors with fixed length N.

The d in the type name may be replaced with i (for int), f (for float), and
cd (for complex<double>) to select another basic scalar type.

All matrix types feature the methods cols () , rows(), and size () outputting the number of
columns, rows, and total number of entries.
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Access to individual matrix entries and vector components, both as Rvalue and Lvalue,
is possible through the ()-operator taking two arguments of type index_t. If only one
argument is supplied, the matrix is accessed as a linear array according to its memory
layout. For vectors, that is, matrices where one dimension is fixed to 1, the []-operator can
replace () with one argument, see line 21 of Code Snippet 1.8.

Initialization of dense matrices in Eigen

The entry access operator (int i ,int j ) allows the most direct setting of matrix entries; there
is hardly any runtime penalty. Of course, in Eigen, dedicated functions take care of the
initialization of special matrices:

1 Eigen : : MatrixXd I = Eigen : : MatrixXd : : I d e n t i t y ( n , n ) ;
2 Eigen : : MatrixXd O = Eigen : : MatrixXd : : Zero ( n ,m) ;
3 Eigen : : MatrixXd D = d_vector . asDiagonal ( ) ;

Code Snippet 1.9: Initializing special matrices in Eigen

1 #include <Eigen/Dense>
2 // Just allocate space for matrix, no initialisation
3 Eigen : : MatrixXd A( rows , c o l s ) ;
4 // Zero matrix. Similar to Matlab command zeros(rows, cols);
5 Eigen : : MatrixXd B = MatrixXd : : Zero ( rows , c o l s ) ;
6 // Ones matrix. Similar to Matlab command ones(rows, cols);
7 Eigen : : MatrixXd C = MatrixXd : : Ones ( rows , c o l s ) ;
8 // Matrix with all entries same as value.
9 Eigen : : MatrixXd D = MatrixXd : : Constant ( rows , cols , value ) ;

10 // Random matrix, entries uniformly distributed in [0, 1]
11 Eigen : : MatrixXd E = MatrixXd : : Random( rows , c o l s ) ;
12 // (Generalized) identity matrix, 1 on main diagonal
13 Eigen : : MatrixXd I = MatrixXd : : I d e n t i t y ( rows , c o l s ) ;
14 std : : cout << "size of A = (" << A. rows ( ) << ’,’ << A. c o l s ( ) << ’)’ << std

↪→ : : endl ;

A versatile way to initialize a matrix relies on a combination of the operators « and ,, which
allows the construction of a matrix from blocks:

1 MatrixXd mat3 ( 6 , 6 ) ;
2 mat3 <<
3 MatrixXd : : Constant ( 4 , 2 , 1 . 5 ) , // top row, first block
4 MatrixXd : : Constant ( 4 , 3 , 3 . 5 ) , // top row, second block
5 MatrixXd : : Constant ( 4 , 1 , 7 . 5 ) , // top row, third block
6 MatrixXd : : Constant ( 2 , 4 , 2 . 5 ) , // bottom row, left block
7 MatrixXd : : Constant ( 2 , 2 , 4 . 5 ) ; // bottom row, right block

The matrix is filled top to bottom left to right, block dimensions have to match (like in
Matlab). Thus, the above code will generate the following matrix:
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mat3 =



1.5 1.5 3.5 3.5 3.5 7.5

1.5 1.5 3.5 3.5 3.5 7.5

1.5 1.5 3.5 3.5 3.5 7.5

1.5 1.5 3.5 3.5 3.5 7.5

2.5 2.5 2.5 2.5 4.5 4.5

2.5 2.5 2.5 2.5 4.5 4.5



Access to submatrices in Eigen (see Documentation)

The method block(int i ,int j ,int p,int q) returns a reference to the submatrix with upper
left corner at position (i, j) and size p× q.

The methods row(int i) and col(int j ) provide a reference to the corresponding row and
column of the matrix. Even more specialised access methods are

topLeftCorner(p, q), bottomLeftCorner(p, q),
topRightCorner(p, q), bottomRightCorner(p, q),

topRows(q), bottomRows(q),
leftCols(p), and rightCols(q),

with obvious purposes.

Code Snippet 1.10: Demonstration code for access to matrix blocks in Eigen → GITLAB
19 template<typename MatType>
20 void blockAccess ( Eigen : : MatrixBase <MatType> &M)
21 {
22 using index_t = typename Eigen : : MatrixBase <MatType > : : Index ;
23 using e n t r y _ t = typename Eigen : : MatrixBase <MatType > : : S c a l a r ;
24 const index_t nrows (M. rows ( ) ) ; // No. of rows
25 const index_t ncols (M. c o l s ( ) ) ; // No. of columns
26
27 cout << "Matrix M = " << endl << M << endl ; // Print matrix
28 // Block size half the size of the matrix
29 index_t p = nrows/2 ,q = ncols /2;
30 // Output submatrix with left upper entry at position (i,i)
31 for ( index_t i =0 ; i < min ( p , q ) ; i ++)
32 cout << "Block (" << i << ’,’ << i << ’,’ << p << ’,’ << q
33 << ") = " << M. block ( i , i , p , q ) << endl ;
34 // l-value access: modify sub-matrix by adding a constant
35 M. block ( 1 , 1 , p , q ) += Eigen : : MatrixBase <MatType > : : Constant ( p , q , 1 . 0 ) ;
36 cout << "M = " << endl << M << endl ;
37 // r-value access: extract sub-matrix
38 MatrixXd B = M. block ( 1 , 1 , p , q ) ;
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39 cout << "Isolated modified block = " << endl << B << endl ;
40 // Special sub-matrices
41 cout << p << " top rows of m = " << M. topRows ( p ) << endl ;
42 cout << p << " bottom rows of m = " << M. bottomRows ( p ) << endl ;
43 cout << q << " left cols of m = " << M. l e f t C o l s ( q ) << endl ;
44 cout << q << " right cols of m = " << M. r i g h t C o l s ( p ) << endl ;
45 // r-value access to upper triangular part
46 const MatrixXd T = M. template tr iangularView <Upper > ( ) ; //
47 cout << "Upper triangular part = " << endl << T << endl ;
48 // l-value access to upper triangular part
49 M. template tr iangularView <Lower > ( ) ∗= −1.5; //
50 cout << "Matrix M = " << endl << M << endl ;
51 }
52 /*

Eigen offers views for access to triangular parts of a matrix, see line 46 and line 49, accord-
ing to

M.triangularView<XX>()

where XX can stand for one of the following: Upper, Lower, StrictlyUpper, StrictlyLower,
UnitUpper, UnitLower, see documentation.

For column and row vectors, references to sub-vectors can be obtained by the methods
head(int length), tail (int length), and segment(int pos, int length).

Note: Unless the preprocessor switch NDEBUG is set, Eigen performs range checks on all
indices.

Component-wise operations in Eigen

Eigen uses the Array concept to furnish entry-wise operations on matrices. An Eigen-Array
contains the same data as a matrix, supports the same methods for initialisation and access,
but replaces the operators of matrix arithmetic with entry-wise actions. Matrices and arrays
can be converted into each other by the array() and matrix() methods, see documentation
for details.

Code Snippet 1.11: Using Array in Eigen → GITLAB
19 void matArray ( int nrows , int ncols ) {
20 Eigen : : MatrixXd m1( nrows , ncols ) ,m2( nrows , ncols ) ;
21 for ( int i = 0 ; i < m1. rows ( ) ; i ++)
22 for ( int j =0 ; j < m1. c o l s ( ) ; j ++) {
23 m1( i , j ) = ( double ) ( i +1) /( j +1) ;
24 m2( i , j ) = ( double ) ( j +1) /( i +1) ;
25 }
26 // Entry-wise product, not a matrix product
27 Eigen : : MatrixXd m3 = (m1. array ( ) ∗ m2. array ( ) ) . matrix ( ) ;
28 // Explicit entry-wise operations on matrices are possible
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29 Eigen : : MatrixXd m4(m1. cwiseProduct (m2) ) ;
30 // Entry-wise logarithm
31 cout << "Log(m1) = " << endl << log (m1. array ( ) ) << endl ;
32 // Entry-wise boolean expression, true cases counted
33 cout << (m1. array ( ) > 3) . count ( ) << " entries of m1 > 3" << endl ;
34 }
35 /*

The application of a functor to all entries of a matrix can also be done via the unaryExpr()
method of a matrix:

1 // Apply a lambda function to all entries of a matrix
2 auto f n c t = [ ] ( double x ) { return ( x +1.0/ x ) ; } ;
3 cout << "f(m1) = " << endl << m1. unaryExpr ( f n c t ) << endl ;

1.3.2 (Dense) Matrix storage formats

All numerical libraries store the entries of a (generic = dense) matrix A ∈ Km,n in a linear
array of length m.n (or longer). Accessing entries entails suitable index computations.

There are two natural options for vectorisation of a matrix: row major and column major.

A =


1 2 3

4 5 6

7 8 9


Row major (C-arrays, bitmaps, Python):

A_arr 1 2 3 4 5 6 7 8 9

Column major (Fortran, Matlab, Eigen):

A_arr 1 4 7 2 5 8 3 6 9

Access to entry (A)ij of A ∈ Km,n,
i = 1, . . . , m, j = 1, . . . , n:

row major:

(A)ij ↔ A_arr(n*(i-1)+(j-1)) ,

column major:

(A)ij ↔ A_arr(m*(j-1)+(i-1)) .

1 2 3

4 5 6

7 8 9




row major

1 2 3

4 5 6

7 8 9




column major

Code Snippet 1.12: Single index access of matrix entries in Eigen → GITLAB
19 void storageOrder ( int nrows=6 ,int ncols =7)
20 {
21 cout << "Different matrix storage layouts in Eigen" << endl ;
22 // Template parameter ColMajor selects column major data layout
23 Matrix <double , Dynamic , Dynamic , ColMajor> mcm( nrows , ncols ) ;
24 // Template parameter RowMajor selects row major data layout
25 Matrix <double , Dynamic , Dynamic , RowMajor> mrm( nrows , ncols ) ;
26 // Direct initialization; lazy option: use int as index type
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27 for ( int l =1 , i = 0 ; i < nrows ; i ++)
28 for ( int j = 0 ; j < ncols ; j ++ , l ++)
29 mcm( i , j ) = mrm( i , j ) = l ;
30
31 cout << "Matrix mrm = " << endl << mrm << endl ;
32 cout << "mcm linear = " ;
33 for ( int l =0 ; l < mcm. s i z e ( ) ; l ++) cout << mcm( l ) << ’,’ ;
34 cout << endl ;
35
36 cout << "mrm linear = " ;
37 for ( int l =0 ; l < mrm. s i z e ( ) ; l ++) cout << mrm( l ) << ’,’ ;
38 cout << endl ;
39 }
40 /*

The function call storageOrder(3,3), cf. Code Snippet 1.12 yields the output

1 D i f f e r e n t matrix s torage layouts in Eigen
2 Matrix mrm =
3 1 2 3
4 4 5 6
5 7 8 9
6 mcm l i n e a r = 1 , 4 , 7 , 2 , 5 , 8 , 3 , 6 , 9 ,
7 mrm l i n e a r = 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ,

Impact of matrix data access patterns on runtime

Modern CPU feature several levels of memories (registers, L1 cache, L2 cache, . . ., main
memory) of different latency, bandwidth, and size. Frequently accessing memory locations
with widely different addresses results in many cache misses and will considerably slow
down the CPU.
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A(:,j+1) = A(:,j+1) - A(:,j)

A(i+1,:) = A(i+1,:) - A(i,:)

eigen row access

eigen column access

Platform:

• ubuntu 14.04 LTS

• i7-3517U CPU 1.90GHz x 4

• L1 32 KB, L2 256 KB, L3 4096
KB, Mem 8 GB

• gcc 4.8.4, -O3, -DNDEBUG

The compiler flags -O3 and
-DNDEBUG are essential. The C++
code would be significantly slower
if the default compiler options were
used!
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1.4 Computational effort

For both Matlab and Eigen codes we observe a glaring discrepancy of CPU time required
for accessing entries of a matrix in rowwise or columnwise fashion. This reflects the impact
of features of the underlying hardware architecture, like cache size and memory band-
width:

Interpretation of timings:
Since matrices in Matlab are stored column major all the matrix elements in a column
occupy contiguous memory locations, which will all reside in the cache together. Hence,
column oriented access will mainly operate on data in the cache even for large matrices.
Conversely, row oriented access addresses matrix entries that are stored in distant memory
locations, which incurs frequent cash misses (cache thrashing).

The impact of hardware architecture on the performance of algorithms will not be taken
into account in this course, because hardware features tend to be both intricate and ephemeral.
However, for modern high performance computing it is essential to adapt implementations
to the hardware on which the code is supposed to run.

1.4 Computational effort

The computational effort required by a numerical code amounts to the number of elemen-
tary operations (additions, subtractions, multiplications, divisions, square roots) executed
in a run.

Note (Computational effort � runtime). The computational effort involved in a run of a
numerical code is only loosely related to overall execution time on modern computers.

The runtime itself is influenced by the memory access patterns. Therefore, on today’s
computers a key bottleneck for fast execution is latency and bandwidth of memory. Thus,
concepts like I/O-complexity might be more appropriate for gauging the efficiency of a
code, because they take into account the pattern of memory access.

1.4.1 Asymptotic complexity

The concept of computational effort from before is still useful in a particular context:

Definition 1.4.1 (Asymptotic complexity). The asymptotic complexity of an algorithm char-
acterises the worst-case dependence of its computational effort on one or more problem size
parameter(s) when these tend to ∞.

• Problem size parameters in numerical linear algebra usually are the lengths and dimen-
sions of the vectors and matrices that an algorithm takes as inputs.

• Worst case indicates that the maximum effort over a set of admissible data is taken
into account.
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1 Computing with Matrices and Vectors

When dealing with asymptotic complexities, a mathematical formalism is useful:

Definition 1.4.2 (Landau symbol). We write F(n) = O(G(n)) for two functions F, G : N→
R, if there exists a constant C > 0 and n∗ ∈N such that

F(n) ≤ C G(n) ∀n ≥ n∗ .

More generally, F(n1, . . . , nk) = O(G(n1, . . . , nk)) for two functions F, G : Nk → R implies
the existence of a constant C > 0 and a threshold value n∗ ∈N such that

F(n1, . . . , nk) ≤ CG(n1, . . . , nk) ∀n1, . . . , nk ∈N , n` ≥ n∗, ` = 1, . . . , k .

This is called the Landau-O Notation and we can use it to describe the asymptotic com-
plexity ("cost") of an algorithm depending on the problem size parameter n:

Cost(n) = O(nα) , α > 0 ,

or more strictly formulated:

∃C > 0, n0 ∈N : Cost(n) ≤ Cnα ∀n ≥ n0 ,

where an underlying implicit assumption of sharpness was made

Cost(n) 6= O(nβ) ∀β < α .

Note (Sharpness of a complexity bound). Whenever the asymptotic complexity of an al-
gorithm is stated as O(nα logβ n exp(γnδ)) with non-negative parameters α, β, γ, δ ≥ 0 in
terms of the problem size parameter n, we take for granted that choosing a smaller value
for any of the parameters will no longer yield a valid (or provable) asymptotic bound.

Relevance of asymptotic complexity

It was already shown that computational effort and, thus, asymptotic complexity, of an
algorithm for a concrete problem on a particular platform may not have much to do with the
actual runtime (the blame goes to memory hierarchies, internal pipelining, vectorization,
etc.).

Then, why do we pay so much attention to asymptotic complexity in this course?

To a certain extent, the asymptotic complexity allows to predict the dependence of the runtime
of a particular implementation of an algorithm on the problem size (for large problems). For
instance, an algorithm with asymptotic complexity O(n2) is likely to take 4 times as much
time when the problem size is doubled.
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1.5 Cancellation

Example 1.4.1: Concluding polynomial complexity from runtime measurements

Available: “Measured runtimes” ti = ti(ni) for different values n1, n2, . . . , nN ∈N, of
the problem size parameter

Conjectured: “power law dependence”: ti ≈ Cnα
i (also “algebraic dependence”),

α ∈ R

This can be reformulated as:

ti ' Cnα
i =⇒ log(ti) ' log C + α log(ni) , i = 1, . . . , N .

If the conjecture holds true, then the points (ni, ti) will approximately lie on a straight
line with slope α in a doubly logarithmic plot.

1.4.2 Cost of basic operations

Performing basic linear algebra operations through simple (nested) loops, we arrive at the
following obvious complexity bounds:

Operation Description
Number of

·, / operations

Number of

+, − operations

Asymp.

Compl.

Dot product (x ∈ Rn, y ∈ Rn) 7→ xHy n n− 1 O(n)

Tensor product (x ∈ Rm, y ∈ Rn) 7→ xyH nm 0 O(mn)

Matrix product † (A ∈ Rm,n, B ∈ Rn,k) 7→ AB mnk mk(n− 1) O(mnk)

1.5 Cancellation

In general, predicting the impact of roundoff errors on the result of a multi-stage computa-
tion is very difficult, if possible at all. However, there is a constellation that is particularly
prone to dangerous amplification of roundoff and still can be detected easily.

†Due to three loop naive implementation
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1 Computing with Matrices and Vectors

Computing the roots of a quadratic polynomial

The following simple Eigen code computes the real roots of a quadratic polynomial p(ξ) =
ξ2 + αξ + β by the discriminant formula

p(ξ1) = p(ξ2) = 0 , ξ1,2 =
1
2

(
α±
√

D
)

, if D := α2 − 4β ≥ 0 .

Code Snippet 1.13: Discriminant formula for the real roots of p(ξ) = ξ2 + αξ + β → GITLAB
18 //! C++ function computing the zeros of a quadratic polynomial
19 //! ξ → ξ2 + αξ + β by means of the familiar discriminant
20 //! formula ξ1,2 = 1

2 (−α±
√

α2 − 4β). However
21 //! this implementation is vulnerable to round-off ! The zeros are
22 //! returned in a column vector
23 Vector2d zerosquadpol ( double alpha , double beta ) {
24 Vector2d z ;
25 double D = std : : pow( alpha , 2 ) −4∗beta ; // discriminant
26 if (D < 0) throw "no real zeros" ;
27 else {
28 // The famous discriminant formula
29 double wD = std : : s q r t (D) ;
30 z << (−alpha−wD) /2 , (−alpha+wD) /2; //
31 }
32 return z ;
33 }
34 /*

This formula is applied to the quadratic polynomial p(ξ) = (ξ − γ)(ξ − 1
γ ) after its coeffi-

cients α, β have been computed from γ, which will have introduced small relative roundoff
errors (of size EPS).

Code Snippet 1.14: Testing the accuracy of computed roots of a quadratic polynomial → GITLAB
25 //! Eigen Function for testing the computation of the zeros of a parabola
26 void compzeros ( ) {
27 int n = 1 0 0 ;
28 MatrixXd re s ( n , 4 ) ;
29 VectorXd gamma = VectorXd : : LinSpaced ( n , 2 , 9 9 2 ) ;
30 for ( int i = 0 ; i < n ; ++ i ) {
31 double alpha = −(gamma( i ) + 1./gamma( i ) ) ;
32 double beta = 1 . ;
33 Vector2d z1 = zerosquadpol ( alpha , beta ) ;
34 Vector2d z2 = zerosquadpolstab ( alpha , beta ) ;
35 double ztrue = 1./gamma( i ) , z2true = gamma( i ) ;
36 re s ( i , 0 ) = gamma( i ) ;
37 re s ( i , 1 ) = std : : abs ( ( z1 ( 0 )−ztrue ) /ztrue ) ;
38 re s ( i , 2 ) = std : : abs ( ( z2 ( 0 )−ztrue ) /ztrue ) ;
39 re s ( i , 3 ) = std : : abs ( ( z1 ( 1 )−z2true ) /z2true ) ;
40 }
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1.5 Cancellation

41 // Graphical output of relative error of roots computed by unstable implementation
42 mgl : : Figure f i g 1 ;
43 f i g 1 . s e t F o n t S i z e ( 3 ) ;
44 f i g 1 . t i t l e ( "Roots of a parabola computed in an unstable manner" ) ;
45 f i g 1 . p l o t ( re s . c o l ( 0 ) , re s . c o l ( 1 ) , " +r" ) . l a b e l ( "small root" ) ;
46 f i g 1 . p l o t ( re s . c o l ( 0 ) , re s . c o l ( 3 ) , " *b" ) . l a b e l ( "large root" ) ;
47 f i g 1 . x l a b e l ( "\\gamma" ) ;
48 f i g 1 . y l a b e l ( "relative errors in \\xi_1, \\xi_2" ) ;
49 f i g 1 . legend ( 0 . 0 5 , 0 . 9 5 ) ;
50 f i g 1 . save ( "zqperrinstab" ) ;
51 // Graphical output of relative errors (comparison), small roots
52 mgl : : Figure f i g 2 ;
53 f i g 2 . t i t l e ( "Roundoff in the computation of zeros of a parabola" ) ;
54 f i g 2 . p l o t ( re s . c o l ( 0 ) , re s . c o l ( 1 ) , " +r" ) . l a b e l ( "unstable" ) ;
55 f i g 2 . p l o t ( re s . c o l ( 0 ) , re s . c o l ( 2 ) , " *m" ) . l a b e l ( "stable" ) ;
56 f i g 2 . x l a b e l ( "\\gamma" ) ;
57 f i g 2 . y l a b e l ( "relative errors in \\xi_1" ) ;
58 f i g 2 . legend ( 0 . 0 5 , 0 . 9 5 ) ;
59 f i g 2 . save ( "zqperr" ) ;
60 }
61 /*

Observation:
Roundoff incurred during the computation of
α and β leads to “inaccurate” roots.
For large γ the computed small root may be
fairly inaccurate with regards to its relative er-
ror, which can be several orders of magnitude
larger than machine precision EPS.
The large root always enjoys a small relative
error about the size of EPS.
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In order to understand why the small root is much more severely affected by roundoff,
note that its computation involves the subtraction of two large numbers, if γ is large. This
is the typical situation, in which cancellation occurs.

Visualisation of cancellation effect

We look at the exact subtraction of two almost equal positive numbers both of which have
small relative errors (red boxes) with respect to some desired exact value (indicated by blue
boxes). The result of the subtraction will be small, but the errors may add up during the
subtraction, ultimately constituting a large fraction of the result.
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1 Computing with Matrices and Vectors

(absolute) errors

Cancellation: Subtraction of almost equal numbers leads to ex-

treme amplification of relative errors.

(Roundoff error introduced by subtraction itself is negligible.)

Stable computation of the roots of a quadratic polynomial

If ξ1 and ξ2 are the two roots of the quadratic polynomial p(ξ) = ξ2 + αξ + β, then ξ1 · ξ2 =
β (Vieta’s formula). Once, we have computed a root, we can obtain the other by simple
division.

Approach:

• Depending on the sign of α compute “stable root” without cancellation.

• Compute other root from Vieta’s formula (avoiding subtraction).

Code Snippet 1.15: Stable computation of real roots of a quadratic polynomial → GITLAB
18 //! C++ function computing the zeros of a quadratic polynomial
19 //! ξ → ξ2 + αξ + β by means of the familiar discriminant
20 //! formula ξ1,2 = 1

2 (−α±
√

α2 − 4β).
21 //! This is a stable implementation based on Vieta’s theorem.
22 //! The zeros are returned in a column vector
23 VectorXd zerosquadpolstab ( double alpha , double beta ) {
24 Vector2d z ( 2 ) ;
25 double D = std : : pow( alpha , 2 ) −4∗beta ; // discriminant
26 if (D < 0) throw "no real zeros" ;
27 else {
28 double wD = std : : s q r t (D) ;
29 // Use discriminant formula only for zero far away from 0
30 // in order to avoid cancellation. For the other zero
31 // use Vieta’s formula.
32 if ( alpha >= 0) {
33 double t = 0.5∗(− alpha−wD) ; //
34 z << t , beta/ t ;
35 }
36 else {
37 double t = 0.5∗(− alpha+wD) ; //
38 z << beta/t , t ;
39 }
40 }
41 return z ;
42 }
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1.5 Cancellation

43 /*

Note. Invariably, we add numbers with the same sign in line 33 and line 37.

Numerical experiment based on the driver
code (Code Snippet 1.14).
Observation: The new code can also compute
the small root of the polynomial p(ξ) = (ξ −
γ)(ξ − 1

γ ) (expanded in monomials) with a
relative error ≈ EPS.
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Cancellation when evaluating difference quotients

From analysis we know that the derivative of a differentiable function f : I ⊂ R → R at a
point x ∈ I is the limit of a difference quotient

f ′(x) = lim
h→0

f (x + h)− f (x)
h

.

This suggests the following approximation of the derivative by a difference quotient with
small but finite h > 0:

f ′(x) ≈ f (x + h)− f (x)
h

for |h| � 1 .

Results from analysis tell us that the approximation error should tend to zero for h→ 0. More
precise quantitative information is provided by the Taylor formula for a twice continuously
differentiable function

f (x+ h) = f (x)+ f ′(x)h+ 1
2 f ′′(ξ)h2 for some ξ = ξ(x, h) ∈ [min{x, x+ h}, max{x, x+ h}] ,

from which we infer

f (x + h)− f (x)
h

− f ′(x) = 1
2 h f ′′(ξ) for some ξ = ξ(x, h) ∈ [min{x, x+ h}, max{x, x+ h}] .

(1.1)
We investigate the approximation of the derivative by difference quotients for f = exp,
x = 0, and different values of h > 0:

Code Snippet 1.16: Difference quotient approximation of the derivative of exp → GITLAB
18 //! Difference quotient approximation
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19 //! of the derivative of exp
20 void d i f f q ( ) {
21 double h = 0 . 1 , x = 0 . 0 ;
22 for ( int i = 1 ; i <= 1 6 ; ++ i ) {
23 double df = ( exp ( x+h )−exp ( x ) ) /h ;
24 cout << s e t p r e c i s i o n ( 1 4 ) << f i x e d ;
25 cout << setw ( 5 ) << − i
26 << setw ( 2 0 ) << df−1 << endl ;
27 h /= 1 0 ;
28 }
29 }
30 /*

This gives the following measured relative errors:

log10(h) relative error

-1 0.05170918075648

-2 0.00501670841679

-3 0.00050016670838

-4 0.00005000166714

-5 0.00000500000696

-6 0.00000049996218

-7 0.00000004943368

-8 -0.00000000607747

-9 0.00000008274037

-10 0.00000008274037

-11 0.00000008274037

-12 0.00008890058234

-13 -0.00079927783736

-14 -0.00079927783736

-15 0.11022302462516

-16 -1.00000000000000

We observe an initial decrease of the relative approximation error followed by a steep
increase when h drops below 10−8. The error plot on the right-hand side in the above figure
confirms that the observed errors are really due to roundoff errors. For these numerical
results a variable precision floating point module of Eigen, the MPFRC++ Support module
was used.

Obvious culprit: cancellation when computing the numerator of the difference quotient for
small |h| leads to a strong amplification of inevitable errors introduced by the evaluation of
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1.5 Cancellation

the transcendent exponential function.

We witness the competition of two opposite effects: Smaller h results in a better approxima-
tion of the derivative by the difference quotient, but the impact of cancellation is stronger
for a smaller |h|.

Approximation error f ′(x)− f (x + h)− f (x)
h

→ 0

Impact of roundoff→ ∞

 as h→ 0 .

In order to provide a rigorous underpinning for our conjecture, in this example we embark
on our first roundoff error analysis merely based on Assumption 1.1.1: As in the computa-
tional example above we study the approximation of f ′(x) = ex for f = exp, x ∈ R by the
difference quotient dq.

dq =
ex+h (1 + δ1)− ex (1 + δ2)

h

= ex

(
eh − 1

h
+

δ1eh − δ2

h

)
Correction factors take into account roundoff:
(Assumption 1.1.1)

|δ1|, |δ2| ≤ EPS .

Choose h such that the relative error
∣∣∣dq−ex

ex

∣∣∣ is minimized.

dq− ex

ex =

(
eh − 1

h
− 1

)
+

(
δ1eh − δ2

h

)
∣∣∣∣dq− ex

ex

∣∣∣∣ ≤
∣∣∣∣∣
(

eh − 1
h
− 1

)∣∣∣∣∣+
∣∣∣∣∣
(

δ1eh − δ2

h

)∣∣∣∣∣∣∣∣∣dq− ex

ex

∣∣∣∣ . h
2
+

2EPS
h

Minimising this expression in h yields
1
2
− 2EPS

h2 ≈ 0

=⇒ h ≈ 2
√
EPS

Use Equation (1.1) with x = 0 to get:
eh − 1

h
− 1 =

heξ

2
for some ξ ∈ [0, h]

In double precision: 2
√
EPS = 1.483239697419 · 10−8
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1 Computing with Matrices and Vectors

1.6 Numerical stability

We have seen that a particular problem can be tackled by different algorithms, which pro-
duce different results due to roundoff errors. This section will clarify what distinguishes a
“good” algorithm from a rather abstract point of view.

A mathematical notion of problem:

• Data space X, usually X ⊂ Rn

• Result space Y, usually Y⊂ Rm

• Mapping (problem function) F : X 7→Y

A problem is a well defined function that assigns to
each datum a result.

x y

X Y

F

data
results

Note. In this course, both the data space X and the result space Y will always be subsets of
finite dimensional vector spaces.

Example 1.6.1: Matrix-vector multiplication
We consider the problem of computing the product Ax for a given matrix A ∈ Km,n

and a given vector x ∈ Kn.

• Data space X = Km,n ×Kn (input is a matrix and a vector)

• Result space Y= Rm (space of column vectors)

• Problem function F : X →Y, F(A, x) := Ax

Numerical algorithm

The only way to describe an algorithm is through a concrete code function written in, for
instance, Matlab or C++. This function defines another mapping F̃ : X →Y on the data
space of the problem. Since the input data to this function can only be represented in the
set M of machine numbers, it is implicitly understood in the definition of F̃ that the input
data is subject to rounding before passing it to the code function.

Problem Algorithm

F : X ⊂ Rn → Y⊂ Rm F̃ : X ⊂Mn → Ỹ ⊂Mm
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1.6 Numerical stability

Stable algorithm

• We study a problem F : X →Y on data space X into result space Y.

• We assume that both X and Y are equipped with norms ‖·‖X and ‖·‖Y, respectively.

• We consider a concrete algorithm F̃ : X →Y according to Definition 1.6.1.

We write w(x), x ∈ X, for the computational effort required by the algorithm for input x.

Definition 1.6.1 (Stable algorithm). An algorithm F̃ for solving a problem F : X 7→Y is
numerically stable if for all x ∈ X its result F̃(x) (possibly affected by roundoff) is the exact
result for “slightly perturbed” data:

∃C ≈ 1: ∀x ∈ X: ∃x̃ ∈ X: ‖x− x̃‖X ≤ Cw(x) EPS ‖x‖X ∧ F̃(x) = F(x̃) .

Here EPS should be read as machine precision according to Assumption 1.1.1.

Illustration of Definition 1.6.1 (y : exact result for exact data x):

x
y

(X, ‖·‖
X
)

(Y, ‖·‖
Y
)

F

F

F̃

F̃(x)
x̃

Terminology: Definition 1.6.1 introduces stability in the sense of backward error analysis

Note. Sloppily speaking, the impact of roundoff ‡ on a stable algorithm is of the same order
of magnitude as the effect of the inevitable perturbations due to rounding the input data.
In other words, backward stability guarantees stability with respect to roundoff errors.
However, as we have seen in Example 1.6.1, this does not guarantee stability with respect
to small input errors (for this we need forward stability).

Note on matrix norms

Norms provide tools for measuring errors. Recall from linear algebra and calculus [3,
Sect. 4.3], [4, Sect. 6.1]:

‡In some cases the definition of F̃ will also involve some approximations. Then the above statement also
includes approximation errors.
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1 Computing with Matrices and Vectors

Definition 1.6.2 (Matrix norm). Given vector norms ‖·‖1 and ‖·‖2 on Kn and Km, respec-
tively, the associated matrix norm is defined by

M ∈ Rm,n: ‖M‖ := sup
x∈Rn\{0}

‖Mx‖2
‖x‖1

.

By virtue of definition, the matrix norms enjoy an important property, they are sub-multiplicative:

∀A ∈ Km,n, B ∈ Kn,k: ‖AB‖ ≤ ‖A‖ ‖B‖ .

We have briefly discussed the concept of condition number of a matrix in section 1.1.4.
Note that the condition number can also be computed as:

cond(A) = ‖A‖
∥∥∥A−1

∥∥∥ .
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2

Direct Methods for Linear Systems of
Equations

In many applications, the problem solution involves linear systems of equations (LSEs).
To name a few applications, LSEs arise in filtering, spline interpolation, gradient descent
methods and the solution of partial differential equations. We will start our discussion with
the case of square matrices. Linear systems with rectangular system matrices A ∈ Km,n,
called “overdetermined” for m > n, and “underdetermined” for m < n, will be treated in a
latter chapter about least squares methods.

The problem: Solving a linear system

Given : square matrix A ∈ Kn,n, vector b ∈ Kn, n ∈N

Sought : solution vector x ∈ Kn that solves the LSE Ax = b

(Formal problem mapping (A, b) 7→ A−1b)

(Terminology: A: system matrix/coefficient matrix, b: right-hand side vector )

2.1 Existence and uniqueness of solutions

Recall from linear algebra:
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Definition 2.1.1 (Invertible matrix).

A ∈ Kn,n invertible / regular : There exists a unique matrix B ∈ Kn,n such that
AB = BA = I .

We say that B is the inverse of A and write B = A−1.

We need a few concepts from linear algebra to state criteria for the invertibility of a matrix.

Definition 2.1.2 (Image space and kernel of a matrix). Given A ∈ Km,n, the range/image
(space) of A is the subspace of Km spanned by the columns of A

R(A) := {Ax, x ∈ Kn} ⊂ Km .

The kernel/nullspace of A is

N (A) := {z ∈ Rn : Az = 0} .

Definition 2.1.3 (Rank of a matrix). The rank of a matrix A ∈ Km,n, denoted by rank(A), is
the maximal number of linearly independent rows/columns of A. Equivalently,

rank(A) = dimR(A).

Theorem 2.1.1 (Criteria for invertibility of matrix). A square matrix A ∈ Kn,n is invert-
ible/regular if one of the following equivalent conditions is satisfied:

1. ∃B ∈ Kn,n: BA = AB = I,

2. x 7→ Ax defines an endomorphism of Kn,

3. the columns of A are linearly independent (full column rank),

4. the rows of A are linearly independent (full row rank),

5. det A 6= 0 (non-vanishing determinant),

6. rank(A) = n (full rank).

2.1.1 Solution of an LSE as a problem

Linear algebra gives us a formal way to denote a solution of an LSE:

If A ∈ Kn,n regular & Ax = b, then the solution is given by x = A−1︸︷︷︸
inverse matrix

b .

Now recall our notion of problem from before as a function F mapping data in a data space
X to a result in a result space Y. Concretely, for n× n linear systems of equations:

F :

 X := K
n,n
∗ ×Kn → Y := Kn

(A, b) 7→ A−1b
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2.1 Existence and uniqueness of solutions

. Notation: (open) set of regular matrices ⊂ Kn,n:

Kn,n
∗ := {A ∈ Kn,n : A regular/invertible, see Definition 2.1.1} .

The inverse matrix and the solution of an LSE

Eigen: inverse of a matrix A is available through A.inverse()

Always avoid computing the inverse of a matrix (which can almost always be avoided)!

In particular, never use x = A.inverse()*b to solve the linear system of equations Ax =
b. The next sections present a better way to solve this system.

2.1.2 Sensitivity of linear systems

Note. The sensitivity of a problem (for given data) gauges the impact of small perturbations
of the data on the result.

We have already discussed in Chapter 1, that the condition number of the system matrix
determines the stability of an LSE. We want to make this more explicit and derive that the
condition number cond(A) = ‖A‖

∥∥A−1
∥∥ determines the effect of relative errors in the

input on relative errors in the output. Before we examine sensitivity for linear systems of
equations, we look at the simpler problem of matrix×vector multiplication.

Example 2.1.1: Sensitivity of linear mappings

For a fixed given regular A ∈ Kn,n we study the problem map

F : Kn → Kn , x 7→ Ax ,

that is, now we consider only the vector x as data.

Goal: Estimate relative perturbations in F(x) due to relative perturbations in x.

We assume that Kn is equipped with some vector norm and we use the induced ma-
trix norm (see Definition 1.6.2) on Kn,n. Using linearity and the elementary estimate
‖Mx‖ ≤ ‖M‖ ‖x‖, which is a direct consequence of the definition of an induced matrix
norm, we obtain

Ax = b ⇒ ‖x‖ ≤
∥∥∥A−1

∥∥∥ ‖b‖ ,

A(x + ∆x) = b + ∆b ⇒ A∆x = ∆b ⇒ ‖∆b‖ ≤ ‖A‖ ‖∆x‖
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2 Direct Methods for Linear Systems of Equations

⇒ ‖∆b‖
‖b‖ ≤

‖A‖ ‖∆x‖
‖A−1‖−1 ‖x‖

= ‖A‖
∥∥∥A−1

∥∥∥(‖∆x‖
‖x‖

)
. (2.1)

relative perturbation in result relative perturbation in data

We have found that the quantity cond(A) = ‖A‖
∥∥A−1

∥∥ bounds amplification of rel-
ative errors in the argument vector in a matrix×vector-multiplication with the matrix
A.

Now we study the sensitivity of the problem of finding the solution of a linear system of
equations Ax = b, A ∈ Rn,n regular, b ∈ R. We write x̃ for the solution of the perturbed
linear system.

Question: Suppose that the system matrix A and the right-hand side b are perturbed. Can
we give an upper bound on the

(normwise) relative error: εr :=
‖x− x̃‖
‖x‖ ?

(‖·‖: suitable vector norm, e.g., maximum norm ‖·‖∞)

Perturbed linear system:

Ax = b ↔ (A + ∆A)x̃ = b + ∆b =⇒ (A + ∆A)(x̃− x) = ∆b− ∆Ax . (2.2)

Theorem 2.1.2 (Conditioning of LSEs). Let A be regular, and suppose that for a perturbed system
as in (2.2), we have that ‖∆A‖ <

∥∥A−1
∥∥−1, then

(i) A + ∆A is also regular/invertible,

(ii)
‖x− x̃‖
‖x‖ ≤

∥∥A−1
∥∥ ‖A‖

1− ‖A−1‖ ‖∆A‖

(
‖∆b‖
‖b‖ +

‖∆A‖
‖A‖

)
.

relative error of data relative perturbations

The proof is based on the following fundamental result:

Lemma 2.1.1 (Perturbation lemma). B ∈ Rn,n, ‖B‖ < 1 ⇒ I+B is regular and
∥∥∥(I + B)−1

∥∥∥ ≤
1

1− ‖B‖ .
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2.1 Existence and uniqueness of solutions

Proof. (Lemma 2.1.1):
Using the (reverse) 4-inequality, we can obtain

‖(I + B)x‖ = ‖x− (−Bx)‖ , ∀x ∈ Rn

≥ ‖x‖ − ‖(−Bx)‖ , ∀x ∈ Rn

≥ ‖x‖ − ‖B‖ ‖x‖ = (1− ‖B‖) ‖x‖ , ∀x ∈ Rn . (2.3)

Since ‖B‖ < 1, we can conclude that (I + B) is regular. The second part of the Lemma can
be proved using the definition of the matrix norm (see Definition 1.6.2), as follows:∥∥∥(I + B)−1

∥∥∥ = sup
x∈Rn\{0}

∥∥(I + B)−1x
∥∥

‖x‖ =︸︷︷︸
y:=(I+B)−1x

sup
y∈Rn\{0}

‖y‖
‖(I + B)y‖

By (2.3), ‖(I + B)y‖ ≥ (1− ‖B‖) ‖y‖. This implies:∥∥∥(I + B)−1
∥∥∥ ≤ 1

1− ‖B‖ .

Proof. (Theorem 2.1.2):

∥∥∥(A + ∆A)−1
∥∥∥ =

∥∥∥(I + A−1∆A)−1A−1
∥∥∥ ≤ ∥∥∥A−1

∥∥∥ ∥∥∥(I + A−1∆A)−1
∥∥∥ . (2.4)

Since ‖∆A‖ <
∥∥A−1

∥∥−1, this implies
∥∥A−1

∥∥ ‖∆A‖ < 1, that is,
∥∥A−1∆A

∥∥ < 1. Therefore,

we can use (2.4) and Lemma 2.1.1 to obtain
∥∥(A + ∆A)−1

∥∥ ≤ ‖A−1‖
1−‖A−1∆A‖ .

Using (2.2), ∆x = (A + ∆A)−1 (∆b− ∆Ax), which implies ‖∆x‖ ≤
∥∥∥(A + ∆A)−1

∥∥∥ ‖(∆b− ∆Ax)‖ .

Combining these two results, we obtain

‖∆x‖ ≤
∥∥A−1

∥∥
1− ‖A−1∆A‖ (‖

∆b‖+ ‖∆Ax‖) ≤
∥∥A−1

∥∥ ‖A‖
1− ‖A−1‖ ‖∆A‖

(
‖∆b‖
‖A‖ ‖x‖ +

‖∆A‖
‖A‖

)
‖x‖ .

Note. The condition number cond(A) depends on the chosen matrix norm ‖·‖.

Note. If there is no perturbation in A and we consider errors in the right-hand side b only,
then the bound on the relative error in the solution that is given in Theorem 2.1.2 simplifies
to:

‖x− x̃‖
‖x‖ ≤ cond(A) ‖∆b‖

‖b‖ .

On the other hand, if ∆b = 0, we obtain

εr :=
‖x− x̃‖
‖x‖ ≤ cond(A)δA

1− cond(A)δA
where δA :=

‖∆A‖
‖A‖ . (2.5)
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2 Direct Methods for Linear Systems of Equations

We conclude:

• If cond(A) � 1, small perturbations in A can lead to large relative errors in the solution
of the LSE.

• If cond(A)� 1, even a numerically stable algorithm (see Definition 1.6.1) can produce
solutions with large relative error.

If cond(A)� 1, then small relative changes of data A, b may lead to huge relative changes
in the solution. Thus, cond(A) indicates the sensitivity of an LSE problem

(A, b) 7→ x = A−1b .

(as “amplification factor” of (worst-case) relative perturbations in the data A, b).

Terminology:

small changes in data ⇒ small perturbations of result : well-conditioned problem

small changes in data ⇒ large perturbations of result : ill-conditioned problem

Note. Sensitivity gauge depends on the chosen norm.

2.2 Gaussian Elimination

Idea: Transformation to “simpler”, but equivalent LSE by means of successive (invert-
ible) row transformations

row transformations ↔ left-multiplication with transformation matrix

Obviously, left multiplication with a regular matrix does not affect the solution of an LSE:
For any regular T ∈ Kn,n

Ax = b ⇒ A′x = b′ , if A′ = TA, b′ = Tb .

So we may try to convert the linear system of equations to a form that can be solved more
easily by multiplying with regular matrices from the left, which boils down to applying
row transformations. A suitable target format is a diagonal linear system of equations, for
which all equations are completely decoupled. This is the gist of Gaussian elimination.
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2.2 Gaussian Elimination

Example 2.2.1: Gaussian elimination
À (Forward) elimination:





1 1 0

2 1 −1

3 −1 −1









x1

x2

x3



 =





4

1

−3



 ←→

x1 + x2 = 4

2x1 + x2 − x3 = 1

3x1 − x2 − x3 = −3

.





1 1 0

2 1 −1

3 −1 −1









4

1

−3



 →





1 1 0

0 −1 −1

3 −1 −1









4

−7

−3



 →





1 1 0

0 −1 −1

0 −4 −1









4

−7

−15





→





1 1 0

0 −1 −1

0 0 3





︸ ︷︷ ︸

=U





4

−7

13





= pivot row, pivot element in bold.

Goal. Transformation of an LSE to upper triangular form

Á Solve by back substitution:

x1 + x2 = 4

− x2 − x3 = −7

3x3 = 13

⇒
x3 = 13

3

x2 = 7− 13
3 = 8

3

x1 = 4− 8
3 = 4

3 .

More detailed examples: [4, Sect. 1.1], [3, Sect. 1.1].

More general:

a11 x1 + a12 x2 + · · · + a1n xn = b1

a21 x1 + a22 x2 + · · · + a2n xn = b2
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

an1 x1 + an2 x2 + · · · + ann xn = bn
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2 Direct Methods for Linear Systems of Equations

• i-th row - li1· 1st row (pivot row), li1 := ai1
a11

, i = 2, . . . , n

a11 x1 + a12 x2 + · · · + a1n xn = b1

a(1)22 x2 + · · · + a(1)2n xn = b(1)2
...

...
...

...
...

...
...

...
...

...
...

...
...

...

a(1)n2 x2 + · · · + a(1)nn xn = b(1)n

with

a(1)ij = aij − a1j li1, i, j = 2, . . . , n ,

b(1)i = bi − b1 li1, i = 2, . . . , n .

• i-th row - li1· 2nd row (pivot row), li2 := a(1)i2

a(1)22

, i = 3, . . . , n.

a11 x1 + a12 x2 + a13 x3 + · · · + a1n xn = b1

a(1)22 x2 + a(1)23 x3 + · · · + a(1)2n xn = b(1)2

a(2)33 x3 + · · · + a(2)3n xn = b(2)3
...

...
...

...
...

...
...

a(2)n3 x3 + · · · + a(2)nn xn = b(2)n

=⇒ After n− 1 steps: linear systems of equations in upper triangular form

a11 x1 + a12 x2 + a13 x3 + · · · + a1n xn = b1

a(1)22 x2 + a(1)23 x3 + · · · + a(1)2n xn = b(1)2

a(2)33 x3 + · · · + a(2)3n xn = b(2)3
. . . . . . . . . ...

...
...

. . . . . . ...
...

...

a(n−1)
nn xn = b(n−1)

n

Terminology: a11, a(1)22 , a(2)33 , . . . , a(n−2)
n−1,n−1 = pivots/pivot elements

Graphical depiction:
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2.2 Gaussian Elimination

∗

−→

0

0 ∗

−→

0 0

0
0

∗

−→

−→

0

0

0
0

00

∗

−→ · · · −→

0
00

0

∗

−→

00

0

∗: The pivot element is always assumed to be non-zero. In practice, this has to be enforced
with a procedure called pivoting, which we briefly discuss below.

Here we give a direct Eigen implementation of Gaussian elimination for an LSE Ax = b
(This is for demonstration purposes only and is grossly inefficient).

Code Snippet 2.1: Solving an LSE Ax = b with Gaussian elimination → GITLAB
16 //! Gauss elimination without pivoting, x = A\b
17 //! A must be an n× n-matrix, b an n-vector
18 //! The result is returned in x
19 void gaussel imsolve ( const MatrixXd &A, const VectorXd& b ,
20 VectorXd& x ) {
21 int n = A. rows ( ) ;
22 MatrixXd Ab( n , n+1) ; // Augmented matrix [A, b]
23 Ab << A, b ; //
24 // Forward elimination (cf. step À in Example 2.2.1)
25 for ( int i = 0 ; i < n−1; ++ i ) {
26 double pivot = Ab( i , i ) ;
27 for ( int k = i +1; k < n ; ++k ) {
28 double f a c = Ab( k , i ) /pivot ;
29 Ab . block ( k , i +1 ,1 ,n−i )−= f a c ∗ Ab . block ( i , i +1 ,1 ,n−i ) ; //
30 }
31 }
32 // Back substitution (cf. step Á in Example 2.2.1)
33 Ab( n−1,n ) = Ab( n−1,n ) / Ab( n−1,n−1) ;
34 for ( int i = n−2; i >= 0 ; −−i ) {
35 for ( int l = i +1; l < n ; ++ l ) Ab( i , n ) −= Ab( l , n ) ∗Ab( i , l ) ;
36 Ab( i , n ) /= Ab( i , i ) ;
37 }
38 x = Ab . r i g h t C o l s ( 1 ) ; //
39 }
40 /*

Line 23: Right-hand side vector set as last column of matrix, facilitates simultaneous row
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2 Direct Methods for Linear Systems of Equations

transformations of matrix and r.h.s.

Variable fac: multiplier

Line 38: extract solution from last column of transformed matrix.

Computational effort of Gaussian elimination

Forward elimination consists of three nested loops.
(Note: compact vector operation in Line 29 involves another loop from i + 1 to m)
Back substitution consists of two nested loops.

We count the number of elementary operations of Gaussian elimination to obtain its com-
putational cost:

Elimination : ∑n−1
i=1 (n− i)(2(n− i) + 3) = n(n− 1)(2

3 n + 7
6) Ops ,

Back substitution : ∑n
i=1 2(n− i) + 1 = n2 Ops .

(2.6)

Note. Asymptotic complexity (see Section 1.4.1) of Gaussian elimination (without pivoting)
for a generic LSE Ax = b, where A ∈ Rn,n is equal to 2

3 n3 +O(n2) = O(n3)

Numerical stability and pivoting

As with any algorithm, we need to ask whether Gaussian elimination is numerically stable.
In general, the answer is "No". The reason for this is the possibility of dividing by small
numbers and that cancellation can occur in the subtraction.

A good remedy in practice is partial pivoting. In this procedure, at every iteration step, one
looks through the current column and permutes the rows of the matrix so that the one
with the largest absolute values lies on the diagonal. This way, one avoids dividing by
small numbers. Note that row permutations do not change the LSE.

Partial pivoting works well in practice, however it does not guarantee numerical stability.
System matrices for which Gaussian elimination is numerically stable are, for example,
s.p.d. matrices and diagonally dominant matrices. The latter means that A ∈ Kn,n is
diagonally dominant, if:

∀k ∈ {1, . . . , n}: ∑j 6=k |akj| ≤ |akk| .

2.2.1 Alternative way: LU-Decomposition

A matrix factorization (ger. Matrixzerlegung) expresses a general matrix A as product of
two special (factor) matrices. Requirements for these special matrices define the matrix
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2.2 Gaussian Elimination

factorization.

Mathematical issue: existence & uniqueness
Numerical issue: algorithm for computing factor matrices

Matrix factorizations

• often capture the essence of algorithms in compact form (here: Gaussian elimination),

• are important building blocks for complex algorithms,

• are key theoretical tools for algorithm analysis.

In this section, the forward elimination step of Gaussian elimination will be related to
a special matrix factorization, the so-called LU-decomposition or LU-factorization. The
motivation of considering this factorization is the following: Suppose we want to solve the
same system for N different right-hand sides b1, ..., bN. Then, it would be more economical
to store the transformations from Gaussian elimination that were undertaken to obtain the
upper triangular form. This is what the LU factorization does.

Note. The (forward) Gaussian elimination (without pivoting), for Ax = b, A ∈ Rn,n, if
possible, is algebraically equivalent to an LU-factorization/ LU-decomposition A = LU of A
into a normalized lower triangular matrix L and an upper triangular matrix U.

Definition 2.2.1 (LU-decomposition/LU-factorization). Given a square matrix A ∈ Kn,n,
an upper triangular matrix U ∈ Kn,n, a normalized lower triangular matrix L ∈ Kn,n and a
permutation matrix P ∈ Kn,n form an LU-decomposition/LU-factorization of A, if PA = LU.



0

1

1

1

1

1

1

1

1

1

1

1

1

·

 0


=




Lemma 2.2.1 (Existence of LU-decomposition). The LU-decomposition of A ∈ Kn,n exists, if
all submatrices (A)1:k,1:k, 1 ≤ k ≤ n, are regular.

2.2.2 Using LU-factorization to solve a linear system of equations

Solving an n× n linear system of equations by LU-factorization:
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Ax = b :

¬ LU-decomposition L Ux︸︷︷︸
z

= b,

#elementary operations 1
3 n(n− 1)(n + 1)

­ forward substitution: solve Lz = b for z,

#elementary operations 1
2 n(n− 1)

® backward substitution: solve Ux = z for x,

#elementary operations 1
2 n(n + 1)

Asymptotic complexity: (in leading order) the same as for Gaussian elimination.

However, the perspective of LU-factorization reveals that the solution of linear systems of
equations can be split into two separate phases with different asymptotic complexity in
terms of the number n of unknowns:

�
�

�
�

setup phase
(factorization)
Cost: O(n3)

+
�
�

�
�

elimination phase
(forward/backward substition)

Cost: O(n2)

Rationale for using LU-decomposition in algorithms

Gauss elimination and LU-factorization for the solution of a linear system of equations are
equivalent and only differ in the ordering of the steps. Then, why is it important to know
about LU-factorization?

Because in the case of LU-factorization, the expensive forward elimination and the less
expensive (forward/backward) substitutions are separated, which can be exploited some-
times to reduce computational cost. Let’s look at the following example where we want to
solve the LSE for N different right-hand sides b:

Code Snippet 2.2: Wasteful approach → GITLAB
28 // Setting: N � 1,
29 // large matrix A ∈ Kn,n

30 for ( int j = 0 ; j < N; ++ j ) {
31 x = A. lu ( ) . so lve ( b ) ;
32 b = some_function ( x ) ;
33 }
34 /*

computational effort O(Nn3)
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2.3 Exploiting structure when solving Linear Systems

Code Snippet 2.3: Smart approach → GITLAB
27 // Setting: N � 1,
28 // large matrix A ∈ Kn,n

29 auto A_lu_dec = A. lu ( ) ;
30 for ( int j = 0 ; j < N; ++ j ) {
31 x = A_lu_dec . so lve ( b ) ;
32 b = some_function ( x ) ;
33 }
34 /*

computational effort O(n3 + Nn2)

In-situ LU-decomposition

A −→

U

L

Replace entries of A with entries of L (strict lower triangle) and U (upper triangle).

Remark. In general, do not implement a general solver for linear systems of equations your-
self, but rather use algorithms from numerical libraries when possible.

2.3 Exploiting structure when solving Linear Systems

By “structure” of a linear system, we mean prior knowledge that

• either certain entries of the system matrix are zero,

• or the system matrix is generated by a particular formula.

A simple example is using the knowledge that the system matrix is triangular to reduce
the complexity of solving the LSE from O(n3) to O(n2).

We will now consider two cases of system matrices with special structures. First, matrices
for which a submatrix has a very specific structure and is easy to solve. With a block matrix
representation, one can exploit this property. The other one deals with "small" updates of
a matrix: Do we need to discard all our knowledge of the system matrix A, if, for example,
one entry of A changes?
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2.3.1 Block elimination

Given matrix dimensions M, N, K ∈ N, block dimensions n < N (n′ := N − n), m < M
(m′ := M−m), k < K (k′ := K− k), we start from the following matrices:

A11 ∈ Km,n A12 ∈ Km,n′

A21 ∈ Km′,n A22 ∈ Km′,n′
,

B11 ∈ Kn,k B12 ∈ Kn,k′

B21 ∈ Kn′,k B22 ∈ Kn′,k′
.

These matrices serve as sub-matrices or matrix blocks and are assembled into larger matri-
ces

A =

A11 A12

A21 A22

 ∈ KM,N , B =

B11 B12

B21 B22

 ∈ KN,K .

It turns out that the matrix product AB can be computed by the same formula as the
product of simple 2× 2-matrices:

A11 A12

A21 A22

B11 B12

B21 B22

 =

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

 .

=

n

n

n′

n′

N

N

MM

K

K

mm

m′
m′

k

k

k′

k′

Bottom line: One can compute with block-structured matrices in almost∗ the same way as
with matrices with real/complex entries, see [6, Sect. 1.3.3].

Expressing the matrix product in a block-like fashion allows to conduct Gaussian elimina-
tion on the level of matrix blocks.

For k, ` ∈N, consider the block partitioned n× n linear system, where n = k + ` :

A11 A12

A21 A22

x1

x2

 =

b1

b2

 ,
A11 ∈ Kk,k , A12 ∈ Kk,` ,A21 ∈ K`,k ,A22 ∈ K`,` ,

x1 ∈ Kk , x2 ∈ K` , b1 ∈ Kk , b2 ∈ K` .
(2.7)

∗you cannot use the commutativity of multiplication because matrix multiplication is not commutative

46



2.3 Exploiting structure when solving Linear Systems

Using block matrix multiplication (applied to the matrix×vector product in (2.7)) we find
an equivalent way to write the block partitioned linear system of equations:

A11x1 + A12x2 = b1 ,

A21x1 + A22x2 = b2 .
(2.8)

We assume that A11 is regular (invertible) so that we can solve for x1 from the first equation.

By elementary algebraic manipulations (“block Gaussian elimination”) we find

x1 = A−1
11 (b1 −A12x2) ,

(A22 −A21A−1
11 A12)︸ ︷︷ ︸

Schur complement

x2 = b2 −A21A−1
11 b1 . (2.9)

The resulting `× ` linear system of equations for the unknown vector x2 is called the Schur
complement system for (2.7).

Unless A has a special structure that allows the efficient solution of linear systems with
system matrix A11, the Schur complement system is mainly of theoretical interest. It can be
useful, however, if A has a special structure so that the inverse of A11 is easy to compute.
For example, let’s consider an arrow matrix A, meaning A11 is diagonal and ` = 1. Given
k ∈ N, a diagonal matrix D ∈ Kk,k, vectors c ∈ Kk, b ∈ Kk, and a number α ∈ K, we can
build a (k + 1)× (k + 1) arrow matrix as shown below.

A =



D c

b> α


(2.10)

0 2 4 6 8 10 12

0

2

4

6

8

10

12

nz = 31

We can apply the block partitioning (2.7) with k = n − 1 and ` = 1 to a linear system
Ax = b with system matrix A and obtain A11 = D, which can be inverted easily, provided
that all diagonal entries of D are different from zero. In this case,

Ax =

D c

b> α

x1

ξ

 = b :=

b1

β

 , (2.11)

47



2 Direct Methods for Linear Systems of Equations

ξ =
β− b>D−1b1

α− b>D−1c
, x1 = D−1(b1 − ξc) . (2.12)

These formulas make sense, if D is regular and α− b>D−1c 6= 0, which together guarantee
the invertibility of this system. The complexity of computing D−1c and D−1b1 isO(n) since
inverting a diagonal matrix is trivial: D−1 = diag( 1

d11
, ..., 1

dnn
). Therefore using formulas

(2.11) and (2.12) for computing x and ξ is also of linear complexity. Thus, the overall
asymptotic complexity is O(n) instead of the O(n3) for the conventional LU factorization.

Code Snippet 2.4: Solving an arrow system according to (2.12) → GITLAB
16 VectorXd arrowsys_fas t ( const VectorXd &d , const VectorXd &c , const

↪→ VectorXd &b , const double alpha , const VectorXd &y ) {
17 int n = d . s i z e ( ) ;
18 VectorXd z = c . array ( ) / d . array ( ) ; // z = D−1c
19 VectorXd w = y . head ( n ) . array ( ) / d . array ( ) ; // w = D−1y1
20 double x i = ( y ( n ) − b . dot (w) ) / ( alpha − b . dot ( z ) ) ;
21 VectorXd x ( n+1) ;
22 x << w − x i ∗z , x i ;
23 return x ;
24 }
25 /*

(Intel i7-3517U CPU @ 1.90GHz x 4,
64-bit, ubuntu 14.04 LTS, gcc 4.8.4,
-O3)
A runtime comparison of Code
Snippet 2.4 and LU factorization for
solving an LSE with arrow system
matrix
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Note. Block elimination can suffer from numerical instability (equivalent to Gauss elimina-
tion without pivoting).

2.3.2 Low-rank perturbation/modification of an LSE

Given a regular matrix A ∈ Kn,n, let us assume that at some point in a code, we are in a
position to solve any linear system Ax = b “fast”, because
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2.3 Exploiting structure when solving Linear Systems

• either A has a favorable structure, e.g. triangular, see Section 2.3,

• or an LU-decomposition of A is already available, see Section 2.2.2.

Now, suppose that the system matrix is updated to Ã by only a "small" change. The
simplest instance we can think of, is that only one entry has been updated i.e.

ãij =

{
aij , if (i, j) 6= (i∗, j∗) ,
z + aij , if (i, j) = (i∗, j∗) ,

i∗, j∗ ∈ {1, . . . , n} .

or more compactly: Ã = A + z · ei∗e>j∗ . (2.13)

(Note: ei denotes the i-th unit vector)

We may also consider a matrix modification affecting a single row: Given z ∈ Kn, the
update is defined as:

ãij =

{
aij , if i 6= i∗ ,
(z)j + aij , if i = i∗ ,

i∗ ∈ {1, . . . , n} .

or more compactly: Ã = A + ei∗z> . (2.14)

Both matrix modifications (2.13) and (2.14) represent rank-1 modifications of A. In general, a
rank-1 modification means adding a rank-1 matrix to A, which can be written as

A ∈ Kn,n 7→ Ã := A + uvH , u, v ∈ Kn . (2.15)

The question now is whether we can reuse some of the computations spent on solving
Ax = b in order to solve Ãx = b̃ with less effort than entailed by a direct Gaussian
elimination from scratch.

We can again use Block elimination as already seen in Section 2.3.1 on the following extended
linear system:  A u

vH −1

x̃

ξ

 =

b̃

0

 .

The Schur complement system after elimination of ξ reads

(A + uvH)x̃ = b̃ ⇔ Ãx̃ = b̃ !
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Hence, we have solved the modified LSE, once we have found the component x̃ of the solu-
tion of the extended linear system (2.3.2). We do block elimination again, now eliminating
x̃ first, which yields the other Schur complement system

(1 + vHA−1u)ξ = vHA−1b̃ , (2.16)
⇓

Ax̃ = b̃− u
vHA−1b̃

vHA−1u + 1
. (2.17)

The generalization of this formula to rank-k perturbations is given by the following lemma:

Lemma 2.3.1 (Sherman-Morrison-Woodbury formula). For regular A ∈ Kn,n, and U, V ∈
Kn,k, k ≤ n, the following holds

(A + UVH)−1 = A−1 −A−1U(I + VHA−1U)−1VHA−1 ,

if I + VHA−1U is regular.

We use this result to solve Ãx = b̃ with Ã from (2.15) more efficiently than straightforward
elimination, provided that the LU-factorisation A = LU (cost O(n3)) is already known.
Applying Lemma 2.3.1 for k = 1, we get:

x̃ = (A−1b)− (A−1u)
vH(A−1b)

vH(A−1u) + 1
. (2.18)

If the LU factorization of A is indeed available, computing x̃ as in (2.18) has complexity
O(n2). Note that under some assumptions, the condition number of I + VHA−1U can be
bounded from above:

cond(I + VHA−1U) ≤ cond(A) cond(A + UVH) .

This means that when the system matrices Ã and A are well-conditioned, solving for I +
VHA−1U is also a well-conditioned problem.

Code Snippet 2.5: Solving a rank-1 modified LSE → GITLAB
21 // Solving rank-1 updated LSE based on (2.18)
22 template <class LUDec>
23 VectorXd smw( const LUDec &lu , const MatrixXd &u , const VectorXd &v , const

↪→ VectorXd &b ) {
24 VectorXd z = lu . so lve ( b ) ; //
25 VectorXd w = lu . so lve ( u ) ; //
26 double alpha = 1 . 0 + v . dot (w) ;
27 if ( s td : : abs ( alpha ) < std : : numeric_l imits <double > : : eps i lon ( ) )
28 throw std : : runt ime_error ( "A nearly singular" ) ;
29 else return ( z − w ∗ v . dot ( z ) / alpha ) ;
30 }
31 /*
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2.4 Sparse Linear Systems

2.4 Sparse Linear Systems

In different applications, it happens that the system matrix has the special structure that
many of its entries are zero. Examples of such applications include spline interpolation or
solving a Poisson equation. Intuitively, one may question whether it makes sense to store
the full matrix, i.e. with all its zero entries and whether it is necessary to carry out all
operations in solving the system, that will involve many operations with zero elements.

A matrix that has "many" zero entries is called sparse. We want to discuss how to store a
sparse matrix in an efficient way (by only storing the non-zero entries and their locations).
Sparse solvers can then be employed to operate effectively on sparse matrices.

Definition 2.4.1 (Sparse matrix). A ∈ Km,n, m, n ∈N, is sparse, if

nnz(A) := #{(i, j) ∈ {1, . . . , m} × {1, . . . , n}: aij 6= 0} � mn .

We write nnz(A) for the number of non-zeros of A .

Examples that we have already seen are “arrow matrices”, diagonal matrices and banded
matrices.
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2.4.1 Sparse matrix storage formats

Sparse matrix storage formats for storing a sparse matrix A ∈ Km,n are designed to achieve
two objectives:

¬ Amount of memory required is only slightly more than nnz(A) scalars.

­ Computational effort for matrix×vector multiplication is proportional to nnz(A).

In this section we see a few schemes used by numerical libraries.

Triplet/coordinate list (COO) format

This format simply stores a vector of triplets (i, j, αi,j), for the non-zero entries of a matrix
A at the (i,j)-th entry. Note that here, indexing starts at zero. A Triplet object in Eigen can
be initialized as follows:
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Example 2.4.1:

1 unsigned int row_idx = 2 ;
2 unsigned int c o l _ i d x = 4 ;
3 double value = 2 . 5 ;
4 Eigen : : T r i p l e t <double> t r i p l e t ( row_idx , col_ idx , value ) ;
5 std : : cout << ’(’ << t r i p l e t . row ( ) << ’,’ << t r i p l e t . col ( )
6 << ’,’ << t r i p l e t . value ( ) << ’)’ << std : : endl ;

As shown, a Triplet object offers the access member functions row(), col(), and value()
to fetch the row index, column index, and scalar value stored in a Triplet .

We note that in this format, repetitions of index pairs (i, j) are allowed. This needs some
convention and the matrix entry (A)i,j is defined to be the sum of all values αi,j associated
with the index pair (i, j).

Compressed row-storage/column-storage (CRS/CCS) format

Next, we introduce CRS/CCS format which is the default in Eigen. The CRS format for a
sparse matrix A = (aij) ∈ Kn,n keeps the data in three contiguous arrays:

vector<scalar_t> val size nnz(A) := #{(i, j) ∈ {1, . . . , n}2, aij 6= 0}

vector<size_t> col_ind size nnz(A)

vector<size_t> row_ptr size n + 1 & row_ptr[n] = nnz(A)

(sentinel value)

¬ val: Array of non-zero entries of the matrix (length = nnz(A))

­ col_ind: Column index vector: Contains the column index corresponding to each of
the above entries (length = nnz(A))

® row_ptr: A vector that keeps track of the number of non-zeros in each row. It is
defined as follows:
row_ptr[0] = 0,
row_ptr[i] = row_ptr[i− 1] + nnz((i− 1)th row)
(length = m+1 for A ∈ Km,n ; row_ptr[m] = nnz(A))
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i

j

aijval

col_ind

row_ptr
beginning of data for i-th row

A =



10 0 0 0 −2 0

3 9 0 0 0 3

0 7 8 7 0 0

3 0 8 7 5 0

0 8 0 9 9 13

0 4 0 0 2 −1



val-vector:
10 -2 3 9 3 7 8 7 3 . . . 9 13 4 2 -1
col_ind-array:

0 4 0 1 5 1 2 3 0 . . . 4 5 1 4 5
row_ptr-array:

0 2 5 8 12 16 19

The CCS format is equivalent to CRS format for the transposed matrix.

2.4.2 Sparse matrices in Eigen

Eigen can handle sparse matrices in the standard Compressed Row Storage (CRS) and Com-
pressed Column Storage (CCS) format, see the documentation:

1 #include<Eigen/Sparse>
2 Eigen : : SparseMatrix <int> Asp ( rows , c o l s ) ; // Default is CCS format
3 Eigen : : SparseMatrix <double , Eigen : : RowMajor> Bsp ( rows , c o l s ) ; // CRS format

Initialization of a sparse matrix:

1 Asp . i n s e r t ( i , j ) = v _ i j ; //insert non-existing new element at (i,j)
2 Asp . coeffRef ( i , j ) += w_i j ; //update entry at (i,j)
3 Asp . makeCompressed ( ) ; //needed to construct CCS/CRS format after every

insert/coeffRef operation

Note. When inserting a new element there could possibly be multiple reallocations occur-
ing in the background. The cost to insert a new element can be around the number of
current non-zero entries at the time of insertion.

There are two ways to avoid this:

¬ The standard approach is to use triplet format for initialization and then change to
CCS/CRS format:
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1 std : : vec tor <Eigen : : T r i p l e t <double > > t r i p l e t s ;
2 // .. fill the std::vector triplets ..
3 Eigen : : SparseMatrix <double , Eigen : : RowMajor> spMat ( rows , c o l s ) ;
4 spMat . setFromTriplets ( t r i p l e t s . begin ( ) , t r i p l e t s . end ( ) ) ;
5 spMat . makeCompressed ( ) ;

­ Alternatively, one can “reserve” enough space in each row (if in row-major) for non-
zero entries. However, this is only helpful when we have a good estimate of the
number of non-zeros for each row:

Code Snippet 2.6: Accessing entries of a sparse matrix: potentially inefficient!
1 unsigned int rows , cols , max_no_nnz_per_row ;
2 . . . . .
3 SparseMatrix <double , RowMajor> mat ( rows , c o l s ) ;
4 mat . reserve ( RowVectorXi : : Constant ( co ls , nr ) ) ;
5 // do many (incremental) initializations
6 for ( ) {
7 mat . i n s e r t ( i , j ) = v a l u e _ i j ;
8 mat . coeffRef ( i , j ) += i n c r e m e n t _ i j ;
9 }

10 mat . makeCompressed ( ) ;

The usual matrix operations are supported for sparse matrices; addition and subtrac-
tion may involve only sparse matrices stored in the same format. These operations may
incur large hidden costs and have to be used with care!

Example 2.4.2: Runtime of initialization of sparse matrices in Eigen
We study the runtime behavior of the initialization of a banded matrix with bandwidth
2 (i.e. 5 non-zero diagonals) where we use the methods described from before.
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Triplets

coeffRef with space reserved

coeffRef without space reserved

Runtimes (in ms) for the initialization of a banded matrix using different techniques in Eigen.
Green line: timing for entry-wise initialization with only 4 non-zero entries per row reserved in advance.
(OS: Ubuntu Linux 14.04, CPU: Intel i5@1.80 Ghz, Compiler: g++-4.8.2, -O2)

Remark. Insufficient advance allocation of memory massively slows down the set-up of
a sparse matrix in the case of direct entry-wise initialization.
Reason: Massive internal copying of data required to create space for “unexpected”
entries.

Note. It is advisable to also reserve space for an estimated number of nonzeros in the
triple format:

1 std : : vector <Eigen : : Triplet <double> > t r i p l e t s ;
2 t r i p l e t s . reserve ( nnz ) ;
3 // .. fill the std::vector triplets
4 Eigen : : SparseMatrix <double , Eigen : : RowMajor> spMat ( rows , c o l s ) ;
5 spMat . setFromTriplets ( t r i p l e t s . begin ( ) , t r i p l e t s . end ( ) ) ;

2.4.3 Direct solution of sparse LSEs

Sparse matrix solvers are very sophisticated algorithms and therefore one should always
use available solvers. Most solvers from libraries accept both dense and sparse formats.
Therefore only when the argument for the function call is of a sparse matrix format such
as CCS/CRS will the algorithm exploit the structure to reduce the complexity by avoiding
unnecessary computations. Their calling syntax remains unchanged, however:
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1 Eigen : : SolverType<Eigen : : SparseMatrix <double >> s o l v e r (A) ;
2 Eigen : : VectorXd x = s o l v e r . so lve ( b ) ;

The standard sparse solver is SparseLU.

Code Snippet 2.7: Function for solving a sparse LSE with Eigen → GITLAB
6 using SparseMatrix = Eigen : : SparseMatrix <double >;
7 // Perform sparse elimination
8 void sparse_so lve ( const SparseMatrix& A, const VectorXd& b , VectorXd& x )

↪→ {
9 Eigen : : SparseLU<SparseMatrix > s o l v e r (A) ;

10 x = s o l v e r . so lve ( b ) ;
11 }
12 /*

Example 2.4.3: LSE with arrow matrix

Code Snippet 2.8: Invoking sparse elimination solver for arrow matrix → GITLAB
17 template <class s o l v e r _ t >
18 VectorXd arrowsys_sparse ( const VectorXd &d , const VectorXd &c , const

↪→ VectorXd &b , const double alpha , const VectorXd &y ) {
19 int n = d . s i z e ( ) ;
20 SparseMatrix <double> A( n+1 , n+1) ; // default: column-major
21 VectorXi reserveVec = VectorXi : : Constant ( n+1 , 2 ) ; // nnz per col
22 reserveVec ( n ) = n+1; // last full col
23 A. reserve ( reserveVec ) ;
24 for ( int j = 0 ; j < n ; ++ j ) { // initalize along cols for efficency
25 A. i n s e r t ( j , j ) = d ( j ) ; // diagonal entries
26 A. i n s e r t ( n , j ) = b ( j ) ; // bottom row entries
27 }
28 for ( int i = 0 ; i < n ; ++ i ) {
29 A. i n s e r t ( i , n ) = c ( i ) ; // last col
30 }
31 A. i n s e r t ( n , n ) = alpha ; // bottomRight entry
32 A. makeCompressed ( ) ;
33 return s o l v e r _ t (A) . so lve ( y ) ;
34 }
35 /*
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Remark. Observe that the sparse elimination solver is several orders of magnitude faster
than lu() operating on a dense matrix. However, the sparse solver is still slower than
arrowsys_fast. The reason is that it is a general algorithm that has to keep track of
non-zero entries and has to be prepared to do pivoting.
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3

Direct Methods for Linear Least
Squares Problems

Suppose we want to solve a common problem in data science, which is the estimation
of system parameters from a series of measurements. One example would be modelling
causal relationships between parameters in biological systems. One approach could be to
model the function f that takes inputs x1, ..., xn and outputs a value y with a linear model:

f (x) = a1x1 + . . . + anxn , f : Rn → R (3.1)

Given: Measured data points (xk, yk)m
k=1, xk ∈ Rn, yk ∈ R ,where (ideally) xk 7→ yk =

f (xk).

Goal: With this series of experiments estimate parameters a1, . . . , an.

We can write this problem in matrix form:


x1

1 x1
2 . . . x1

n

x2
1 x2

2 . . . x2
n

...
... . . . ...

xm
1 xm

2 . . . xm
n




a1

a2
...

an

 =


y1

y2

...

ym

 , (3.2)

meaning that we conduct m trials stored rowwise in a matrix X ∈ Rm,n, outcomes stored in
y ∈ Rn. Estimate parameters by solving

Xa = y, a ∈ Rn .
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This is called linear regression.

The general regression problem can take other models than just the linear one. Such a more
general functional dependence can be described as

f (x) = a1 f1(x) + . . . + an fn(x) , f : Rn → R .

The problem of parameter estimation then amounts to solving


f1(x1) f2(x1) . . . fn(x1)

f1(x2) f2(x2) . . . fn(x2)
...

... . . . ...

f1(xm) f2(xm) . . . fn(xm)




a1

a2
...

an

 =


y1

y2

...

ym

 . (3.3)

A regression with n parameters and m pairs (xk, yk) is problematic when m = n since
this may result in overfitting the model to the data points. In practice we would want
to incorporate many more measurements m � n to avoid overfitting. This results in an
overdetermined system of equations.
In this chapter we study numerical methods for such overdetermined linear systems of
equations, that is, linear systems with a “tall” rectangular system matrix, which we can
graphically depict as:


A



x

 =


b


.

Recall that Ax = b has a solution, if and only if the right hand side b lies in the range of
the matrix A:

∃x ∈ Rn: Ax = b ⇐⇒ b ∈ R(A) . (3.4)

We know that dimR(A) = rank(A) ≤ n because n ≤ m. Thus, R(A) is at most an n-
dimensional subspace of Rm. Since R(A) is a small subspace of Rm, slightly perturbing
b to bδ can cause that bδ 6∈ R(A), so that Ax = bδ is no longer solvable. So instead of
solving Ax = b exactly, we should only search for a good approximation. This is the idea of
solving in the least-squares sense: We search for x so that ‖Ax− b‖2 is as small as possible
but not necessarily equal to zero.
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3.1 Least Squares Solutions

Definition 3.1.1 (Least squares solution). For given A ∈ Km,n and b ∈ Km, the vector
x ∈ Kn is a least squares solution of the linear system of equations Ax = b, if and only if

x ∈ argmin
y∈Kn

‖Ay− b‖2 ,

or equivalently
‖Ax− b‖2 = inf

y∈Kn
‖Ay− b‖2 .

In other words, a least squares solution is any vector x that minimizes the Euclidean norm
of the residual r = b−Ax.

Example 3.1.1:
In parameter estimation we look for parameters fulfilling Xa = y which can be refor-
mulated as the search for a∗ = argminp∈Rn ∑m

k=1 |(xk)T · p− yk|2 .

We write lsq(A, b) for the set of least squares solutions of the linear system of equations
Ax = b:

lsq(A, b) := {x ∈ Rn: x is a least squares solution of Ax = b} ⊂ Rn . (3.5)

For a least squares solution x ∈ Rn, the vector Ax ∈ Rm is the unique orthogonal projection
of b onto

R(A) = Span{(A):,1, . . . , (A):,n} ,

because the orthogonal projection provides the nearest (w.r.t. the Euclidean distance) point
to b in the subspace (hyperplane)R(A). A geometric illustration for this argument is given
in the following figure:

residual

{Ax, x ∈ R
n}

b

Ax
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From this geometric consideration we conclude that lsq(A, b) is the space of solutions of
Ax = b∗, where b∗ is the orthogonal projection of b onto R(A). Since the set of solutions
of a linear system of equations invariably is an affine space, this argument shows that
lsq(A, b) is an affine subspace of Rn.

Theorem 3.1.1 (Existence of least squares solutions). For any A ∈ Rm,n, b ∈ Rm, a least
squares solution of Ax = b exists.

3.1.1 Normal Equations

Recall from linear algebra:

Lemma 3.1.1 (Kernel and range of (Hermitian) transposed matrices). For any matrix A ∈
Km,n, the following holds:

N (A) = R(AH)⊥ , N (A)⊥ = R(AH) .

. Notation: Orthogonal complement of a subspace V ⊂ Kk:

V⊥ := {x ∈ Kk : xHy = 0 ∀y ∈ V} .

Appealing to the geometric intuition from before, we deduce that x being a least squares
solution is equivalent to b − Ax being orthogonal to R(A). From Lemma 3.1.1, we can
further conclude that this is equivalent to b − Ax ∈ N (AH). Thus, we can characterize
least squares solutions as solutions to AHAx = AHb .

Theorem 3.1.2 (Obtaining least squares solutions by solving normal equations). The vector
x ∈ Rn is a least squares solution of the linear system of equations Ax = b, A ∈ Rm,n, b ∈ Rm, if
and only if it solves the normal equations

A>Ax = A>b . (3.6)

Note that the normal equations (3.6) are an n× n square linear system of equations with a
symmetric positive semi-definite coefficient matrix A>A:
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.

Theorem 3.1.2 together with Theorem 3.1.1 already confirms that the normal equations will
always have a solution and that lsq(A, b) is a subspace of Rn parallel to N (A>A). The
next theorem gives even more detailed information.

Theorem 3.1.3 (Kernel and range of A>A). For A ∈ Rm,n, m ≥ n, the following holds:

N (A>A) = N (A) , (3.7)

R(A>A) = R(A>) . (3.8)

Note the following relations:

least squares solution is unique ⇐⇒ N (A>A) = {0}
⇐⇒ N (A) = {0}
⇐⇒ R(A>) = Rn

⇐⇒ rank(A) = n .

The last property is also called full-rank condition.

Corollary 3.1.1 (Uniqueness of least squares solutions). If m ≥ n and N (A) = {0}, then the
linear system of equations Ax = b, A ∈ Rm,n, b ∈ Rm, has a unique least squares solution that
can be obtained by solving the normal equations (3.6), i.e.

x = (A>A)−1A>b .

Note that A>A is symmetric positive definite if N (A) = {0}.

3.1.2 Generalized Solutions & Moore-Penrose Pseudoinverse

As we have just seen, there can be many least squares solutions of Ax = b, in case N (A) 6=
{0}. We can impose another condition to single out a unique element of lsq(A, b):

63



3 Direct Methods for Linear Least Squares Problems

Definition 3.1.2 (Generalized solution of a linear system of equations). The generalized so-
lution x† ∈ Rn of a linear system of equations Ax = b is defined as

x† := argmin{‖x‖2 : x ∈ lsq(A, b)} . (3.9)

Thus, the generalized solution is the least squares solution with minimal norm.

Theorem 3.1.4. For any matrix A ∈ Rm,n and right-hand side b ∈ Rm, the generalized solution
x† is unique.

Proof. Let x† be a generalized solution. Clearly, since Rn = N (A)⊕N (A)⊥, we can write
x† as x† = x1 + x2 , where x1 ∈ N (A)⊥ and x2 ∈ N (A). Furthermore,

∥∥x†
∥∥2

2 = ‖x1‖2
2 +

‖x2‖2
2 .

By definition,

A>
(

Ax† − b
)
= 0 .

Plugging in our decomposition of x† we further obtain:

A> (Ax1 + Ax2 − b) = 0

=⇒ A> (Ax1 − b) = 0, since x2 ∈ N (A) ,
=⇒ x1 ∈ lsq(A, b) .

Since it holds that ‖x1‖2
2 ≤

∥∥x†
∥∥2

2 = min ‖Ax− b‖2, we have proven that x† ∈ N (A)⊥.

Now, we show uniqueness. Suppose x†
1, x†

2 are generalized solutions, then using the pre-
vious result, we get:

x†
1, x†

2 ∈ N (A)⊥ =⇒ x†
1 − x†

2 ∈ N (A)⊥.

Also,

A>A(x†
1 − x†

2) = 0 =⇒ x†
1 − x†

2 ∈ N (A>A) = N (A) .

Since x†
1 − x†

2 is an element of both N (A) and N (A)⊥, we can conclude that x†
1 = x†

2,
thereby proving the uniqueness of the generalized solution.

As we have seen in the proof, the generalized solution x† of Ax = b is an element of
N (A)⊥. Therefore, given a basis {v1, . . . , vk} ⊂ Rn of N (A)⊥, k := dimN (A)⊥, we can
find y ∈ Rk such that x† = Vy, V := [v1, . . . , vk] ∈ Rn,k. Plugging this representation into
the normal equations and multiplying with V> yields the reduced normal equations:

V>A>AV y = V>A>b (3.10)
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
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The very construction of V ensures N (AV) = {0}, and hence N (V>A>AV) = {0} so that
the linear system of equations (3.10) has a unique solution. If y is the unique solution of
(3.10), then x† = Vy.

Theorem 3.1.5 (Formula for generalized solution). Given A ∈ Rm,n, b ∈ Rm, the generalized
solution x† of the linear system of equations Ax = b is given by

x† = V(V>A>AV)−1(V>A>b) ,

where V is any matrix whose columns form a basis of N (A)⊥.

Note: The matrix V(V>A>AV)−1V> is called the Moore-Penrose pseudoinverse A† of A
and does not depend on the specific choice of V.

3.2 Normal Equation Methods

Given A ∈ Rm,n, m ≥ n, rank(A) = n, b ∈ Rm, we introduce a first practical numerical
method to determine the unique least squares solution of the overdetermined linear system
of equations Ax = b.

In fact, Corollary 3.1.1 suggests a simple algorithm for solving linear least squares problems
of the form (3.9) satisfying the full (maximal) rank condition rank(A) = n: it boils down to
solving the normal equations (3.6):

Algorithm: Normal equation method to solve full-rank least squares problem Ax = b

Ê Compute regular matrix C := A>A ∈ Rn,n

Ë Compute right hand side vector c := A>b

Ì Solve symmetric positive definite linear system of equations: Cx = c

This can be done in Eigen in a single line of code:
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Code Snippet 3.1: Solving a linear least squares probel via normal equations
16 //! Solving the overdetermined linear system of equations
17 //! Ax = b by solving normal equations (3.6)
18 //! The least squares solution is returned by value
19 VectorXd normeqsolve ( const MatrixXd &A, const VectorXd &b ) {
20 if ( b . s i z e ( ) != A. rows ( ) ) throw runt ime_error ( "Dimension mismatch" ) ;
21 // Cholesky solver
22 VectorXd x = (A. transpose ( ) ∗A) . l l t ( ) . so lve (A. transpose ( ) ∗b ) ;
23 return x ;
24 }
25 /*

Since A>A is an s.p.d. matrix, Gaussian elimination remains stable even without pivoting.
This is taken into account by requesting the Cholesky decomposition of A>A by calling the
method llt(). In Section 1.4.2 we discussed the asymptotic complexity of the operations
involved in step Ê-Ì of the normal equation method:

step Ê: cost O(mn2)

step Ë: cost O(nm)

step Ì: cost O(n3)

 =⇒ cost O(n2m + n3) for m, n→ ∞ .

Note that for small fixed n, n� m, m→ ∞ the computational effort scales linearly in m.

Note. By going from a system matrix A to a system matrix A>A, the condition number
squares: cond2(A>A) = cond2(A)2.

Recall from Theorem 2.1.2: cond2(A>A) governs amplification of (roundoff) errors in A>A
and A>b when solving normal equations (3.6). If the size of cond2(A) is still acceptable,
cond2(A>A) might nevertheless be huge. Thus, using the normal equations (3.6) to nu-
merically solve the linear least squares problem from Definition 3.1.1 may run the risk of
huge amplification of roundoff errors incurred during the computation of the right hand
side A>b: this implies potential instability of the normal equation approach.

Example 3.2.1: Roundoff effects in normal equations
Consider the following matrix A and the corresponding matrix A>A

A =


1 1

δ 0

0 δ

 ⇒ A>A =

1 + δ2 1

1 1 + δ2

 .

If δ is of the order of
√
EPS, e.g. δ =

√
EPS/2, then 1 + δ2 = 1 + EPS/4 is rounded to 1

in machine number arithmetic M.
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16 int main ( ) {
17 MatrixXd A( 3 , 2 ) ;
18 // Inquire about machine precision
19 double eps = std : : numeric_l imits <double > : : eps i lon ( ) ;
20 // « initialization of matrix → section 1.3.1
21 A << 1 , 1 , s q r t ( eps ) /2 , 0 , 0 , s q r t ( eps ) /2;
22 // Output rank of A>A
23 std : : cout << "Rank of A: " << A. fu l lP ivLu ( ) . rank ( ) << std : : endl
24 << "Rank of A^TA: "
25 << (A. transpose ( ) ∗ A) . fu l lP ivLu ( ) . rank ( ) << std : : endl ;
26 return 0 ;
27 }
28 /*

Output:

1 Rank of A: 2
2 Rank of A^T∗A: 1

Hence the computed A>A as an element of M(2,2) will fail to be regular. Note that
rank(A) = 2 , cond2(A) ≈

√
EPS/2 .

Further note: �
�

�
�A sparse 6⇒ A>A sparse

Example 3.2.2:
Arrow matrices: Loss of sparsity








=




.

We summarize the challenges of the normal equations approach as follows:

À squaring of condition number
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Á possible loss of sparsity

A way to avoid the computation of A>A is to extend normal equations (3.6) by introducing
the residual r := Ax− b as a new unknown to maintain sparsity:

AHAx = AHb ⇔ B

r

x

 :=

−I A

AH 0

r

x

 =

b

0

 . (3.11)

The benefit of using the augmented system (3.11) instead of the standard normal equations
(3.6) is that sparsity is preserved. However, the conditioning of the system matrix in (3.11)
is not better than that of A>A. A more general substitution r := α−1(Ax− b) with α > 0
may improve the conditioning for a suitably chosen parameter α

AHAx = AHb ⇔ Bα

r

x

 :=

−αI A

AH 0

r

x

 =

b

0

 . (3.12)

For m, n � 1, A sparse, both (3.11) and (3.12) lead to large sparse linear systems of equa-
tions, amenable to sparse direct elimination techniques.

3.3 Orthogonal Transformation Methods

We consider the full-rank linear least squares problem:

Given A ∈ Rm,n , b ∈ Rm , find x = argmin
y∈Rn

‖Ay− b‖2 . (3.9)

Here, we assume that m ≥ n and A has full rank, i.e. rank(A) = n.

Idea: Instead of solving Ax = b find Ã, b̃ with lsq(Ã, b̃) = lsq(A, b) such that Ãx = b̃
is easier to solve.

Two questions: Ê Which linear least squares problems are “easy to solve” ?

Ë How can we obtain them by equivalent transformations of (3.9) ?

Here we call two overdetermined linear systems Ax = b and Ãx = b̃ equivalent in the
sense of (3.9), if both have the same set of least squares solutions: lsq(A, b) = lsq(Ã, b̃).

Answer to question Ê:
As for LSE: Linear least squares problems with upper triangular system matrices are easy
to solve.
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∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



R

0




x1
...

xn

−



b1
...

...

bm



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

→ min
(∗)
=⇒ x =

 R



−1


b1
...
...
...

bn


.

How can we draw the conclusion (∗)? The components n + 1, . . . , m of the vector inside
the norm are fixed and do not depend on x. All we can do is to make the first components
1, . . . , n vanish, by choosing a suitable x. Obviously, x = R−1(b)1:n accomplishes this.

Note. Since A has full rank n, the upper triangular part R ∈ Rn,n of A is regular!

Answer to question Ë:

Idea: If we have a (transformation) matrix T ∈ Rm,m satisfying

‖Ty‖2 = ‖y‖2 ∀y ∈ Rm , (3.13)

then argmin
y∈Rn

‖Ay− b‖2 = argmin
y∈Rn

∥∥∥Ãy− b̃
∥∥∥

2
,

where Ã = TA and b̃ = Tb. Transformations fulfilling (3.13) are called orthogonal/uni-
tary matrices.

Definition 3.3.1 (Unitary and orthogonal matrices).
• A matrix Q ∈ Kn,n, n ∈N, is unitary, if and only if Q−1 = QH.

• A matrix Q ∈ Rn,n, n ∈N, is orthogonal, if and only if Q−1 = Q>.

Theorem 3.3.1 (Preservation of Euclidean norm). A matrix is unitary/orthogonal, if and only if
the associated linear mapping preserves the 2-norm:

Q ∈ Kn,n unitary ⇔ ‖Qx‖2 = ‖x‖2 ∀x ∈ Kn .

From Theorem 3.3.1 we immediately conclude that, if a matrix Q ∈ Kn,n is unitary/orthog-
onal, then
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• all rows/columns (regarded as vectors ∈ Kn) have Euclidean norm equal to 1,

• all rows/columns are pairwise orthogonal (w.r.t. Euclidean inner product),

• |det Q| = 1, ‖Q‖2 = 1, and all eigenvalues are elements of {z ∈ C: |z| = 1}.

• ‖QA‖2 = ‖A‖2 for any matrix A ∈ Kn,m.

3.3.1 QR-Decomposition

This section will answer the question whether and how it is possible to find orthogonal
transformations that convert any given matrix A ∈ Rm,n, m ≥ n, rank(A) = n, to upper
triangular form, as required for the application of the “equivalence transformation idea”.

First approach: Gram-Schmidt orthogonalization

Input: {a1, . . . , an} ⊂ Rn linearly independent vectors
Output: orthonormal system {q1, . . . , qn} (assuming no early termination)

1: q1 := a1

‖a1‖2
% 1st output vector

2: for j = 2, . . . , n do
{ % Orthogonal projection

3: qj := aj

4: for ` = 1, 2, . . . , j− 1 do
5: { qj ← qj −

〈
aj, q`

〉
q` }

6: if ( qj = 0 ) then STOP
7: else { qj ← qj

‖qj‖2
}

8: }

(GS)

Theorem 3.3.2 (Span property of G.S. vectors). If {a1, . . . , an} is linearly independent, then the
Gram-Schmidt algorithm computes orthonormal vectors q1, . . . , qn satisfying

Span{q1, . . . , q`} = Span{a1, . . . , a`} ,

for all ` ∈ {1, . . . , n}.

The transformations of the columns of A through the G.S. algorithm can be written succes-
sively in matrix form. For a matrix A = [a1, a2, . . . , an] ∈ Rm,n:

Step 1:
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a1 a2 . . . an





t11 0 . . . . . . 0

0 1 0 . . . 0
... 0 1 . . . ...
...

... . . . . . . 0

0 0 . . . 0 1


=

t11a1 a2 . . . an



Step 2:


. . .

t11a1 a2 . . . an

. . .





1 t̃12 0 . . . 0

0 t22 0 . . . 0
... 0 1 . . . ...
...

... . . . . . .

0 0 . . . 0 1


=︸︷︷︸

t12=t11 t̃12

t11a1 t12a1 + t22a2 . . . an



Altogether: We apply a series of multiplications from the right by upper triangular matrices
to obtain an orthogonal matrix:

Q = A T1T2 . . . Tn︸ ︷︷ ︸
:=T

.

Q = [q1, . . . , qn] ∈ Rm,n is a matrix with orthonormal columns such that

q1 = t11a1

q2 = t12a1 + t22a2

q3 = t13a1 + t23a2 + t33a3

...

qn = t1na1 + t2na2 + · · ·+ tnnan .

The matrix T ∈ Rn,n is regular because {a1, . . . , an} and {q1, . . . , qn} are linearly indepen-
dent sets.
Recall from linear algebra that the inverse of a regular upper triangular matrix is again
upper triangular.

















T

















−1

=

















R
















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Thus, we have found an upper triangular matrix R := T−1 ∈ Rn,n such that

A = QR ↔
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


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








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


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












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






































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








































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Q





























































R

















.

Augmentation: Next we add m − n zero rows at the bottom of R and complement
columns of Q to an orthonormal basis of Rm, which yields an orthogonal
matrix Q̃ ∈ Rm,m:

A = Q̃

[
R

0

]

l



A




=




Q̃







R

0




⇔ Q̃⊤A =

[
R

0

]
.

Thus we have shown through Gram-Schmidt orthonormalization how to orthogonalize a
matrix. This is summarized in the following theorem:

Theorem 3.3.3 (QR-decomposition). For any matrix A ∈ Kn,k with rank(A) = k, there exists

(i) a unique matrix Q0 ∈ Rn,k that satisfies QH
0 Q0 = Ik, and a unique upper triangular matrix
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3.3 Orthogonal Transformation Methods

R0 ∈ Kk,k with (R0)i,i > 0, i ∈ {1, . . . , k}, such that

A = Q0 · R0 (“economical/thin/reduced” QR-decomposition) ,

(ii) a unitary matrix Q ∈ Kn,n and a unique upper triangular matrix R ∈ Kn,k with (R)i,i > 0,
i ∈ {1, . . . , n}, such that

A = Q · R (full QR-decomposition) .

If K = R, all matrices will be real and Q will be orthogonal.

Visualisation: Reduced QR-decomposition: QH
0 Q0 = Ik (orthonormal columns):

A = Q0R0 , Q0 ∈ K
n,k , R0 ∈ K

k,k upper triangular ,
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Visualisation: full QR-decomposition: QHQ = QQH = In (orthogonal matrix):

A = QR , Q ∈ K
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, R ∈ K
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3 Direct Methods for Linear Least Squares Problems

Note. Gram-Schmidt orthogonalisation suffers from numerical instabilites.

Example 3.3.1:
Suppose we want to orthonormalize the following set of two vectors:

a1 =

1

1

 a2 =

1 + ε

1

 ε� 1.

We know that theoretically,

Span{a1, a2} = Span{

1

0

 ,

0

1

}.
But Gram-Schmidt gives

q1 =
1√
2

1

1

 , projq1
a2 = 〈a2, q1〉q1 =

2 + ε

2

1

1


=⇒ q̃2 =

1 + ε

1

− 2 + ε

2

1

1

 =
ε

2

 1

−1


Note that the last step involves subtraction of close by numbers. Hence, ‖q̃2‖2 = ε

2 so
that computing q2 = q̃2

‖q̃2‖2
involves division by a small number of the order of ε.

Computation of QR-Decomposition

Idea: So far: manipulation of columns of A by multiplication from the right [with
triangular matrices], i.e. Q = A T1 . . . Tn .

Now: find a series of orthogonal transformations such that when applied from
the left yield triangular matrix, i.e. Q1 . . . Qn A = R.

Then the product Q := Q>1 . . . Q>n is also orthogonal and yields A = Q · R. This idea is
similar to Gauss elimination but now with orthogonal transformations.
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3.3 Orthogonal Transformation Methods

Idea: find simple unitary/orthogonal (row) transformations rendering certain matrix ele-
ments zero:

Q



 =

 0

 with QH = Q−1 .

3.3.2 Householder Transformations

Intuitively the set of orthogonal transformations consists of maps that preserve the length
of vectors and the angles between vectors, i.e. orthogonal transformations merely rotate
and reflect vectors. In the following, we will consider reflections only and see that they
may be represented by projections.

. x1

x2

a

reflections at angle bisector,

. x1

x2

a

ϕ

Q =

(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)

rotations turning a onto x1-axis.

Householder Reflections

For a given a vector a ∈ Rm, we consider its reflection at a hyperplane with a normal vector
v ∈ Rm. The resulting reflection is denoted by b ∈ Rm.

v

a

b

r = proj
v
a

−b
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3 Direct Methods for Linear Least Squares Problems

The vector b can be expressed as

b = a− 2r = a− 2(projv a) = a− 2
v>a
v>v

v .

Here we use the same formal rewriting as in the Gram-Schmidt orthogonalisation with
‖v‖2

2 = v>v .

Note that since v>a is a scalar, one can rewrite v>av = vv>a, so that

b = a− 2
vv>

v>v
a =

(
Im − 2

vv>

v>v

)
a ,

where Im stands for the identity matrix of size mxm.

Therefore we can define the Householder matrix Hv that performs reflection with respect to
the hyperplane with normal vector v as:

Hv := Im − 2
vv>

v>v
. (3.14)

In our previous notation, this implies Hva = b. The idea of using Householder reflections
to obtain a QR decomposition is that by successive application of Householder reflections
we obtain an upper triangular matrix R. In the first step, this means that

Hv1a1 = c1e1 =


c1

0
...

0

 , for a1 , the first column of A, and ej , the j-th unit vector.

This can be rewritten as:

Hv1A =


c1

0
...

0

 .

Thus, we need to find a constant c1 such that a1 − 2v>a1

v>v v = c1e1 .

We deduce

v = (a1 − c1e1)
v>v

2v>a1 ,

thus v must be parallel to a1 − c1e1.

We note that the scaling of v does not affect the formula and set:

v = a1 − c1e1 .
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3.3 Orthogonal Transformation Methods

With this choice, one obtains
v>v

2v>a1 = 1

and hence ∥∥∥a1 − c1e1
∥∥∥2

2
= 2

(
a1 − c1e1

)>
a1

⇐⇒
∥∥∥a1
∥∥∥2

2
− 2c1a1>e1 + c2

1 = 2
∥∥∥a1
∥∥∥2

2
− 2c1a1>e1

⇐⇒ c2
1 =

∥∥∥a1
∥∥∥2

2

Thus, c1 = ±
∥∥a1
∥∥

2 .

The computation of the vector v can be prone to cancellation, if the vector a1 encloses a very
small angle with the first unit vector, because in this case v can be very small and beset with
a huge relative error. This is a concern, because in the formula for the Householder matrix,
v is normalized to unit length (division by ‖v‖2). Fortunately, as we have just derived, two
choices for v are possible and at most one can be affected by cancellation. The right choice
is

v =

{
1
2(a

1 −
∥∥a1
∥∥

2 e1) if (a1)1 < 0,
1
2(a

1 +
∥∥a1
∥∥

2 e1) if (a1)1 > 0.

Suppose we want to find the j-th Householder reflection in our transformation. This
amounts to finding a Householder reflection Hvj such that:

Hvj ãj =


rj

1

0
...

0

 with m− j zeros and rj
1 ∈ Rj.

Here, ãj is the j-th column of the transformed matrix Ã that we obtained after j− 1 House-

holder reflections on A. Vector ãj is split into:

ãj
1

ãj
2

, where ãj
1 ∈ Rj−1 and ãj

2 ∈ Rm−j+1.

Choose vj =


0...
0

ãj
2

+ cjej with cj = ±
∥∥∥∥ãj

2

∥∥∥∥. The sign of cj is chosen depending on the sign

of (ãj
2)1 so as to prevent cancellation.
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3 Direct Methods for Linear Least Squares Problems

We can compute Hvj ãj as follows:

Hvj ãj = ãj − 2

(
ãj
)>

vj∥∥vj
∥∥2

2

vj .

We can simplify this to:(
ãj
)>

vj =

(
ãj

2

)> (
ãj

2 + cj

[
1 , 0 , . . . , 0

]>)
=

∥∥∥∥ãj
2

∥∥∥∥2

2
+

(
ãj

2

)
1

cj ,

and: ∥∥∥vj
∥∥∥2

2
=
(

vj
)>

vj =

(
ãj

2 +
[
cj , 0 , . . . , 0

]>)> (
ãj

2 + cj

[
1 , 0 , . . . , 0

]>)
=

∥∥∥∥ãj
2

∥∥∥∥2

2
+ 2

(
ãj

2

)
1

cj + (cj)
2

= 2

(∥∥∥∥ãj
2

∥∥∥∥2

2
+

(
ãj

2

)
1

cj

)
.

This implies: (
ãj
)>

vj∥∥vj
∥∥2

2

=
1
2

.

Therefore,
Hv1 ãj = ãj − vj .

Note that the vectors ãj and vj coincide on indices j + 1 to m so that

Hv1 ãj =


ãj

1

ãj
2


−



0...
0

ãj
2


− cj



0...
0
1
0...
0


=


rj

1

0
...

0

 ,

where rj
1 is some vector of length j, so that Hv1 ãj has m− j zeros.

What happens to the previous columns rk = Hvk ak for k < j as we apply Hvj?

Hvj rk = rk − 2

(
vj)> rk∥∥vj
∥∥2

2

vj = rk since the following holds:
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3.3 Orthogonal Transformation Methods

By definition: first j− 1 entries of vj are zero and only first k entries of rk are nonzero (i.e

rk =
[
(rk

1)
> , 0 , . . . , 0

]>
) . Thus,

(
vj)> rk = 0 .

Iteratively, we might decompose Hvn . . . Hv1A = R , where all H(.) are orthogonal matrices

so that Q = (Hvn . . . Hv1)
> = Hv1 . . . Hvn is also orthogonal.



 →
 0

*

 →
 0

*

 →
 0

*

 .

One may see that the first (j− 1) entries of vj are zero. Thus, Q may be stored implicitly
by storing the vectors v1, . . . , vn as a lower triangular matrix (compressed format).

Householder reflections in Eigen:

Code Snippet 3.2: QR-decompositions in Eigen → GITLAB
14 # include <Eigen/QR>
15
16 // Computation of full QR-decomposition,
17 // dense matrices built for both QR-factors (expensive!)
18 std : : pair <MatrixXd , MatrixXd> qr_decomp_full ( const MatrixXd& A) {
19 Eigen : : HouseholderQR<MatrixXd> qr (A) ;
20 MatrixXd Q = qr . householderQ ( ) ; //
21 MatrixXd R = qr . matrixQR ( ) . template tr iangularView <Eigen : : Upper > ( ) ;
22 return std : : pair <MatrixXd , MatrixXd >(Q, R) ;
23 }
24
25 // Computation of economical QR-decomposition,
26 // dense matrix built for Q-factor (possibly expensive!)
27 std : : pair <MatrixXd , MatrixXd> qr_decomp_eco ( const MatrixXd& A) {
28 using index_t = MatrixXd : : Index ;
29 const index_t m = A. rows ( ) ,n = A. c o l s ( ) ;
30 Eigen : : HouseholderQR<MatrixXd> qr (A) ;
31 MatrixXd Q = ( qr . householderQ ( ) ∗MatrixXd : : I d e n t i t y (m, n ) ) ; //
32 MatrixXd R = qr . matrixQR ( ) . block ( 0 , 0 , n , n ) . template tr iangularView <Eigen

↪→ : : Upper > ( ) ; //
33 return std : : pair <MatrixXd , MatrixXd >(Q, R) ;
34 }
35 /*

In general: Only Householder reflections are applied instead of building Q.
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3 Direct Methods for Linear Least Squares Problems

Asymptotic complexity of Householder QR-decomposition

The computational effort for HouseholderQR() of A ∈ Rm,n, m > n, is O(mn2) for
m, n→ ∞.

We derive the above complexity by considering the following complexities:

Each Householder reflection applied to one vector: O(m)
Each Householder reflection applied to A: O(mn)
n such reflections overall lead to: O(n2m)

3.3.3 QR-Based Solver for Linear Least Squares Problems

Suppose we have computed the decomposition A = QR and that we seek to find a least-
squares solution to Ax = b. We can use the QR decomposition to obtain an equivalent
problem to be solved in the least-squares sense:

‖Ax− b‖2 =
∥∥∥Q(Rx−QHb)

∥∥∥
2
=
∥∥∥Rx− b̃

∥∥∥
2

, b̃ := QHb .

In the above, we have used that QQH = I and in a second step, that Q preserves the
2-norm. With this, we have obtained an equivalent triangular linear least squares problem:

‖Ax− b‖2 → min ⇔

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥


0

R0




x1
...

xn

−



b̃1
...

...

b̃m



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

→ min .

The entries of b with index n + 1 to m can never be fulfilled, so that the least-squares
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solution boils down to solving the upper part of the above system:

x =

 R0



−1 
b̃1
...

b̃n

 , with residual r = Q



0
...

0

b̃n+1
...

b̃m


.

Note. By Theorem 3.3.1, the norm of the residual is readily available:

‖r‖2 =
√

b̃2
n+1 + · · ·+ b̃2

m .

There is also an alternative method for QR factorization: Givens rotations [build Q through
rotations], which we will not discuss here.

3.4 Singular Value Decomposition (SVD)

Beside the QR-decomposition, there are other orthogonal factorizations of matrices. The
most important among them is the singular value decomposition (SVD), which can be used
to obtain the generalized solution (i.e. to calculate the Moore-Penrose Pseudoinverse), to
compress signals or to extract common features in a data set (principal component analy-
sis), just to name a few applications.

3.4.1 Theory

Theorem 3.4.1 (Singular value decomposition). For any A ∈ Km,n, there are unitary matrices
U ∈ Km,m, V ∈ Kn,n and a (generalized) diagonal (∗) matrix Σ = diag(σ1, . . . , σp) ∈ Km,n,
p := min{m, n}, σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, such that

A = UΣVH .

Remember the property of unitary matrices: UHU = Im and VHV = In.

Terminology (∗): A matrix Σ is called a generalized diagonal matrix, if (Σ)i,j = 0, if i 6= j,
1 ≤ i ≤ m, 1 ≤ j ≤ n. We still use the diag operator to create it from a
vector.

Definition 3.4.1 (Singular value decomposition (SVD)). The decomposition A = UΣVH

from Theorem 3.4.1 is called singular value decomposition (SVD) of A. The diagonal entries
σi of Σ are the singular values of A.
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Visualization of the structure of the singular value decomposition of a matrix A = Km,n:

The case of a "tall" matrix (m > n):
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The case of a "fat" matrix (m < n):













A













=













U

























Σ



































V
H























As in the case of the QR-decomposition, we can also drop the bottom zero rows of Σ and
the corresponding columns of U in the case of m > n (and similarly, we can drop the right
part of Σ containing only zero columns and the bottom part of VH in the case m < n).
Thus, we end up with a “reduced/thin” singular value decomposition of A ∈ Km,n with a true
diagonal matrix Σ, whose diagonal contains the singular values of A.

Dimensions of the matrices for the reduced SVD in the "tall" vs. the "fat" matrix case:

m ≥ n: A = UΣVH , U ∈ Km,n , Σ ∈ Kn,n , V ∈ Kn,n ,

m < n: A = UΣVH , U ∈ Km,m , Σ ∈ Km,m , V ∈ Kn,m .
(3.15)

Visualization of reduced/thin SVD for m > n:
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Lemma 3.4.1. The squares σ2
i of the non-zero singular values of A are the non-zero eigenvalues of

AHA and AAH with associated eigenvectors (V):,1, . . . , (V):,p and (U):,1, . . . , (U):,p, respectively.

Lemma 3.4.2 (SVD and rank of a matrix). If, for p := min{m, n} and r ∈ {1, . . . , p}, the
singular values of A ∈ Km,n satisfy σ1 ≥ · · · ≥ σr > σr+1 = · · · σp = 0, then

• rank(A) = r (no. of non-zero singular values) ,

• N (A) = Span{(V):,r+1, . . . , (V):,n} ,

• R(A) = Span{(U):,1, . . . , (U):,r} .

The lemma implies that the SVD of A automatically reveals the rank of A and also that
U, V encode an orthonormal representation of N (A), R(A) respectively.

Illustration for m > n:

columns = Orthonormal basis (ONB) of R(A) rows = ONB of N (A)
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More precisely, we can write the decomposition in block format as follows:
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A = [ U1 U2 ]

[
Σr 0

0 0

] [
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1
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H
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with U1 ∈ Km,r, U2 ∈ Km,m−r with orthonormal columns,
Σr = diag(σ1, . . . , σr) ∈ Kr,r (singular values),
V1 ∈ Kn,r, V2 ∈ Kn,n−r with orthonormal columns.

3.4.2 SVD in Eigen

The Eigen class JacobiSVD is constructed from a matrix data type, and computes the SVD
of its argument during construction and offers access methods MatrixU(), singularValues(),
and MatrixV() to request the SVD-factors and singular values.

Code Snippet 3.3: Computing SVDs in Eigen → GITLAB
38 # include <Eigen/SVD>
39
40 // Computation of (full) SVD A = UΣVH → theorem 3.4.1
41 // SVD factors are returned as dense matrices in natural order
42 std : : tuple <MatrixXd , MatrixXd , MatrixXd> s v d _ f u l l ( const MatrixXd& A) {
43 Eigen : : JacobiSVD<MatrixXd> svd (A, Eigen : : ComputeFullU | Eigen : :

↪→ ComputeFullV ) ;
44 MatrixXd U = svd . matrixU ( ) ; // get unitary (square) matrix U
45 MatrixXd V = svd . matrixV ( ) ; // get unitary (square) matrix V
46 VectorXd sv = svd . singularValues ( ) ; // get singular values as vector
47 MatrixXd Sigma = MatrixXd : : Zero (A. rows ( ) , A. c o l s ( ) ) ;
48 const unsigned p = sv . s i z e ( ) ; // no. of singular values
49 Sigma . block ( 0 , 0 , p , p ) = sv . asDiagonal ( ) ; // set diagonal block of Σ

50 return std : : tuple <MatrixXd , MatrixXd , MatrixXd >(U, Sigma ,V) ;
51 }
52
53 // Computation of economical (thin) SVD A = UΣVH, see (3.15)
54 // SVD factors are returned as dense matrices in natural order
55 std : : tuple <MatrixXd , MatrixXd , MatrixXd> svd_eco ( const MatrixXd& A) {
56 Eigen : : JacobiSVD<MatrixXd> svd (A, Eigen : : ComputeThinU | Eigen : :

↪→ ComputeThinV ) ;
57 MatrixXd U = svd . matrixU ( ) ; // get unitary (square) matrix U
58 MatrixXd V = svd . matrixV ( ) ; // get unitary (square) matrix V
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59 VectorXd sv = svd . singularValues ( ) ; // get singular values as vector
60 MatrixXd Sigma = sv . asDiagonal ( ) ; // build diagonal matrix Σ

61 return std : : tuple <MatrixXd , MatrixXd , MatrixXd >(U, Sigma ,V) ;
62 }
63 /*

The second argument in the constructor of JacobiSVD determines, whether the methods
matrixU() and matrixV() return the factor for the full SVD or of the economical (thin) SVD
(3.15).
Eigen::ComputeFull* will select the full versions, whereas Eigen::ComputeThin* picks the
economical versions. Furthermore without these flags only the singular values are com-
puted. Internally, the computation of the SVD is done by a sophisticated algorithm, for
which key steps rely on orthogonal/unitary transformations. The routine JacobiSVD is
numerically stable since it only relies on norm-preserving transformations. According to
Eigen’s documentation, the SVD of a general dense matrix involves the following asymp-
totic complexity:

Asymptotic cost of thin (m > n) SVD of A ∈ Km,n : O(min{m, n}2 max{m, n}) = O(mn2),
which is linear in the larger matrix dimension.

3.4.3 Generalized solutions by SVD

Assume: A ∈ Rm,n m ≥ n rank(A) = r ≤ n. As before,

A =
[
U1 U2

] Σr 0

0 0

VH
1

VH
2


The least squares problem is to find x such that:

min
x
‖Ax− b‖2 .

We use the SVD in the above block form to write:

‖Ax− b‖2
2 =

∥∥∥UΣVHx− b
∥∥∥2

2
=︸︷︷︸

‖U‖2
2=1

∥∥∥UH(UΣVHx− b)
∥∥∥2

2

=︸︷︷︸
UHU=I

∥∥∥ΣVHx−UHb
∥∥∥2

2
=

∥∥∥∥∥∥
ΣrVH

1 x

0

−
UH

1 b

UH
2 b

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
ΣrVH

1 x−UH
1 b

−UH
2 b

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
‖.‖Km

=
∥∥∥ΣrVH

1 x−UH
1 b
∥∥∥2

2︸ ︷︷ ︸
‖.‖Kr

+
∥∥∥UH

2 b
∥∥∥2

2
.︸ ︷︷ ︸

fixed, ‖.‖Km−r

Therefore the least-squares problem is equivalent to solving:

min
x

∥∥∥ΣrVH
1 x−UH

1 b
∥∥∥2

2
.
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Choose x such that ΣrVH
1 x = UH

1 b which is an r× n LSE (possibly underdetermined).

If r < n, the generalized solution is not unique since N (VH
1 ) = R(V1)

⊥ = R(V2) .

Choose x ∈ R(V1) , therefore x = V1z for some z ∈ Kr. Thus, we can obtain:

Σr VH
1 V1︸ ︷︷ ︸

I

z = UH
1 b =⇒ z = Σ−1

r UH
1 b

Hence, the generalized solution can be written as: x = V1z = V1Σ−1
r UH

1 b .

Theorem 3.4.2 (Pseudoinverse and SVD). If A ∈ Km,n has the SVD decomposition A = UΣVH

partitioned as in (3.4.1), then its Moore-Penrose pseudoinverse (see Theorem 3.1.5) is given by
A† = V1Σ−1

r UH
1 .

Note. This requires rank(A). Therefore we need to determine the numerical rank of A,
which is a computational substitute for the exact rank and is computed as r := #{σi :
|σi| ≥ tol ·maxj

∣∣σj
∣∣}. The default tolerance is tol = EPS and can be set manually with the

command setThreshold().

3.4.4 SVD-Based Optimization and Approximation

For the general least squares problem (3.4) we have now seen the use of SVD for its nu-
merical solution. Thus, one can say that the SVD has been a powerful tool for solving a
minimization problem for a 2-norm. In many other contexts, the SVD is also a key compo-
nent in numerical optimization.

Norm-Constrained Extrema of Quadratic Forms

We consider the following minimization problem of finding the extrema of quadratic forms
on the Euclidean unit sphere {x ∈ Kn: ‖x‖2 = 1}:

Given A ∈ Km,n, m ≥ n, find x ∈ Kn , ‖x‖2 = 1, such that

‖Ax‖2 → min . (3.16)

We use the property that multiplication with orthogonal/unitary matrices preserves the
2-norm and exploit the singular value decomposition A = UΣVH:

min
‖x‖2=1

‖Ax‖2
2 = min

‖x‖2=1

∥∥∥UΣVHx
∥∥∥2

2
= min
‖VHx‖2

=1

∥∥∥UΣ(VHx)
∥∥∥2

2

= min
‖y‖2=1

‖Σy‖2
2 = min

‖y‖2=1
(σ2

1 y2
1 + · · ·+ σ2

ny2
n) ≥ σ2

n .

In the second line of the above we have used the substitution y = VHx .
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Since the singular values are assumed to be sorted as σ1 ≥ σ2 ≥ · · · ≥ σn, the minimum
value σ2

n is attained for VHx = y = en. Thus, the minimizer takes the value x = Ven =
(V):,n.

Example (computational geometry): Fitting a hyperplane

Recall the Hesse normal form of a hyperplane H (= affine subspace of dimension d− 1) in
Rd:

H = {x ∈ Rd: c + n>x = 0} , ‖n‖2 = 1 , (3.17)

where n is the unit normal to H and |c| gives the distance of H from 0. The Hesse normal
form is convenient for computing the distance of points from H, because the Euclidean
distance of y ∈ Rd from the plane is

dist(H, y) = |c + n>y| . (3.18)

Goal: Given the points y1, . . . , ym, m > d, find c ∈ R and n ∈ Rd, with ‖n‖2 = 1, such
that

m

∑
j=1

dist(H, yj)
2 =

m

∑
j=1
|c + n>yj|2 → min . (3.19)

Note that (3.19) is not a linear least squares problem due to the constraint ‖n‖2 = 1. How-
ever, it turns out to be a minimization problem with almost the structure of (3.16).

Best Low-Rank Approximation

Matrix compression addresses the problem of approximating a given “generic” matrix (of
a certain class) by means of matrix, whose “information content”, that is, the number of
reals needed to store it, is significantly lower than the information content of the original
matrix. Sparse matrices are a prominent class of matrices with “low information content”.
Unfortunately, they cannot approximate dense matrices very well. Another type of matrices
that enjoy “low information content”, also called data sparse, are low-rank matrices.

Low-rank approximations allow, for example, image compression and they are also the
foundation for principal component analysis (PCA).

For a given matrix A, we want to find a low-rank matrix that is closest to A:

Best Low-Rank Approximation
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Given a matrix A ∈ Km,n, find a matrix Ã ∈ Km,n, rank(Ã) ≤ k, such that∥∥∥A− Ã
∥∥∥

2/F
→ min over all rank-k matrices .

Here we explore low-rank best approximation of general matrices with respect to the Eu-
clidean matrix norm ‖·‖2 induced by the 2-norm for vectors, and the Frobenius norm ‖·‖F.
Typically: k� min {m, n} .

Definition 3.4.2 (Frobenius norm). The Frobenius norm of A ∈ Km,n is defined as

‖A‖2
F :=

m

∑
i=1

n

∑
j=1
|aij|2 .

It is readily seen that ‖A‖F is invariant under orthogonal/unitary transformations. Thus
the Frobenius norm of a matrix A, can be expressed through its singular values σj:

Frobenius norm and SVD: ‖A‖2
F =

r

∑
j=1

σ2
j , where r = rank(A) . (3.20)

Recall: Rank-1 matrices are tensor products of vectors:

A ∈ Km,n and rank(A) = 1 ⇔ ∃u ∈ Km, v ∈ Kn, such that A = uvH .

Note. The singular value decomposition provides an additive decomposition into rank-1
matrices:

A = UΣVH =
r

∑
i=1

σi (U):,i (V)H
:,i︸ ︷︷ ︸

outer product

. (3.21)

Thus an intuitive way to approximate A in this context is to truncate this sum. A k-rank
approximation is therefore given by:

Ã =
k

∑
i=1

σi(U):,i (V)H
:,i , k ≤ r . (3.22)

Is this already a best k-rank approximation of A? Let us define the space of all matrices
with rank less or equal to k by
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Rk(m, n) := {F ∈ Km,n: rank(F) ≤ k}, m, n, k ∈N.

The following profound theorem links best approximation in Rk(m, n) and the singular
value decomposition.

Theorem 3.4.3 (Best low rank approximation). Let A = UΣVH be the SVD of A ∈ Km.n.
For 1 ≤ k ≤ rank(A) = r, set Uk := [u:,1, . . . , u:,k] ∈ Km,k, Vk := [v:,1, . . . , v:,k] ∈ Kn,k,
Σk := diag(σ1, . . . , σk) ∈ Kk,k. Then, for ‖·‖ = ‖·‖F and ‖·‖ = ‖·‖2, the following holds:∥∥∥A−UkΣkVH

k

∥∥∥ ≤ ‖A− F‖ ∀ F ∈ Rk(m, n) .

Furthermore the error made in this approximation can easily be written out:

A− Ã =
r

∑
i=k+1

σi(U):,i (V)H
:,i .

Also note that the singular values of A− Ã are : σk+1 ≥ . . . ≥ σr .
Therefore, we can conclude that the largest new singular value is σk+1 .Thus:∥∥∥A− Ã

∥∥∥
2
= σk+1,

∥∥∥A− Ã
∥∥∥2

F
=

r

∑
i=k+1

σ2
i .

Theorem 3.4.3 states that the rank-k matrix that is closest to A (rank-k best approximation)
in both the Euclidean matrix norm and the Frobenius norm can be obtained by truncating
the rank-1 sum expansion (3.21) obtained from the SVD of A after k terms.

What we have gained is an easy way to compress matrices. Storing a generic dense matrix
A ∈ Rm,n by definition requires m · n elements, whereas storing the best rank-k approx-
imation for a fixed k ∈ N only requires k(m + n − 1) elements. (Note that we can get
k(m + n− 1) instead of k(m + n + 1) because each column of U and V is normalized.)

Example 3.4.1: Image compression
A rectangular greyscale image composed of m× n pixels (greyscale, BMP format) can
be regarded as a matrix A ∈ Rm,n, aij ∈ {0, . . . , 255}.
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Original image: 530︸︷︷︸
m

× 600︸︷︷︸
n

≈ 3 · 105

Compressed image: 50 · 1129︸︷︷︸
m+n−1

≈ 5 · 104

Note. In practice, there are better and faster ways to compress images than SVD (JPEG,
Wavelets, etc.)

Principal Component Data Analysis (PCA)

Important tool for: • dimensionality reduction
• trend analysis
• data classification

Example 3.4.2:
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In the figure, we see stock prices – measured at the end of the day – as a vector aj ∈ Rm

for n stocks.

Given: n data points aj ∈ Rm, j = 1, . . . , n, in m-dimensional (feature) space.
(E.g., aj may represent a finite time series or a measured relationship of physical
quantities)

Are there underlying governing trends?
Trend =̂ Are there vectors ũ1, . . . , ũp, p < n, such that

aj ∈ Span{ũ1, . . . , ũp}, ∀j ∈ {1, . . . , n}? (3.23)

Additionally we want them to be orthonormal since trends should be as “independent as
possible” (minimally correlated).

Perspective of linear algebra:

(3.23) ⇔ rank(A) = p for A := [a1, . . . , an] ∈ Rm,n and R(A) ⊆ Span{ũ1, . . . , ũp}.
(3.24)

The above is an unrealistic scenario because small random fluctuations will be present in
each stock price.
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More realistic: Stock prices approximately follow a few trends p, i.e. p� n. Thus,

aj ∈ Span{ũ1, . . . , ũp}+ “small perturbations”, ∀j = 1, . . . , m ,

with orthonormal trend vectors ũi, where i ∈ {1, . . . , p} .

The task of PCA is to find the minimal p and the orthonormal trend vectors ũ1, . . . , ũp.
Now the singular value decomposition (SVD) comes into play, because Lemma 3.4.2 tells us
that it can supply an orthonormal basis of the image space of a matrix. An issue is how to
deal with the small random perturbations. For this we might exploit the structure of the
SVD:

Recall (3.21): If UΣV> is the SVD of A ∈ Rm,n, then (with uj denoting the j-th column of
U, vj denoting the j-th column of V), we can write the SVD alternatively as follows:
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
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










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










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








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


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




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
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v
⊤

2

]

+ . . .

Thus, each aj is a linear combination of u1, . . . , un. The vectors vi carry the weights of the
linear combinations, i.e.

aj = (σ1(v1)j)u1 + (σ2(v2)j)u2 + . . . + (σn(vn)j)un.

We distinguish between two cases: The (unrealistic) case of no perturbations (i.e. A is
exactly low-rank):

SVD: A = UΣVH satisfies σ1 ≥ σ2 ≥ . . . σp > σp+1 = · · · = σmin{m,n} = 0 ,

with orthonormal trend vectors (U):,1, . . . , (U):,p .

The more realistic case with perturbations in which A is only approximately low-rank:

SVD: A = UΣVH satisfies σ1 ≥ σ2 ≥ . . . σp � σp+1 ≈ · · · ≈ σmin{m,n} ≈ 0 ,

with orthonormal trend vectors (U):,1, . . . , (U):,p .

If there is a pronounced gap σp � σp+1 in the distribution of the singular values, which
separates p large singular values from min{m, n} − p relatively small singular values, this

92



3.4 Singular Value Decomposition (SVD)

hints at R(A) having essentially dimension p. It depends on the application what one
accepts as a “pronounced gap”.

A frequently used criterion is:

p = min

{
q:

q

∑
j=1

σ2
j ≥ (1− τ)

min{m,n}

∑
j=1

σ2
j

}
for τ � 1 ,

i.e. the sum over the first q σ2
j ’s is almost as large as the sum over all σ2

j ’s.

Example 3.4.3:
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Singular values of stock pricce matrix

Example: Roughly ex-
ponential decay of the
singular values of the
stock price matrix A =
[a1 . . . an] in this logarith-
mic scale plot.

We observe a pronounced decay of the singular values (≈ exponential decay, logarith-
mic scale in the figure above). A few trends (corresponding to a few of the largest
singular values) govern the time series. The data was obtained from Yahoo Finance.

Example 3.4.4: Classification of measured data

Given measured data of voltage vs current of n diodes ((Uj, I(k)j ), j = 1, . . . , m, k =

1, . . . , n), we want to determine the number of different types of diodes in this data set.
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In this example, m = 50
and n = 20.

To find out the number of different types, we write the data vectors in matrix form and
compute the SVD.
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 singular values for diode measurement matrix

Distribution of singular values of matrix

As we can see from the distribution of the singular values, there are two dominant
singular values. Thus, we can deduce that there are two principal components and
hence two types of diodes in the batch.
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4

Filtering Algorithms

In the last two chapters, we have discussed linear systems of equations and solution tech-
niques. In the following chapters, we will see this theory used in different numerical
algorithms. In this chapter, we will start by considering filtering, which is the basis of signal
and image processing. Most notably, the discrete Fourier transform (DFT) and its efficient
implementation, the fast Fourier transform (FFT), will be introduced. The FFT is a fun-
damental tool not only for filtering, but also for e.g. fast polynomial multiplication and
Chebyshev interpolation.

Motivation: Time-discrete signals and sampling
From the perspective of signal processing, we can represent a finite discrete (sampled) signal
by a vector x ∈ Rn.

Sampling converts a time-continuous signal, represented by some real-valued physical
quantity (pressure, voltage, power, etc.) into a time-discrete signal:

t0 t1 t2 tn−2 tn−1

x0

x1

x2
xn−2

xn−1

time

X(t)

A time-continuous signal can be denoted by X = X(t), where 0 ≤ t ≤ T and the correspond-
ing ”sampled” signal can be denoted by xj = X(j∆t), where j = 0, . . . , n− 1, n ∈ N and
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4 Filtering Algorithms

n∆t ≤ T. The time between two samples, also referred to as the sampling rate, is given by
∆t.

As already indicated by the indexing, the sampled values can be arranged in a vector
x = [x0, . . . , xn−1]

> ∈ Rn.

As an idealization, one sometimes considers a signal of infinite duration X = X(t), −∞ <
t < ∞. In this case, sampling yields a bi-infinite time-discrete signal, represented by a
sequence (xk)k∈Z. If this sequence has a finite number of non-zero terms only, then we
write (. . . , 0, x`, x`+1, . . . , xn−1, xn, 0, . . .).

4.1 Discrete Convolutions

4.1.1 Discrete finite linear time-invariant causal channels/filters

Now we study a finite linear time-invariant causal channel/filter, which is a widely used
model for digital communication channels, e.g. in wireless communication theory. Math-
ematically speaking, a (discrete) channel/filter is a mapping F : `∞(Z) → `∞(Z) from
the vector space `∞(Z) of bounded input sequences {xj}j∈Z to bounded output sequences
{yj}j∈Z.

`∞(Z) =

{
(xj)j∈Z : sup

j∈Z

|xj| < ∞

}
xk yk

timetime

input signal output signal

Channel/filter: F : `∞(Z)→ `∞(Z) ,
(
yj
)

j∈Z
= F

((
xj
)

j∈Z

)
.

For the description of filters, we rely on special input signals, analogous to the description
of a linear mapping Rn → Rm through a matrix, that is, its action on unit vectors. In order
to link digital filters to linear algebra, we have to assume certain properties for F that are
indicated by the attributes “finite ”, “time-invariant”, “linear” and “causal”:

Definition 4.1.1 (Finite channel/filter). A filter F : `∞(Z) → `∞(Z) is called finite, if every
input signal of finite duration produces an output signal of finite duration. More precisely,
if there exists an M ∈N such that

∀j with |j| > M : xj = 0,

then, there exists N ∈N such that

∀k with |k| > N :
(

F
((

xj
)

j∈Z

))
k
= 0 . (4.1)
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4.1 Discrete Convolutions

It should not matter when exactly a signal is fed into the channel. To express this intuition
more rigorously we introduce the time shift operator for signals: For k ∈ Z ,

Sk : `∞(Z)→ `∞(Z) , Sk(
(
xj
)

j∈Z
) =

(
xj−k

)
j∈Z

. (4.2)

Definition 4.1.2 (Time-invariant channel/filter). A filter F : `∞(Z) → `∞(Z) is called time-
invariant, if shifting the input in time leads to the same output shifted in time by the same
amount; it commutes with the time shift operator:

∀(xj)j∈Z ∈ `∞(Z), ∀k ∈ Z: F(Sk(
(
xj
)

j∈Z
)) = Sk(F(

(
xj
)

j∈Z
)) . (4.3)

Definition 4.1.3 (Linear channel/filter). A filter F : `∞(Z) → `∞(Z) is called linear, if F is
a linear mapping, that is, for all bounded sequences

(
xj
)

j∈Z
∈ `∞(Z) and

(
yj
)

j∈Z
∈ `∞(Z)

and all α, β ∈ R:

F(α
(
xj
)

j∈Z
+ β

(
yj
)

j∈Z
) = αF(

(
xj
)

j∈Z
) + βF(

(
yj
)

j∈Z
). (4.4)

In other words: The linear combination of inputs has an output equal to the linear combi-
nation of the individual outputs.

For all scaling factors α, β ∈ R, this can be depicted as:

output(α · signal 1 + β · signal 2) = α · output(signal 1) + β · output(signal 2) .

Of course, a signal should not trigger an output before it arrives at the filter. Therefore,
the output may depend only on past and present inputs, but not on the future. This is the
principle of causality.

Definition 4.1.4 (Causal channel/filter). A filter F : `∞(Z) → `∞(Z) is called causal (or
physical, or non-anticipative), if the output does not start before the input, meaning the
output only depends on past and present inputs and not on the future:

If for some M ∈N,
xj = 0 for all j ≤ M,

then
F(
(
xj
)

j∈Z
)k = 0 for all k ≤ M .

Impulse response:

Analogue from LSEs: Matrix =̂ describing the action of a linear mapping Rn → Rm through
its action on unit vectors (since Aej = (A):,j).
Now in the same spirit: Describe filters through their action on “impulses”.

Definition 4.1.5 (Impulse response). The impulse response of a channel/filter is the output
for the single unit impulse

xj = δj,0 :=

{
1 if j = 0
0 else

.
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4 Filtering Algorithms

Visualization of the (finite) impulse response of a (causal) channel/filter:

t0 t1 t2 tm−2tm−1time

impulse

1

t0 t1 t2 tm−2tm−1

h0

h1

h2

hm−2

hm−1

time

response

The impulse response of a finite and causal filter is a sequence of the form
(. . . , 0, h0, h1, . . . , hm−1, 0, . . .), where m ∈ N. The impulse response of a finite filter can be
described by a vector h of finite length m.

Acronyms: FIR =̂ finite impulse response filters (only finitely many nonzero hk’s)
LT-FIR =̂ finite, linear, time-invariant, and causal filter F : `∞(Z)→ `∞(Z)

4.1.2 Transmission through LT-FIR filters

Let (. . . , 0, h0, h1, . . . , hm−1, 0, . . .), m ∈ N, be the impulse response of an LT-FIR filter F :
`∞(Z)→ `∞(Z):

F(
(
δj,0
)

j∈Z
) = (. . . , 0, h0, h1, . . . , hm−1, 0, . . .) .

Owing to time-invariance, we already know the response to a shifted unit pulse:

F(
(
δj,k
)

j∈Z
) =

(
hj−k

)
j∈Z

=
(

. . . , 0 , h0 , h1 , . . . , hm−1 , 0 , . . .

↑ ↑

t = k∆t t = (k + m− 1)∆t

)
.

Every finite input signal (. . . , 0, x0, x1, . . . , xn−1, 0, . . .) ∈ `∞(Z) can be written as the super-
position of scaled unit impulses, which, in turn, are time-shifted copies of a unit pulse at
t = 0: (

xj
)

j∈Z
=

n−1

∑
k=0

xk
(
δj,k
)

j∈Z
=

n−1

∑
k=0

xkSk

((
δj,0
)

j∈Z

)
,

where Sk is the time-shift operator from (4.2). Applying the filter on both sides of this
equation and using linearity leads to the general formula for the output signal

(
yj
)

j∈Z
:

F
(
(xj)j∈Z

)
= F

(
n−1

∑
k=0

xk · Sk

((
δj,0
)

j∈Z

))

=︸︷︷︸
linearity

n−1

∑
k=0

xk · F
(
Sk

((
δj,0
)

j∈Z

))

=︸︷︷︸
time-invariance

n−1

∑
k=0

xk · Sk

F
((

δj,0
)

j∈Z

)
︸ ︷︷ ︸
impulse response


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4.1 Discrete Convolutions

This can be represented in matrix form as:

y0

y1
...

yn
...
...

ym+n−3

ym+n−2



= x0



h0
...

hm−1

0

0
...
...

0



+ x1



0

h0
...

hm−1

0
...
...

0



+ x2



0

0

h0
...

hm−1

0
...

0



+ · · ·+ xn−1



0
...
...
...

0

h0
...

hm−1



.

In compact notation, we can write the non-zero components of the output signal
(
yj
)

j∈Z
as:

F((xj)j∈Z)k = yk =
n−1

∑
j=0

hk−jxj , k = 0, . . . , m + n− 2 (hj := 0 for j < 0 and j ≥ m)︸ ︷︷ ︸
channel is causal and finite

.

(4.5)

The maximal duration of the output is ( m︸︷︷︸
length of filter

+ n︸︷︷︸
length of signal

−1) · ∆t.

Summary of the above considerations:

Superposition of impulse responses

The output y = (. . . , 0, y0, y1, y2, . . .) of a LT-FIR channel for finite length input x =
(. . . , 0, x0, . . . , xn−1, 0, . . .) ∈ `∞(Z) is a superposition of xj-weighted and j∆t time-
shifted impulse responses.

Example 4.1.1:
The following diagrams give a visual display of the superposition of impulse responses
for a particular LT-FIR filter, and an input signal of duration 3∆t, where ∆t denotes the
time between samples.
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Signal: (. . . , 0, x0, . . . , x3, 0, . . .) n = 4
Filter: (. . . , 0, h0, . . . , h4, 0, . . .) m = 5
Output = linear superposition of impulse responses:
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0

0

0


+ x1



0
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...

h4

0

0


+ x2



0

0

h0
...

h4

0


+ x3



0

0

0

h0
...

h4


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Note that we have seen from (4.5) that the output has at most length m + n− 1. Therefore,
if we know that all input signals are of the form (. . . , 0, x0, x1, . . . , xn−1, 0, . . .), we can model
them as vectors x = [x0, . . . , xn−1]

> ∈ Rn, and the filter can be viewed as a linear mapping
F : Rn → Rm+n−1.

Thus, for the filter, we have a matrix representation of (4.5). Writing y = [y0, . . . , y2n−2]
> ∈

R2n−1 for the vector of the output signal, we find in the case m = n:
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

y0
...

...

ym+n−2



=


0

0

0

0

00

h0

h0

h1

h1

hm−1

hm−1





x0
...

...

xn−1



. (4.6)

4.1.3 Discrete convolution

In (4.5) we can recognise a pattern which can be used to simplify the notation further using
the definition of discrete convolution.

Definition 4.1.6 (Discrete convolution). For two sequences f , g ∈ `∞(Z), their discrete con-
volution u := f ∗ g(= g ∗ f ) ∈ `∞(Z) is defined by:

uk = ∑
j∈Z

f jgk−j = ∑
j∈Z

fk−jgj . (4.7)

Using Definition 4.1.6, we may rewrite (4.5) to:

y = F((xi)i∈Z) = x ∗ h .

One can see this by considering that the convolution y of two finite-length sequences x ∈ Rn

and h ∈ Rm is in Rn+m−1 and satisfies the equation

yk =
n−1

∑
j=0

xjhk−j, k = 0, . . . , n + m− 1,

where hj = 0 for j < 0 and j ≥ m.

The above introduced linear convolution can be related to periodic/circular convolution that
we will now introduce. This relation is interesting because periodic convolution can be
related to the discrete Fourier transform (DFT), which can be implemented in a fast way
(FFT). The intuition behind periodic convolution is that for a periodic signal, due to the
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repetitions in its entries, simplifications are possible. Note that for now,
(
xj
)

j∈Z
is an n-

periodic signal (and hence no longer finite), i.e.

xj+n = xj ∀j ∈ Z

and h is an LT-FIR filter. In this case, the output signal is again n-periodic. The expression
for the output can be rewritten as:

yk = ∑
j∈Z

xj hk−j = ∑
j∈Z

xk−j hj (i.e. y is also n-periodic)

=
n−1

∑
j=0

( ∑
`∈Z

hj+`n)︸ ︷︷ ︸
periodic summation

xk−j.

We define pj := ∑`∈Z hj+`n , where h = (. . . , 0, h0, . . . , hn−1, 0, . . .) is the impulse response.

By definition:
pj+n = pj ∀ j ∈ Z ,

and thus p is n-periodic.

Thus,

yk =
n−1

∑
j=0

pj xk−j =
n−1

∑
j=0

pk−j xj , k ∈ Z , (4.8)

since convolution is commutative.

This convolution of two n-periodic signals is called periodic convolution:

Definition 4.1.7 (Discrete periodic convolution). The discrete periodic convolution of two n-
periodic sequences (pk)k∈Z, (xk)k∈Z yields the n-periodic sequence:

(yk) := (pk) ∗n (xk) , yk :=
n−1

∑
j=0

pk−jxj =
n−1

∑
j=0

xk−j pj , k ∈ Z .

In matrix notation, (4.8) can be written as:



y0
...

...

yn−1


=



p0 pn−1 pn−2 · · · · · · p1

p1 p0 pn−1
...

p2 p1 p0
. . .

... . . . . . . . . .
. . . . . . . . .

... . . . . . . pn−1

pn−1 · · · p1 p0


︸ ︷︷ ︸

=:P



x0
...

...

xn−1


. (4.9)
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where (P)ij = pi−j, 0 ≤ i, j ≤ n− 1.

The coefficients p0, . . . , pn−1 can be regarded as a periodic impulse response.

We may write out the first two equations defined by (4.9) as

y0 = p0x0 + p−1x1 + . . . + p−(n−1)xn−1

= p0x0 + pn−1x1 + . . . + p1xn−1,
y1 = p1x0 + p0x1 + . . . + p−(n−2)xn−1

= p1x0 + p0x1 + . . . + p2xn−1.

4.1.4 Circulant matrices

The matrix P in (4.9) has a very special structure:

Definition 4.1.8 (Circulant matrix). A matrix C =
[
cij
]n−1

i,j=0 ∈ Kn,n is circulant if an only if
there exists an n-periodic sequence (pk)k∈Z such that:

cij = pj−i , 0 ≤ i, j ≤ n− 1 .

. Notation: We write circul(p) ∈ Kn,n for the circulant matrix generated by the
periodic sequence/vector p = [p0, . . . , pn−1]

> ∈ Kn .

Structure of a generic circulant matrix (“constant diagonals”):

circul(p) =





























p0 p1 p2 · · · · · · pn−1

pn−1 p0 pn−2

pn−2

.

.

.

.

.

.

.

.

.

.

.

.

p2 p1

p1 p2 . . . · · · pn−1 p0





























∈ K
n,n .

The circulant matrix P = circul(p) ∈ Kn,n can be uniquely constructed from a sequence/vec-
tor p = [p0, . . . , pn−1]

> ∈ Kn. Thus, the information content of the circulant matrix P is n
numbers in the field K. Circulant matrices have the following properties:

1. The main diagonal as well as the sub- and super-diagonals are constant.

2. The columns/rows arise by cyclic permutation from the first column/row.

One can readily see that discrete periodic convolution is the same as multiplying by a
circulant matrix.
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Reduction to periodic convolution

Next, we show how linear convolution can be expressed as periodic convolution. Re-
call that the discrete linear convolution of two vectors x = (x0, . . . , xn−1)

> ∈ Kn, h =
(h0, . . . , hn−1)

> ∈ Kn is defined as:

yk := (x ∗ h)k =
n−1

∑
j=0

xjhk−j , k = 0, . . . , 2n− 2 .

Now expand x0, . . . , xn−1 and h0, . . . , hn−1 to (2n− 1)-periodic sequences by zero padding.

x̃k :=

{
xk , if 0 ≤ k < n ,
0 , if n ≤ k < 2n− 1 ,

, h̃k :=

{
hk , if 0 ≤ k < n ,
0 , if n ≤ k < 2n− 1 ,

(4.10)

and periodic extension: x̃k = x̃2n−1+k , h̃k = h̃2n−1+k for all k ∈ Z. The zero components
prevent interaction of different periods.

0 00

−n 0 n 2n 3n 4n

x0 xn−1

. (x ∗ h)k = (x̃ ∗2n−1 h̃)k , k = 0, . . . , 2n− 2 . (4.11)

In the spirit of (4.6) we can switch to a matrix view of the reduction to periodic convolution:
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

y0
...

...

y2n−2



=



0

0

00

0

0

0

0

0

00

h̃0

h̃0

h̃0

h̃0

h̃0

h̃1

h̃1

h̃1

h̃1

h̃1

h̃n−1

h̃n−1

h̃n−1

h̃n−1


︸ ︷︷ ︸

a (2n− 1)× (2n− 1) circulant matrix!



x̃0
...

...

x̃n−1

0
...

...

0



. (4.12)

Note. We conclude that discrete convolution can be realized by multiplication with a cir-
culant matrix.

4.2 Discrete Fourier Transform (DFT)

Algorithms dealing with circulant matrices make use of their very special spectral proper-
ties. Full understanding requires familiarity with the theory of eigenvalues and eigenvec-
tors of matrices from linear algebra, see [3, Ch. 7], [4, Ch. 9].

4.2.1 Eigenvalues and eigenvectors of circulant matrices

Recall from linear algebra the eigenvalue/eigenvector equation: Let C ∈ Kn,n

Cvk = λkvk, (4.13)

where λk is called eigenvalue of the matrix C to the eigenvector vk ∈ Kn. Consider the n-th
root of unity:

ωn := exp(−2πı
n ) = cos(2π

n )− ı sin(2π
n ), n ∈N , (4.14)

so that
ωn

n = exp(−2πı) = 1 .
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We know:
ω−`n = ωn

` , where ` ∈ Z,

and
ω

jk
n = (ω

j
n)

k = (ωk
n)

j.

where for any complex number z ∈ C, z denotes its complex conjugation. With this, we
can now define the vectors:

vk := [ω
−jk
n ]n−1

j=0 ∈ Cn, k ∈ {0, . . . , n− 1}, (4.15)

and represent the matrix C as:

Ci,j = cij := pi−j for n-periodic p ∈ `∞(Z), pi ∈ C.

We can now verify that v0, . . . , vn−1 are the eigenvectors of C:

(Cvk)j =
n−1

∑
`=0

cj`(vk)` =
n−1

∑
l=0

pj−`ω
−`k
n ,

=
n−1

∑
l=0

p`ω
−(j−`)k
n = ω

−jk
n

n−1

∑
l=0

p`ω`k
n︸ ︷︷ ︸

=:λk

,

= (vk)j · λk .

With this, we have also found the eigenvalues λk of C to be

λk =
n−1

∑
l=0

p` ω`k
n . (4.16)

Note. The eigenvalues λ0, . . . , λn−1 depend on C. But, the eigenvectors v0, . . . , vn−1 are
independent of C !

Thus all circulant matrices of the same dimensions have the same set of eigenvectors! The
set {v0, . . . , vn−1} ⊂ Cn provides the so-called orthogonal trigonometric basis of Cn:

{v0, . . . , vn−1} =





ω0
n

...

...

ω0
n


,



ω0
n

ω−1
n
...

...

ω
−(n−1)
n


, · · · ,



ω0
n

ω
−(n−2)
n

ω
−2(n−2)
n

...

...

ω
−(n−1)(n−2)
n


,



ω0
n

ω
−(n−1)
n

ω
−2(n−1)
n

...

...

ω
−(n−1)2

n




. (4.17)

From (4.15) we can conclude orthogonality of the basis vectors by straightforward compu-
tations:
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vH
k vm =

n−1

∑
j=0

ω
jk
n ω
−jm
n =

n−1

∑
j=0

ω
j(k−m)
n

=


1−ω

(k−m)n
n

1−ωk−m
n

=
1−exp−2πı

(k−m)n
n

1−exp−2πı
(k−m)

n

= 0 k 6= m ,

n−1

∑
j=0

ω
jm
n ω

−jm
n︸ ︷︷ ︸

=1

= n k = m .

The matrix effecting the change of basis (trigonometric basis → standard basis) is called the
Fourier-matrix:

Fn =



ω0
n ω0

n · · · ω0
n

ω0
n ω1

n · · · ωn−1
n

ω0
n ω2

n · · · ω2n−2
n

...
...

...

ω0
n ωn−1

n · · · ω
(n−1)2

n


= [ω

l j
n ]

n−1
l,j=0 ∈ Cn,n . (4.18)

Lemma 4.2.1 (Properties of Fourier matrix). The scaled Fourier-matrix 1√
n Fn is unitary (see

Definition 3.3.1) :

F−1
n = 1

n FH
n = 1

n Fn.

Note that (4.13) can be rewritten in compact notation as:

CFn = Fn diag(λ0, . . . , λn−1).

Therefore,

C = Fn diag(λ0, . . . , λn−1)(Fn)
−1 , (4.19)

C = Fn diag( Fnp︸︷︷︸
λk=vH

k p

)(Fn)
−1 .

Equivalently, from Lemma 4.2.1,

C = F−1
n diag(Fnp)Fn .

Thus we have proven the following lemma:
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Lemma 4.2.2 (Diagonalization of circulant matrices). For any circulant matrix C ∈ Kn,n,
cij = pi−j, where (pk)k∈Z is a n-periodic sequence, the following holds true:

CFn = Fn diag(d1, . . . , dn) , d = Fn [p0, . . . , pn−1]
> .

The mapping Fn : y 7→ Fny is called the discrete Fourier transform DFT:

Definition 4.2.1 (Discrete Fourier transform (DFT)). The linear map Fn : Cn 7→ Cn, Fn(y) :=
Fny, y ∈ Cn, is called discrete Fourier transform (DFT), i.e. for c := Fn(y):

ck =
n−1

∑
j=0

yj ω
kj
n , k = 0, . . . , n− 1 . (4.20)

We can find the inverse discrete Fourier transform by:

c = Fny⇔ y = F−1
n c =︸︷︷︸

Lemma 4.2.1

1
n

Fnc

ck =
n−1

∑
j=0

yj ω
kj
n︸ ︷︷ ︸

DFT of y

⇔ yj =
1
n

n−1

∑
k=0

ck ω
−kj
n︸ ︷︷ ︸

inverse DFT of c

(4.21)

4.2.2 Discrete Convolution via DFT

Computing the discrete periodic convolution of two vectors x and u is equivalent to com-
puting the product DFT(x) ·DFT(u) and taking the inverse DFT.

Theorem 4.2.1 (Convolution theorem). The discrete periodic convolution ∗n between n-dimensional
vectors u and x is equal to the inverse DFT of the component-wise product between the DFTs of u
and x; i.e.:

(u) ∗n (x) :=
n−1

∑
j=0

uk−jxj = F−1
n
[
(Fnu)j(Fnx)j

]n
j=1 .

Discrete periodic convolution in Eigen

The Eigen-functions of discrete Fourier transform and its inverse can be computed via:

DFT: c=fft.fwd(y) and inverse DFT: y=fft.inv(c);

Before using fft , remember to:
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1. # include <unsupported/Eigen/FFT>

2. Instantiate helper class Eigen::FFT<double> fft;
(The template argument should always be double.)

Code Snippet 4.1: Discrete periodic convolution: DFT implementation → GITLAB
7 VectorXcd pconvf f t ( const VectorXcd& u , const VectorXcd& x ) {
8 Eigen : : FFT<double> f f t ;
9 VectorXcd tmp = ( f f t . fwd ( u ) ) . cwiseProduct ( f f t . fwd ( x ) ) ;

10 return f f t . inv ( tmp ) ;
11 }
12 /*

In (4.10) we first saw that the discrete convolution of n-vectors can be accomplished by the
periodic discrete convolution of (2n− 1)-vectors (obtained by zero padding):

Code Snippet 4.2: Implementation of discrete convolution (see definition 4.1.6) based on periodic discrete
convolution → GITLAB

4 VectorXcd myconv ( const VectorXcd& h , const VectorXcd& x ) {
5 const long n = h . s i z e ( ) ;
6 // Zero padding, cf. (4.10)
7 VectorXcd hp(2∗n − 1) , xp (2∗n − 1) ;
8 hp << h , VectorXcd : : Zero ( n − 1) ;
9 xp << x , VectorXcd : : Zero ( n − 1) ;

10 // Periodic discrete convolution of length 2n− 1
11 return pconvfft ( hp , xp ) ;
12 }
13 /*

4.2.3 Fast Fourier Transform (FFT)

So far, introducing the DFT has not brought an advantage, because computing it via Fnx
has asymptotic complexity O(n2). We will now see that a fast implementation of DFT is
possible. Such fast implementations are called fast Fourier transform (FFT).

An FFT is any algorithm which can perform DFT within asymptotic complexity of O(n ·
log2(n)).
Idea: Use the divide-and-conquer strategy to implement an algorithm.

Let us assume that n is a power of 2, i.e. n = 2L. An elementary manipulation of (4.20) for
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n = 2m, m ∈N yields:

ck =
n−1

∑
j=0

yje−
2πı
n jk

=
m−1

∑
j=0

y2je−
2πı
n 2jk +

m−1

∑
j=0

y2j+1e−
2πı
n (2j+1)k

=
m−1

∑
j=0

y2j e−
2πı
m jk︸ ︷︷ ︸

=ω
jk
m︸ ︷︷ ︸

=:c̃evenk

+e−
2πı
n k ·

m−1

∑
j=0

y2j+1 e−
2πı
m jk︸ ︷︷ ︸

=ω
jk
m︸ ︷︷ ︸

=:c̃oddk

.

(4.22)

Note the m-periodicity: c̃evenk = c̃evenk+m, c̃oddk = c̃oddk+m.

Note: c̃evenk , c̃oddk form DFTs of length m = n
2 !

If we define
yeven := (y0, y2, . . . , yn−2)

> ∈ Cm

yodd := (y1, y3, . . . , yn−1)
> ∈ Cm

, then:

(
c̃evenk

)m−1
k=0 = Fmyeven(

c̃oddk
)m−1

k=0 = Fmyodd

.

(4.22):
�
�

�



DFT of length 2m = 2× DFT of length m + 2m additions &
multiplications

Idea: Divide & conquer recursion to obtain an FFT-algorithm.

Recursive demonstration code for DFT of length n = 2L:

Code Snippet 4.3: Recursive FFT → GITLAB
8 // Recursive DFT for vectors of length n = 2L

9 VectorXcd f f t r e c ( const VectorXcd& y ) {
10 using i d x _ t = VectorXcd : : Index ;
11 using comp = std : : complex<double >;
12 // Nothing to do for DFT of length 1
13 const i d x _ t n = y . s i z e ( ) ;
14 if ( n == 1) return y ;
15 if ( n % 2 != 0) throw std : : runt ime_error ( "size(y) must be even!" ) ;
16 const Eigen : : Map<const Eigen : : Matrix <comp , Eigen : : Dynamic , Eigen : : Dynamic

↪→ , Eigen : : RowMajor>>
17 Y( y . data ( ) ,n/2 ,2) ; // for selecting even and off compoents
18 const VectorXcd c1 = f f t r e c (Y . c o l ( 0 ) ) , c2 = f f t r e c (Y . c o l ( 1 ) ) ;
19 const comp omega = std : : exp(−2∗M_PI/n∗comp ( 0 , 1 ) ) ; // root of unity ωn
20 comp s ( 1 . 0 , 0 . 0 ) ;
21 VectorXcd c ( n ) ;
22 // Scaling of DFT of odd components plus periodic copying
23 for ( long k = 0 ; k < n ; ++k ) {
24 c ( k ) = c1 ( k%(n/2) ) + c2 ( k%(n/2) ) ∗ s ;
25 s ∗= omega ;
26 }
27 return c ;
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28 }
29 /*

Code Snippet 4.3: Each level of the recursion requires O(2L) elementary operations.

Computational cost of fftrec:
1× DFT of length 2

L

2× DFT of length 2
L−1

4× DFT of length 2
L−2

2
L
× DFT of length 1

Asymptotic complexity

Asymptotic complexity of FFT algorithm, n = 2L: O(L2L) = O(n log2 n)

fft.fwd()/fft.inv()-function calls: computational cost is ≈ 5n log2 n.

4.2.4 Frequency filtering via DFT

Given a signal x = [x0, . . . , xn−1]
>, what is the actual information about x contained in Fnx?

This question is similar to the one addressed in the section about data compression, but
here we use the knowledge about the Fourier matrix. The trigonometric basis vectors, when
interpreted as time-periodic signals, represent harmonic oscillations. This is illustrated
when plotting some vectors of the trigonometric basis (n = 16):
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Note. Dominant coefficients of a signal after transformation to trigonometric basis indicate
dominant frequency components.

Terminology: The original signal is referred to as the signal in time domain while its coeffi-
cients w.r.t. trigonometric basis is referred to as the signal represented in frequency domain.

Recall the definition of the DFT (4.20) and inverse DFT (4.21):

ck =
n−1

∑
j=0

yj ω
kj
n ⇔ yj =

1
n

n−1

∑
k=0

ck ω
−kj
n (4.21)

Consider a vector y with only real components yk. Then, ck = cn−k, because ω
kj
n = ω

(n−k)j
n ,

and n = 2m + 1. We can use this symmetry to deduce the following:

nyj = c0 +
m

∑
k=1

ckω
−kj
n +

2m

∑
k=m+1

ckω
−kj
n = c0 +

m

∑
k=1

ckω
−kj
n + cn−kω

(k−n)j
n

= c0 + 2
m

∑
k=1

Re(ck) cos(2π
kj
n ) + Im(ck) sin(2π

kj
n ) ,

since ω`
n = cos(2π `

n ) + i sin(2π `
n ).

Therefore, |ck|, |cn−k| measures the strength with which an oscillation with frequency k is
represented in the signal, 0 ≤ k ≤ bn

2 c.
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The magnitude squared of the signal’s DFT locates which frequencies are present in the
signal and how much they are present.

The pronounced peaks in the power spectrum point to a periodic structure of the data. The
location of peaks contains information about the lengths of dominant periods.

“Low” and “high” frequencies

When a signal is captured, processed or transmitted it can become corrupted by noise. One
approach to remove such unwanted noise is to model it as an additive, high-frequent com-
ponent. The signal can then be denoised by applying a filter that cuts off high frequency
components:

À Transform the noisy signal to frequency domain.

Á Apply low-pass filter (i.e. cut-off high frequencies).

Â Transform back to time/space domain to obtain a denoised signal.
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Frequency filtering of real discrete periodic signals by suppressing certain Fourier coefficients
can be performed as follows:

Code Snippet 4.4: DFT-based frequency filtering → GITLAB
7 void f r e q f i l t e r ( const VectorXd& y , int k ,
8 VectorXd& low , VectorXd& high ) {
9 const VectorXd : : Index n = y . s i z e ( ) ;

10 if ( n%2 != 0)
11 throw std : : runt ime_error ( "Even vector length required!" ) ;
12 const VectorXd : : Index m = y . s i z e ( ) /2;
13
14 Eigen : : FFT<double> f f t ; // DFT helper object
15 VectorXcd c = f f t . fwd ( y ) ; // Perform DFT of input vector
16
17 VectorXcd clow = c ;
18 // Set high frequency coefficients to zero
19 for ( int j = −k ; j <= +k ; ++ j ) clow (m+ j ) = 0 ;
20 // (Complementary) vector of high frequency coefficients
21 VectorXcd chigh = c − clow ;
22
23 // Recover filtered time-domain signals
24 low = f f t . inv ( clow ) . r e a l ( ) ;
25 high = f f t . inv ( chigh ) . r e a l ( ) ;
26 }
27 /*

(It can be optimised by exploiting yj ∈ R and c n
2−k = c n

2+k)

Map y 7→ low (in Code Snippet 4.4) =̂ low pass filter.

Map y 7→ high (in Code Snippet 4.4) =̂ high pass filter.

Example 4.2.1:
Frequency filtering by Code Snippet 4.4 with k = 120.

Noisy signal:
n = 256; y = exp(sin(2*pi*((0:n-1)’)/n)) + 0.5*sin(exp(1:n)’);
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4.2.5 Two-dimensional DFT

Given a matrix Y ∈ Cm,n, its 2D DFT is defined as two nested 1D DFTs:

(C)k1,k2 =
m−1

∑
j1=0

n−1

∑
j2=0

yj1,j2 ω
j1k1
m ω

j2k2
n =

m−1

∑
j1=0

ω
j1k1
m

(
n−1

∑
j2=0

ω
j2k2
n yj1,j2

)
, 0 ≤ k1 < m , 0 ≤ k2 < n .

Rewriting the above expressions, for all 0 ≤ k1 < m, 0 ≤ k2 < n:

(C)k1,k2 =
m−1

∑
j1=0

(
Fn(Y)>j1,:

)
k2

ω
j1k1
m =⇒ C = Fm(FnY>)> = FmYFn . (4.23)

[Recall that in 1D: c = Fny y ∈ Rn]

Furthermore, consider the 2D inverse DFT:

C =
m−1

∑
j1=0

n−1

∑
j2=0

yj1,j2 (Fm):,j1(Fn)
>
:,j2 ⇒ Y = F−1

m CF−1
n =

1
mn

FmCFn . (4.24)

Code Snippet 4.5: Two-dimensional discrete Fourier transform → GITLAB
14 template <typename Sca lar >
15 void f f t 2 ( Eigen : : MatrixXcd &C, const Eigen : : MatrixBase <Sca lar > &Y) {
16 using i d x _ t = Eigen : : MatrixXcd : : Index ;
17 const i d x _ t m = Y . rows ( ) , n=Y . c o l s ( ) ;
18 C. r e s i z e (m, n ) ;
19 Eigen : : MatrixXcd tmp (m, n ) ;
20
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21 Eigen : : FFT<double> f f t ; // Helper class for DFT
22 // Transform rows of matrix Y
23 for ( i d x _ t k =0;k<m; k++) {
24 Eigen : : VectorXcd tv (Y . row ( k ) ) ;
25 tmp . row ( k ) = f f t . fwd ( tv ) . t ranspose ( ) ;
26 }
27
28 // Transform columns of temporary matrix
29 for ( i d x _ t k =0;k<n ; k++) {
30 Eigen : : VectorXcd tv ( tmp . c o l ( k ) ) ;
31 C. c o l ( k ) = f f t . fwd ( tv ) ;
32 }
33 }
34 /*

Code Snippet 4.6: Inverse two-dimensional discrete Fourier transform → GITLAB
37 template <typename Sca lar >
38 void i f f t 2 ( Eigen : : MatrixXcd &C, const Eigen : : MatrixBase <Sca lar > &Y) {
39 using i d x _ t = Eigen : : MatrixXcd : : Index ;
40 const i d x _ t m = Y . rows ( ) , n=Y . c o l s ( ) ;
41 f f t 2 (C, Y . conjugate ( ) ) ; C = C. conjugate ( ) /(m∗n ) ;
42 }
43 /*

Example 4.2.2: Concentration of frequencies in the 2D Fourier space

117

https://gitlab.math.ethz.ch/sgurjar/ncse2018_script/tree/master/code/CppCodes/Filtering/dft2d/Eigen/dft2d.hpp


4 Filtering Algorithms

The FFT of the brick wall is more concentrated because it has a periodic structure which
lends it a sharper frequency response. On the other hand, the FFT of the rabbit is more
spread out since the image can only be described using a wide spectrum of frequencies.

Filtering with 2D DFT

As in the 1D case, discrete periodic convolution can be linked to the DFT via the convolu-
tion theorem. Thus, to perform discrete linear convolution, it suffices to zero-pad the 2D
signals accordingly and apply the following theorem:

Theorem 4.2.2 (2D convolution theorem). Let U, X ∈ Cm,n and let the 2D discrete periodic
convolution U ∗m,n X be defined by:

(U ∗m,n X)k,l :=
m−1

∑
i=0

n−1

∑
j=0

(U)i,j(X)(k−i) mod m, (l−j) mod n

Then,

U ∗m,n X =
1

nm
Fm

[
(FmUFn)i,j

component wise
· (FmXFn)i,j

]
i=0,...,m−1, j=0,...,n−1

Fn ,

U ∗m,n X = IDFT2{[DFT2(U)]i,j · [DFT2(X)]i,j}i=0,...,m−1, j=0,...,n−1 .
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Code Snippet 4.7: DFT-based 2D discrete periodic convolution → GITLAB
68 // DFT based implementation of 2D periodic convolution
69 template <typename Scalar1 , typename Scalar2 , class EigenMatrix >
70 void pmconv ( const Eigen : : MatrixBase <Scalar1 > &X , const Eigen : : MatrixBase <

↪→ Scalar2 > &Y ,
71 EigenMatrix &Z) {
72 using Comp = std : : complex<double >;
73 using i d x _ t = typename EigenMatrix : : Index ;
74 using v a l _ t = typename EigenMatrix : : S c a l a r ;
75 const i d x _ t n=X . c o l s ( ) ,m=X . rows ( ) ;
76 if ( (m!=Y . rows ( ) ) || ( n!=Y . c o l s ( ) ) ) throw std : : runt ime_error ( "pmconv:

↪→ size mismatch" ) ;
77 Z . r e s i z e (m, n ) ; Eigen : : MatrixXcd Xh(m, n ) ,Yh(m, n ) ;
78 // Step Ê: 2D DFT of Y
79 f f t 2 (Yh , ( Y . template cas t <Comp> ( ) ) ) ;
80 // Step Ë: 2D DFT of X
81 f f t 2 (Xh , ( X . template cas t <Comp> ( ) ) ) ;
82 // Steps Ì, Í: inverse DFT of component-wise product
83 i f f t 2 (Z , Xh . cwiseProduct (Yh) ) ;
84 }
85 /*

Example 4.2.3: Smoothing with Gaussian filter
This example demonstrates how convolving an image with a Gaussian filter can blur
the image and the degree of blurring depends on the width of the Gaussian filter.
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5

Data Interpolation in 1D

5.1 Introduction

In this chapter, we focus on the problem of data interpolation. Given data values for a
discrete set of points, can we define a suitable continuous model for it? That is, can we
find a function, that interpolates between the data points? Such an interpolating function
allows, for example, to predict the outcome at some intermediate values that are not part
of the data set. Also, such an interpolating function is helpful in applications that require
the differentiation of the model, which cannot be done on the discrete data set itself. The
task of (one-dimensional, scalar) data interpolation (point interpolation) can be described
as follows:

Given: Data points (ti, yi), where i = 0, . . . , n, n ∈N, ti ∈ I ⊂ R, yi ∈ R

Objective: Reconstruction of a (continuous) function f : I → R satisfying the
n + 1 interpolation conditions which are given by:

f (ti) = yi, i = 0, . . . , n. (5.1)

The function f is called an interpolant of the given data set {(ti, yi)}n
i=0.

Parlance: The numbers ti ∈ R are called nodes and yi ∈ R are called the (data) values.

We will assume the minimal requirement on the data that the points ti are pairwise distinct,
i.e. ti 6= tj, if i 6= j for all i, j ∈ {0, . . . , n}.
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5 Data Interpolation in 1D

For ease of presentation, we will usually assume that the nodes are ordered: t0 < t1 <
· · · < tn and [t0, tn] ⊂ I. However, algorithms often must not take sorted nodes for granted.
Note that there are many different options to interpolate. Therefore, we need additional
assumptions on f such as smoothness properties.
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resetThere are infinitely many ways to fix an interpolant for given data points.

Typically, we search for a function f ∈ S ⊂ C0(I), where S is an (m + 1)-dimensional sub-
space, i.e. S = Span{b0, . . . , bm}, where the bj ∈ C0(I) form a basis of S. In this context, t
and y are interpreted as two state variables of a physical system, where t determines y. In
other words, a functional dependence y = y(t) is assumed. A direct application of interpo-
lation is the reconstruction of constitutive relationships from measurements.

Examples: t and y could be

t y

voltage U current I

pressure p density ρ

magnetic field H magnetic flux B
...

...
t

y

t1 t2 t3 t4 t5

Known: Several accurate∗ measurements (ti, yi) , i = 1, . . . , m.

Imagine that t and y correspond to the voltage U and electrical current I, respectively,
measured for a 2-port non-linear circuit element (like a diode). This element will be part of
∗Meaning of attribute “accurate”: justification for interpolation. If measured values yi were affected by

considerable errors, one would not impose the interpolation conditions (5.1), but instead opt for data
fitting (see Section 3.1).
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5.1 Introduction

a circuit, which we want to simulate based on nodal analysis. In order to solve the resulting
non-linear system of equations F(u) = 0 for the nodal potentials (collected in the vector u)
by means of Newton’s method (see Section 5.2.3), we need the voltage-current relationship
for the circuit element as a continuously differentiable function I = f (U).

Note that our task in this section is to algorithmically find a function f : I → R, where
I ⊂ R is an interval. It is not immediately clear how we can do this under the serious
restriction that computers can only hold finite data – after all, our hard drives and RAM’s
are limited. What we will do is to find subroutines that allow us to compute f (t) for all
t ∈ I. Let {b0, . . . , bm} be a basis for S, i.e.,

S = Span{b0, . . . , bm}.

Then, we can find coefficients cj so that f ∈ S can be represented as

f (t) =
m

∑
j=0

cjbj(t)

and thus the finite number of coefficients { c0, . . . , cm } completely characterize f . The
simplest example of this is a piecewise linear interpolation, where we make use of the
mapping x 7→ ax + b which is fully determined by a, b ∈ R.

5.1.1 Piecewise linear interpolation

We start with the simplest continuous interpolant: Data points (ti, yi), i = 0, . . . , n, ti−1 < ti,
are connected by line segments, that is, we construct an interpolating polygon.

t

y

t0 t1 t2 t3 t4

Piecewise linear interpolant of data

For piecewise linear interpolation, the subspace S is:

S = { f ∈ C0(I) | f (t) = βit + γi on [ti−1, ti], for i = 0, . . . , n βi, γi ∈ R}
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5 Data Interpolation in 1D

and the points ti are fixed. One may show that dim S = n + 1 as the choice of y0, . . . , yn
determines f uniquely, thus yielding n + 1 degrees of freedom.

A convenient set of basis functions { b0, . . . , bn } for S is given by the tent/hat basis func-
tions:

t0 t1 t2 t3 t4 t5 tn−1 tn

b2b0 bnb1
b3 b4

1

Note. The basis functions have to be extended by zero outside the non-zero range on which
they are drawn.

Explicit formulas for these basis functions can be given as:

b0(t) =

{
1− t−t0

t1−t0
for t0 ≤ t < t1 ,

0 for t ≥ t1 .

bj(t) =


1− tj−t

tj−tj−1
for tj−1 ≤ t < tj ,

1− t−tj
tj+1−tj

for tj ≤ t < tj+1 ,

0 elsewhere in [t0, tn] .

, j = 1, . . . , n− 1 ,

bn(t) =

{
1− tn−t

tn−tn−1
for tn−1 ≤ t < tn ,

0 for t < tn−1 .

(5.2)

Moreover, these basis functions are uniquely determined by the following conditions:

• bj is continuous on [t0, tn],

• bj is linear on each subinterval [ti−1, ti], i = 1, . . . , n,

• bj(ti) = δij :=

{
1 , if i = j ,
0 else.

The last condition implies a simple basis representation of a piecewise linear interpolant of
the data points (ti, yi), i = 0, . . . , n:

f (t) =
n

∑
j=0

yjbj(t) , t0 ≤ t ≤ tn , (5.3)

f (ti) =
n

∑
j=0

yjbj(ti) = yi bi(ti)︸ ︷︷ ︸
=1

= yi,
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where the bj are given by (5.2). A basis {b0, . . . , bn} such that bj(ti) = δij is called a cardinal
basis. Note that:

• Both S and the basis {bj}n
j=0 depend on the points ti.

• There are infinitely many choices for a basis of S.

• The cardinal basis for S is unique because the bj are continuous, piecewise linear and
thus uniquely defined on any subinterval.

5.1.2 The general interpolation problem

We recall the setting of the interpolation problem for a general subspace S:

• Interpolating conditions:
f (ti) = yi, i = 0, . . . , n.

• Basis representation:

f (t) =
m

∑
j=0

cjbj(t). (5.4)

Together, these conditions imply the following:

f (ti) =
m

∑
j=0

cjbj(ti) = yi, i = 0, . . . , n. (5.5)

This might be rewritten as a matrix equation. Namely:

Ac :=


b0(t0) . . . bm(t0)

...
...

b0(tn) . . . bm(tn)




c0
...

cm

 =


y0
...

yn

 =: y . (5.6)

This is an (m + 1)× (n + 1) linear system of equations. Thus, solving for c = [c0, . . . , cm]>

would determine f . Note the following two statements about uniqueness and solvability.

Note. A is regular ⇐⇒ For all { y0, . . . , yn }, there exists a unique interpolant.

Note. A necessary condition for unique solvability of the interpolation problem stated in
(5.5) is: m = n.

If m = n and A from (5.6) is regular, then for any values yj, j = 0, . . . , n we can find
coefficients cj, j = 0, . . . , n. From these, we can build the interpolant:

f =
n

∑
j=0

(A−1y)jbj . (5.7)

⇓
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For fixed nodes ti, the interpolation problem (5.5) defines the linear mapping

I :


Rn+1

data space
→ S ⊂ C0(I)

function space

y 7→ f = ∑n
j=0 (A

−1y)j︸ ︷︷ ︸
cj

bj

Beware, “linear” in the statement above has nothing to do with a linear function or piece-
wise linear interpolation. The linearity here is a property of the interpolation operator:

Definition 5.1.1 (Linear interpolation operator). An interpolation operator
I : Rn+1 → C0([t0, tm]) for the given nodes t0 < t1 < · · · < tn is called linear, if

I(αy + βz) = αI(y) + βI(z) ∀y, z ∈ Rn+1, α, β ∈ R . (5.8)

. Notation: C0([t0, tm]) corresponds to the vector space of continuous functions on [t0, tm].

A remaining question is: When is A invertible? This depends strongly on the nodes ti
and the space S but is independent of the choice of basis {bj}n

j=0. Suppose{b0, . . . , bn} and
{b′0, . . . , b′n} are bases of S and that we want to solve for

n

∑
j=0

djb′j(ti) = yi, i = 0, . . . , n. (5.9)

We know that b′j ∈ Span{b0, . . . , bn}. This implies that there exist coefficients {γk,j}k=0,...,n
such that:

b′j(ti) =
n

∑
k=0

γk,jbk(ti) .

Therefore,

(5.9) ⇐⇒
n

∑
j=0

dj(
n

∑
k=0

γk,jbk(ti)) = yi

⇐⇒
n

∑
k=0

(
n

∑
j=0

djγk,j)bk(ti)) = yi

Thus, by defining ck := ∑n
j=0 djγk,j, we see that (5.9) is uniquely solvable if and only if

n

∑
k=0

ckbk(ti) = yi, i = 0, . . . , n (5.10)

is uniquely solvable. Hence, whether or not the interpolation problem is uniquely solvable
is independent of the particular choice of basis. Finally, note that for the choice of the
cardinal basis, A is equal to the identity matrix: A = I.
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5.2 Global Polynomial Interpolation

5.2 Global Polynomial Interpolation

(Global) polynomial interpolation, that is, interpolation by mapping into spaces of func-
tions spanned by polynomials up to a certain degree, is the simplest interpolation scheme.
Despite its simplicity, polynomial interpolation is of great importance as a building block
for more complex algorithms.

We will first look at the polynomials of degree less than or equal to n, n ∈N:

Pn := {t 7→
n

∑
i=0

αiti , αi ∈ R} , (5.11)

where αn is called the leading coefficient of the polynomial.

Terminology: The functions t 7→ tk, k ∈N0, are called monomials and
t 7→ αntn + αn−1tn−1 + · · ·+ α0 is called monomial representation of a poly-
nomial.

We know that Pn is a vector space (see [3, Sect. 4.2, Bsp. 4]) of dimension dimPn = n + 1.
Polynomials are infinitely many times differentiable, i.e., Pn ⊂ C∞(R).

Why are polynomials important in computational mathematics?

• Integration and differentiation are simple to compute.

• Vector space and algebra.

• Analysis: Taylor polynomials and power series.

• Efficient evaluation of a polynomial through the Horner scheme:

p(t) = t(· · · t(t(αnt + αn−1) + αn−2) + · · ·+ α1) + α0 . (5.12)

The following code gives an implementation of the Horner scheme based on vector data
types of Eigen. The function is vectorized in the sense that many evaluation points are
processed in parallel.

Code Snippet 5.1: Horner scheme (vectorized version) → GITLAB
13 // Efficient evaluation of a polynomial in monomial representation
14 // using the Horner scheme (5.12)
15 // IN: p = vector of monomial coefficients, length = degree + 1
16 // (leading coefficient in p(0), C++ convention)
17 // t = vector of evaluation points ti
18 // OUT: y = polynomial evaluated at ti
19 void horner ( const VectorXd& p , const VectorXd& t , VectorXd& y ) {
20 const VectorXd : : Index n = t . s i z e ( ) ;
21 y . r e s i z e ( n ) ; y = p ( 0 ) ∗VectorXd : : Ones ( n ) ;
22 for ( unsigned i = 1 ; i < p . s i z e ( ) ; ++ i )
23 y = t . cwiseProduct ( y ) + p ( i ) ∗VectorXd : : Ones ( n ) ;
24 }
25 /*
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Here: p := [αn, . . . , α0]. Note that the asymptotic complexity of the Horner scheme is O(n).

5.2.1 Lagrange Interpolation

We now consider the global poynomial interpolation problem: the sought interpolant be-
longs to the polynomial space Pn, i.e., S = Pn:

Definition 5.2.1 (Lagrange polynomial interpolation problem). Given the simple nodes t0, . . . , tn,
for n ∈ N, −∞ < t0 < t1 < · · · < tn < ∞ and the values y0, . . . , yn ∈ R, find p ∈ Pn such
that

p(tj) = yj for j = 0, . . . , n . (5.13)

This is a well-defined problem because Pn is a finite-dimensional space of functions, for
which we already know a basis, the monomials. Thus, in principle, we could examine the
matrix A from (5.6) to decide, whether the polynomial interpolant exists and is unique.
However, there is a shorter way through building a cardinal basis for {tj}n

j=0 and S = Pn.

Lagrange polynomials

For nodes t0 < t1 < · · · < tn, the Lagrange polynomials are defined as:

Li(t) :=
n

∏
j=0
j 6=i

t− tj

ti − tj
, i = 0, . . . , n . (5.14)

The Lagrange polynomials have the following properties:

• Li(t) ∈ Pn.

• Li(tl) = δil. This can be seen by a straightforward calculation:

Li(tl) =
n

∏
j=0
j 6=i

tl − tj

ti − tj
=

{
∏j 6=i

ti−tj
ti−tj

= 1 if l = i,

0 if l 6= i.
(5.15)

• The set {L0(t), . . . Ln(t)} is linearly independent. To see this, we consider any arbi-
trary linear combination that is equal to zero:

γ0L0(t) + γ1L1(t) + . . . + γnLn(t) = 0.

Then, choosing t = ti results in
γi Li(ti)︸ ︷︷ ︸

=1

= 0

and consequently γi = 0. Hence, we obtain γ0 = γ1 = · · · = γn = 0, which proves
the linear independence of the Lagrange polynomials.
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5.2 Global Polynomial Interpolation

Since there are n + 1 different Lagrange polynomials which are linearly independent and
dimPn = n + 1, we conclude that they form a basis of Pn. We have also seen that Li(tj) =
δij, hence, we conclude that the Lagrange polynomials form a cardinal basis with node set
{tj}n

j=0. Thus, in the formulation (5.6) we obtain A = I so that existence and uniqueness of
the solution follow:

Theorem 5.2.1 (Existence & uniqueness of Lagrange interpolation polynomial). The general
Lagrange polynomial interpolation problem admits a unique solution p ∈ Pn.

Consider the equidistant nodes in [−1, 1]:

T :=
{

tj = −1 + 2
n j
}

, j = 0, . . . , n .
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The plot shows the Lagrange polynomials for this set of nodes that
do not vanish in the nodes t0, t2, and t5, respectively.

The Lagrange polynomial interpolant p for data points (ti, yi)
n
i=0 allows a straightforward

representation with respect to the basis of Lagrange polynomials for the node set {ti}n
i=0:

p(t) =
n

∑
i=0

yiLi(t) ⇔ p ∈ Pn and p(ti) = yi . (5.16)

5.2.2 Polynomial interpolation algorithms

Now we consider the algorithmic realization of Lagrange interpolation. The setting is as
follows:

Given data points (ti, yi), i ∈ {0, . . . , n}, ti ∈ I, find the interpolant p(t) ∈ Pn and evaluate
p(x) for some x ∈ I.
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To evaluate p at an arbitrary point x ∈ I, we need to know the Lagrange polynomials
Li, i = 0, . . . , n. Evaluating a single Lagrange polynomial may be done using the Horner
scheme and does therefore incur a computational cost of O(n). Hence, the computational
cost of evaluating

n

∑
j=0

yiLi(x) = p(x)

is O(n2).

Next we want to look at the case of a series of interpolation problems:

• Fixed nodes t0, . . . , tn ∈ I.

• N different data value sets {yk
0, . . . , yk

n}, k ∈ {1, . . . , N}.

• For every k: find interpolant pk ∈ Pn and evaluate pk at a series of points xk ∈ I, k ∈
{1, . . . , N}.

In this case, the overall complexity becomes O(n2N).

Next, we consider a more economical approach, in which the Lagrange interpolation is
done in a way that we store all the information involving the fixed nodes ti once and save
computational complexity when solving a series of N interpolation problems with the same
node set.

Barycentric interpolation formula

By means of pre-calculations, the asymptotic effort can be reduced substantially: Simple
manipulations starting from (5.16) give an alternative representation of p:

p(t) =
n

∑
i=0

yi Li(t) =
n

∑
i=0

yi

n

∏
j=0
j 6=i

t− tj

ti − tj
=

n

∑
i=0

λiyi

n

∏
j=0
j 6=i

(t− tj),

with
λi :=

1
(ti − t0)(ti − t1) · · · (ti − ti−1)(ti − ti+1) · · · (ti − tn)

, i = 0, . . . , n.

This implies

p(t) =
n

∑
i=0

λi

t− ti
yi ·

n

∏
j=0

(t− tj) . (5.17)

This representation holds for any interpolating polynomial through the points (ti, yi), so it
also holds for y0 = · · · = yn = 1 which results in the constant polynomial p(t) ≡ 1. Thus,

1 =
n

∑
i=0

λi

t− ti

n

∏
j=0

(t− tj) ,

and hence
n

∏
j=0

(t− tj) =
1

∑n
i=0

λi
t−ti

.
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Plugging this back into (5.17) results in the Barycentric interpolation formula:

p(t) =

n

∑
i=0

λi

t− ti
yi

n

∑
i=0

λi

t− ti

. (5.18)

The total computational effort of this approach consists of

• computation of weights λ0, . . . , λn with cost O(n2) (only once since weights are con-
stant for fixed nodes) and

• evaluating p(xk) =

n

∑
i=0

yk
i

λi

xk − ti
n

∑
i=0

λi

xk − ti

for each k with effort O(n), k ∈ {1, . . . , N}.

Hence, the total asymptotic complexity is O(n2 + Nn). For large N, this approach is more
efficient than the straightforward evaluation we saw before.

Note. If the nodes ti are close to each other we get numerical instability when computing
the weights λi, i = 0, . . . , n. This is not a property specific to the barycentric approach but
rather of Lagrange interpolation in general (recall the definition of the Lagrange polynomi-
als involving the division by the expressions (ti − tj)).

Alternatively, we consider a different approach, the Newton basis, for polynomial interpo-
lation that does not exhibit these numerical instabilities. This comes at the cost that the
Newton basis is no longer a cardinal basis (while the Lagrange polynomials are).

5.2.3 Newton basis

Define the Newton basis for the polynomial space Pn via

N0(t) := 1, Ni(t) :=
i−1

∏
j=0

(t− tj) , i = 1, . . . , n. (5.19)

Since each Ni has degree i, the set {N0, . . . , Nn } is linearly independent and thus forms a
basis of Pn. By definition, Ni(tl) = 0, for every l < i.

We want to find the interpolant p(t) =
n

∑
i=0

aiNi(t):

p(t0) = a0 + 0 ,
p(t1) = a0 + a1N1(t1) + 0 ,
p(t2) = a0 + a1N1(t2) + a2N2(t2) + 0 ,

...
p(tn) = a0 + a1N1(tn) + a2N2(tn) + · · ·+ anNn(tn) .
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This is a lower triangular system for [a0, . . . , an]>, which we can write in matrix form as
follows: 

1 0 · · · · · · · · · 0

1 N1(t1) 0 · · · · · · 0
... N1(t2) N2(t2) 0 · · · 0
...

...
... . . . . . . ...

1
...

... . . . 0

1 N1(tn) N2(tn) Nn(tn)





a0

a1
...
...
...

an


=



y0

y1
...
...
...

yn


.

Computing the i-th row of the above matrix can be performed in O(i). This is because of
the lower triangular form and since Nj(ti) = Nj−1(ti)(ti − tj) allows to compute the entries
of each row recursively. Hence, assembling the matrix can be performed in O(∑n

i=1 i) =
O(n2). However, note that this matrix has to be computed only once. Solving the above
system for [a0, . . . , an]> incurs a cost of O(n2) as the involved matrix is lower triangular
and we may therefore use forward substitution. The evaluation of p(x) at some point
x ∈ I comes with an additional cost of O(n2), since evaluating each Ni(x) with the Horner
scheme takes the effort O(i). This computational effort can be improved through a more
sophisticated scheme (divided difference scheme), which we do not discuss in this lecture.

Example 5.2.1: Polynomial interpolation for sin(πx) on [0, 0.2].
We compare the error of interpolating with Lagrange (blue) and Newton (pink) whereby
the nodes are equidistant.

8 Nodes 9 Nodes
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5.2 Global Polynomial Interpolation

12 Nodes 23 Nodes

Experimentally, the Newton interpolation is more robust. In addition, we find that
higher degree polynomials do not necessarily lead to better approximations. This is
called Runge’s phenomenon: Interpolation with high degree polynomials may lead to
oscillatory behavior of the interpolant close to the endpoints of the interval (when
equidistant nodes are used).

We can avoid such a behaviour with the following techniques:

• Distribute the interpolation points more densely at the endpoints (cf. Chebyshev
nodes, see Section 5.2.5).

• Avoid high degree polynomials by constructing a piecewise polynomial interpo-
lation (see Section 5.3).

5.2.4 Approximation of functions by interpolating polynomials

Next, we turn to the question of how good polynomial interpolation can be in approximat-
ing a continuous function f of which we only know discrete values f (t0), . . . , f (tn). For a
node set T =

{
tj
}n

j=0, the Lagrange interpolation operator may be defined as

IT (y0, . . . , yn) :=
n

∑
i=0

yiLi(t),

where Li denotes the i-th Lagrange polynomial. Suppose now that there is a true under-
lying continuous function f that we try to approximate by Lagrange interpolation through
the data points f (t0), ..., f (tn). Then, we can think of the Lagrangian interpolation operator
inducing an approximation scheme on C0(I), where I ⊂ R is an interval containing the
node set T .
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5 Data Interpolation in 1D

Definition 5.2.2 (Lagrangian (interpolation polynomial) approximation scheme). Given an
interval I ⊂ R, n ∈ N, a node set T = {t0, . . . , tn} ⊂ I, the Lagrangian (interpolation
polynomial) approximation scheme LT : C0(I)→ Pn is defined by

LT ( f ) := IT (y) ∈ Pn with y := ( f (t0), . . . , f (tn))
> ∈ Kn+1.

We are interested in the behaviour of the Lagrangian approximation scheme as the number
of nodes is increased and different families Tn = {t(n)0 , . . . , t(n)n } are considered. Mostly, we
are interested in the interpolation error ‖ f − LT ( f )‖ (for relevant norms on C0(I)). The best
approximation in Pn will be a function of polynomial degree n. Similarly, we may study a
family of Lagrange interpolation schemes {LTn}n∈N0

on I ⊂ R induced by a family of node
sets {Tn}n∈N0

, Tn ⊂ I.

An example for such a family of node sets on I := [a, b] are the equidistant or equispaced
nodes

Tn :=
{

t(n)j := a + (b− a)
j
n

: j = 0, . . . , n
}
⊂ I .

For a family of approximation schemes {LTn}n∈N, can we find a bound for the interpolation
error?

Let us consider an example:

Example 5.2.2: Polynomial interpolation of 1
1+t2 on equidistant nodes

We examine the polynomial interpolant of f (t) = 1
1+t2 for equidistant nodes:

Tn :=
{

tj := −5 + 10
n j
}n

j=0
, j = 0, . . . , n =⇒ yj =

1
1 + t2

j
.

We rely on an approximate computation of the supremum norm of the interpolation
error by means of sampling. Note that we approximate ‖ f − LTn f ‖∞ by sampling at 1000
equidistant points.
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Interpolating polynomial, n = 10 Approximate
∥∥ f − LTn f

∥∥
∞ on [−5, 5]

Recall Runge’s phenomenon: Strong oscillations of LT ( f ) near the endpoints of the
interval. Additionally:

‖ f − LTn f ‖L∞([−5,5])
n→∞−−−→ ∞ .

Theorem 5.2.2 (Divergent polynomial interpolants). Given a sequence of meshes of increasing
size {Tn}∞

n=1, Tj = {t(n)0 , . . . , t(n)n } ⊂ [a, b], a ≤ t(n)0 < t(j)
2 < · · · < t(n)n ≤ b, there exists

a continuous function f such that the sequence of interpolating polynomials (LTn f )∞
n=1 does not

converge to f uniformly as n→ ∞.

Now, we aim to establish bounds for the supremum norm of the approximation error of
Lagrangian interpolation.

Theorem 5.2.3 (Representation of interpolation error). We consider f ∈ Cn+1(I) and the La-
grangian interpolation approximation scheme (see Definition 5.2.2) for a node set T := {t0, . . . , tn} ⊂
I. Then, for every t ∈ I there exists a τt ∈ (min{t, t0, . . . , tn}, max{t, t0, . . . , tn}) such that

f (t)− LT ( f )(t) =
f (n+1)(τt)

(n + 1)!
·

n

∏
j=0

(t− tj) . (5.20)

Proof. Define wT (t) :=
n
∏
j=0

(t− tj) ∈ Pn+1 and fix t ∈ I \ T , i.e., t is not a node. This implies

that wT (t) 6= 0. Therefore, we can choose c ∈ R such that

f (t)− LT ( f )(t) = cwT (t) .

Consider the auxiliary function

ϕ(x) := f (x)− LT ( f )(x)︸ ︷︷ ︸
∈Pn

− cwT (x)︸ ︷︷ ︸
∈Pn+1

∈ Cn+1(I) .
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The function ϕ has at least n + 2 distinct zeros {t0, . . . , tn, t} since

ϕ(tj) = 0, for j = 0, . . . , n from the interpolating conditions and

ϕ(t) = 0, by definition.

By iterated application of the mean value theorem [2, Thm 5.2.1]

f ∈ C1([a, b]), f (a) = f (b) = 0 ⇒ ∃ξ ∈]a, b[: f ′(ξ) = 0 ,

to higher and higher derivatives, we conclude that

ϕ′ has at least n + 1 distinct zeros

ϕ′′ has at least n distinct zeros
...

ϕ(n+1)(x)has at least 1 distinct zero.

We denote this zero of ϕ(n+1)(x) by τt. Note that

ϕ(n+1)(x) = f (n+1)(x)− 0− c(n + 1)!

Thus,

ϕ(n+1)(τt) = 0 = f (n+1)(τt)− c(n + 1)!

=⇒ c =
f (n+1)(τt)

(n + 1)!
.

This yields the following interpolation error estimate for degree-n Lagrange interpolation
on the node set {t0, . . . , tn}:

Theorem 5.2.3 ⇒ ‖ f − LT f ‖L∞(I) ≤

∥∥∥ f (n+1)
∥∥∥

L∞(I)

(n + 1)!
max

t∈I
|(t− t0) · · · · · (t− tn)| . (5.21)

Example 5.2.3: Polynomial interpolation of sin(t) on equidistant nodes
We consider polynomial interpolation of f (t) = sin(t) on equidistant nodes. From the
error estimate (5.21) and

∥∥∥ f (k)
∥∥∥

L∞(I)
≤ 1 , ∀k ∈N0 , (5.22)
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it follows that

‖ f − LTn f ‖L∞(I) ≤
1

(1 + n)!
max

t∈I

∣∣(t− 0)(t− π
n )(t−

2π
n ) · · · · · (t− π)

∣∣︸ ︷︷ ︸
extrema at ≈ π

2n

(5.23)

≤ 1
(n + 1)!

∣∣∣ π

2n

( π

2n
− π

n

)
. . .
( π

2n
− π

)∣∣∣
≤ 1

(n + 1)!

(π

n

)n+1
∣∣∣∣12
(

1
2
− 1
)(

1
2
− 2
)

. . .
(

1
2
− n

)∣∣∣∣︸ ︷︷ ︸
≤n!

≤ 1
n + 1

(π

n

)n+1
.

Thus, we have proven uniform asymptotic (more than) exponential convergence of the
interpolation polynomials for equidistant node sets Tn. Next, we analyze Example 5.2.2
according to Theorem 5.2.3.

Example 5.2.4: Polynomial interpolation of 1
1+t2 on equidistant nodes

We examine the polynomial interpolation of f (t) = 1
1+t2 , on I = [−5, 5] using equidis-

tant nodes. We know∥∥∥ f (n+1)
∥∥∥

L∞([−5,5])
∼ 2n+1(n + 1)! for n→ ∞.

The right hand side of (5.21) is roughly

∼ 2n+1(n + 1)!
1

(n + 1)!
n!
(

5
n

)n+1

2n = n!
(

20
n

)n 10
n

.

By Stirling’s formula this grows exponentially:

n!
(

20
n

)n 10
n
≥ nn+1

2
√

2πe−n
(

20
n

)n 10
n︸ ︷︷ ︸

=10( 20
e )

n√ 2π
n

.

So estimate (5.21) no longer guarantees convergence (i.e. blow-up is possible).

Note that there is also an L2-estimate for f ∈ Cn+1(I) and T = {t0, . . . , tn} ∈ I:

‖ f − LT f ‖L2(I) ≤
2

n−1
4 |I|n+1√

n!(n + 1)!

∥∥∥ f (n+1)
∥∥∥

L2(I)
.
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5.2.5 Chebyshev Interpolation

When we build approximation schemes from interpolation schemes we have the extra free-
dom to choose the sampling points (= interpolation nodes). Now, based on the insight
in the structure of the interpolation error gained from Theorem 5.2.3, we seek to choose
“optimal” sampling points.

We have the setting:

• I = [−1, 1] (which we can assume without loss of generality),

• the interpolant f : I → R, f ∈ C0(I),

• and the set of interpolation nodes T := {−1 ≤ t0 < t1 < · · · < tn−1 < tn ≤ 1},
n ∈N.

We recall Theorem 5.2.3:

‖ f − LT f ‖L∞(I) ≤
1

(n + 1)!

∥∥∥ f (n+1)
∥∥∥

L∞(I)
‖w‖L∞(I)

with nodal polynomial w(t) :=
n

∏
j=0

(t− tj) .

Optimal choice of interpolation nodes independent of interpolant

Idea: Choose nodes t0, . . . , tn such that ‖w‖L∞(I) is minimal.

This is equivalent to finding a polynomial q ∈ Pn+1

• with leading coefficient = 1,

• and which minimizes the norm ‖q‖L∞(I).

=⇒ Then, choose nodes t0, . . . , tn as zeros of q (caution: tj must belong to I).

w(t)

‖q‖L∞(I)

−‖q‖L∞(I)

t0 t1 t2 tn
−1 1

Requirements on q (by heuristic reasoning):
We stress that we aim for an “optimal” a priori
choice of interpolation nodes, a choice that is
made before any information about the inter-
polant becomes available.
Of course, an a posteriori choice based on in-
formation gleaned from evaluations of the
interpolant f may yield much better inter-
polants (in the sense of smaller norm of the
interpolation error). Many modern algo-
rithms employ this a posteriori adaptive approx-
imation policy, but this chapter will not cover
them.
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5.2 Global Polynomial Interpolation

Based on the requirement that q minimizes ‖ · ‖L∞(I), one can already deduce two properties
of q:

• q has n + 1 zeros given by t0, ..., tn since q := ∏n
j=0(t− tj).

• All these zeros lie in [−1, 1].

Proof. Suppose t0 < −1. Then, we can define

p(t) := (t + 1)(t− t1)(t− t2) · · · (t− tn).

This implies

|p(t)| = |q(t)| · |t + 1|
|t− t0|︸ ︷︷ ︸

< 1

=⇒ |p(t)| < |q(t)| ∀ t ∈ I
=⇒ ‖p(t)‖L∞(I) < ‖q(t)‖L∞(I) .

This contradicts q being the optimal choice. Thus, t0 ≥ −1.

Similarly, suppose tn > 1. Then, we can define

p(t) := (t− t0)(t− t1)(t− t2) · · · (t− tn−1)(t− 1).

This implies

|p(t)| = |q(t)| · |t− 1|
|t− tn|︸ ︷︷ ︸

< 1

=⇒ |p(t)| < |q(t)| ∀ t ∈ I
=⇒ ‖p(t)‖L∞(I) < ‖q(t)‖L∞(I) .

Again, this contradicts q being the optimal choice. Thus, tn ≤ 1.

Are there polynomials satisfying these requirements? If so, do they allow a simple charac-
terization? The answer is: Yes. These polynomials are (up to a normalization factor) equal
to the Chebyshev polynomials:

Definition 5.2.3 (Chebyshev polynomials). The nth Chebyshev polynomial is
Tn(t) := cos(n arccos t), where −1 ≤ t ≤ 1, n ∈N.

The next result confirms that the Tn are indeed polynomials.

Theorem 5.2.4 (3-term recursion for Chebyshev polynomials). The functions Tn defined in
Definition 5.2.3 satisfy the 3-term recursion

Tn+1(t) = 2t Tn(t)− Tn−1(t), T0 ≡ 1, T1(t) = t, n ∈N . (5.24)
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The theorem implies that

• Tn ∈ Pn,

• the leading coefficient of the n-th Chebyshev polynomial is equal to 2n−1,

• the Tn are linearly independent,

•
{

Tj
}n

j=0 is a basis of Pn = Span{T0, . . . , Tn}, n ∈N0.
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Definition 5.2.3 implies that the zeros of the Tn are

tj = cos
(

2j + 1
2n

π

)
, j = 0, . . . , n− 1 , (5.25)

which are called the Chebyshev nodes.

To see this, notice that

Tn(t) = 0 zeros of cos⇔ n arccos t ∈ (2Z + 1)
π

2
arccos ∈ [0, π]⇔ t ∈

{
cos
(2j + 1

n
π

2

)
, j = 0, . . . , n− 1

}
.

The next theorem will demonstrate that, after scaling, the Tn indeed constitute polynomials
on [−1, 1] with fixed leading coefficient and minimal supremum norm.

Theorem 5.2.5 (Minimax property of the Chebyshev polynomials). The polynomials Tn from
Definition 5.2.3 minimize the supremum norm in the following sense:

‖Tn‖L∞([−1,1]) = inf{‖p‖L∞([−1,1]) : p ∈ Pn, p(t) = 2n−1tn + · · · } , ∀n ∈N .

So the nodal polynomial w minimizing the supremum norm may be found by setting
w(t) = 2−nTn+1(t). The interpolation nodes corresponding to this nodal polynomial are
given by the zeros of Tn+1.
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5.2 Global Polynomial Interpolation

Thus, we have identified the points t0, . . . , tn from (5.25) as optimal interpolation nodes for a
Lagrangian approximation scheme. The tk are known as Chebyshev nodes. Their distribution
in [−1, 1] and a geometric construction are plotted below.
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Observe that the Chebyshev nodes cluster at the boundary of I for large n. The geometric
construction depicts that the Chebyshev nodes result from an equidistributed set of points
on the circle. When we use Chebyshev nodes for polynomial interpolation, we call the
resulting Lagrangian approximation scheme Chebyshev interpolation. On the interval [−1, 1],
it is characterized by:

• “Optimal” interpolation nodes: T =
{

cos
(

2k+1
2(n+1) π

)
, k = 0, . . . , n

}
.

• w(t) = (t− t0) · · · (t− tn) = 2−nTn+1(t), ‖w‖L∞(I) = 2−n, with leading coefficient 1.

By Theorem 5.2.3, we immediately get an interpolation error estimate for Chebyshev inter-
polation of f ∈ Cn+1([−1, 1]):

‖ f − LTn f ‖L∞([−1,1]) ≤
2−n

(n + 1)!

∥∥∥ f (n+1)
∥∥∥

L∞([−1,1])
. (5.26)

Note. We can define the Chebyshev interpolation on an arbitrary interval [a, b]. The same
Lagrangian approximation scheme is obtained by transforming the Chebyshev nodes (5.25)
from [−1, 1] to [a, b] using the unique affine transformation:

Φ : [−1, 1]→ [a, b], t̂ 7→ t := a + 1
2(t̂ + 1)(b− a) ∈ [a, b].

a b

The Chebyshev nodes in the interval I = [a, b] are thus given by

t̂k := a + 1
2(b− a)

(
cos
( 2k + 1

2(n + 1)
π
)
+ 1
)

, k = 0, . . . , n . (5.27)
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Then, if p ∈ Pn is the interpolating polynomial with p(tj) = f (tj), where f ∈ C0[a, b], and
p̂ := p ◦Φ ∈ Pn, the equivalent interpolation problem on [−1, 1] can be formulated as

p̂(t̂j) = f̂ (t̂j),

where f̂ (t̂) := f (Φ(t̂)).

Now we can use
dn f̂
dt̂n

(t̂) = (1
2 |I|)

n dn f
dtn (t) along with (5.26) to obtain

‖ f − LT ( f )‖L∞(I) =
∥∥∥ f̂ − LT̂ ( f̂ )

∥∥∥
L∞([−1,1])

, (5.28)

≤ 2−n

(n + 1)!

∥∥∥∥∥dn+1 f̂
dt̂n+1

∥∥∥∥∥
L∞([−1,1])

,

≤ 2−2n−1

(n + 1)!
|I|n+1

∥∥∥ f (n+1)
∥∥∥

L∞(I)
. (5.29)

In spite of (5.29) being a better estimate than its counterpart for equidistant points, diver-
gence is still possible when

∥∥∥ f (n+1)
∥∥∥

L∞(I)
grows very fast. For demonstration, we go back

to Runge’s example, cf. Example 5.2.2:

f (t) =
1

1 + t2 , t ∈ [−5, 5],∥∥∥ f (n+1)
∥∥∥

L∞([−5,5])
∼ 2n+1(n + 1)! .

In this case, the right-hand side of (5.29) still blows up with exponential growth:

RHS ∼ 2−2n−1

(n + 1)!
· 10n+1 · 2n+1 · (n + 1)! = 10 · 5n .

Note. The RHS is a bound that is not necessarily sharp. Hence, the blow-up of the right-
hand side of (5.29) does not necessarily imply divergence of the approximation. Comparing
equidistant nodes vs. Chebyshev nodes for Runge’s example we see that there is no Runge
phenomenon for the choice of Chebyshev nodes.
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5.2 Global Polynomial Interpolation

We observe that the Chebyshev nodes cluster at the endpoints of the interval, which suc-
cessfully suppresses the huge oscillations haunting equidistant interpolation.

Now, we empirically investigate the behaviour of norms of the interpolation error for
Chebyshev interpolation and functions with different (smoothness) properties as we in-
crease the number of interpolation nodes.

For I = [a, b] we set xl := a + b−a
N l, l = 0, ..., N, N = 1000, and we approximate the norms

of the interpolation error as follows (p =̂ interpolating polynomial):

‖ f − p‖∞ ≈ max
0≤l≤N

| f (xl)− p(xl)|, (5.30)

‖ f − p‖2
2 ≈

b− a
2N ∑

0≤l<N

(
| f (xl)− p(xl)|2 + | f (xl+1)− p(xl+1)|2

)
. (5.31)

À f (t) = 1
1+t2 , I = [−5, 5] (see Example 5.2.2):

Interpolation with n = 10 Chebyshev nodes. In this case f ∈ C∞.
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Notice the exponential convergence of the Chebyshev interpolation:

pn → f , ‖ f − LTn( f )‖L∞([−5,5]) ≈ 0.8n.

Á f (t) =

{
1
2(1 + cos πt) |t| < 1
0 1 ≤ |t| ≤ 2

I = [−2, 2] and n = 10. Here, f ∈ C1(I).
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We obtain algebraic convergence for this example.
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5 Data Interpolation in 1D

Â f (t) = max{1− |t|, 0}, I = [−2, 2] and n = 10. Now f ∈ C0(I) but f /∈ C1(I).
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From the doubly logarithmic plot we conclude:

• No exponential convergence.

• But: Algebraic convergence!

Again, one can observe algebraic convergence but one that is a bit slower than in the pre-
vious (smooth) case.

Summary of observations, cf. Section 5.2.4:

• Essential role of smoothness of f : Slow convergence of approximation error of the
Chebyshev interpolant if f enjoys little smoothness, cf. also (5.21).

• For smooth f ∈ C∞, the approximation error of the Chebyshev interpolant decays to
zero exponentially in the polynomial degree n.

Implementation of Chebyshev interpolation

We close our discussion on Chebyshev interpolation by finding an efficient scheme for its
implementation. We will see that this interpolation problem can be formulated via the DFT
for which we know a fast implementation (FFT).
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5.2 Global Polynomial Interpolation

We start with the following idea: Write the interpolants p ∈ Pn as a linear combination of
Chebyshev polynomials, a so-called Chebyshev expansion:

p(x) =
n

∑
j=0

αjTj(x) , αj ∈ R . (5.32)

deg Tj = j =⇒ {T0, . . . , Tn} basis of Pn.

The implementation of the Chebyshev interpolation is divided into the following two steps.
First, we assume that the αj are already known and we study the evaluation of p(x). Next,
we consider the question of finding the coefficients αj.

À Efficient evaluation of p given coefficients αj:

Idea: Use the 3-term recursion (5.24) of Chebyshev polynomials:

T0 ≡ 1, T1(x) = x, Tj(x) = 2xTj−1(x)− Tj−2(x) , j ≥ 2. (5.33)

By means of (5.33) rewrite (5.32) as

p(x) =
n−1

∑
j=0

αjTj(x) + αnTn(x)

(5.33)
=

(
n−1

∑
j=0

αjTj(x)

)
+ αn(2xTn−1(x)− Tn−2(x))

=

(
n−3

∑
j=0

αjTj(x)

)
+ αn−2Tn−2(x) + αn−1Tn−1(x) + αn(2xTn−1(x)− Tn−2(x))

=

(
n−3

∑
j=0

αjTj(x)

)
+ (αn−2 − αn)Tn−2(x) + (αn−1 + 2xαn)Tn−1(x) .

We recover the point value p(x) as the point value of another polynomial of degree n− 1
with known Chebyshev expansion:

p(x) =
n−1

∑
j=0

α̃jTj(x) with α̃j =


αj + 2xαj+1 , if j = n− 1 ,
αj − αj+2 , if j = n− 2 ,
αj else.

(5.34)

These calculations inspire the following recursive algorithm, which is also known as the
Clenshaw algorithm.

Define
βn+2 = βn+1 = 0.

For k = n, . . . , 1:

βk = αk + 2xβk+1 − βk+2 (5.35)
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5 Data Interpolation in 1D

and

β0 = 2α0 + 2xβ1 − β2.

The evaluation of p at x can now be written as:

p(x) =
1
2
(β0 − β2). (5.36)

Code Snippet 5.2: Clenshaw algorithm for evaluation of Chebyshev expansion (5.32)

13 // Clenshaw algorithm for evaluating p = ∑n+1
j=1 ajTj−1

14 // at points passed in vector x
15 // IN : a =

[
αj
]
, coefficients for p = ∑n+1

j=1 αjTj−1

16 // x = evaluation point
17 // OUT: value p(x)
18 VectorXd clenshaw ( const VectorXd& a , const double x ) {
19 const int n = a . s i z e ( ) − 1 ; // degree of polynomial
20 double beta_kp2 = 0 . 0 ; // storage for β(k+2) value initialised by β(n+2)
21 double beta_kp1 = 0 . 0 ; // storage for β(k+1) value initialised by β(n+1)
22 double beta_k ;
23 for ( int k = n ; k > 0 ; −−k ) {
24 beta_k = a ( k ) + 2∗x∗beta_kp1 − beta_kp2 ; // see (5.35)
25 beta_kp2 = beta_kp1 ;
26 beta_kp1 = beta_k ;
27 }
28
29 // p(x) = α0 + β1 ∗ x− β2
30 return a ( 0 ) + beta_kp1∗x − beta_kp2 ;
31 }
32 /*

This algorithm has complexity O(n).

Á Computation of coefficients αj in (5.32):

Chebyshev interpolation is a linear interpolation scheme. Thus, the expansion αj in (5.32)
can be computed by solving a linear system of equations of the form (5.6). However, for
Chebyshev interpolation, this linear system can be cast into a very special form, which
paves the way for its fast direct solution:

We will use the interpolation conditions for this task:

p(tk) = f (tk) , k = 0, . . . , n , (5.37)

tk = cos
(

2k + 1
2(n + 1)

π

)
.

Define

sk :=
2k + 1

4(n + 1)
.
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5.2 Global Polynomial Interpolation

Then,
tk = cos(2πsk) .

Trick: Transform p into a 1-periodic function, which turns out to be a Fourier sum (= finite
Fourier series):

q(s) := p(cos 2πs) =
n

∑
j=0

αjTj(cos 2πs) Def. 5.2.3
=

n

∑
j=0

αj cos(2π js)

=
n

∑
j=0

1
2 αj
(
exp(2πıjs) + exp(−2πıjs)

)
[ since cos z = 1

2(e
z + e−z) ]

=
n+1

∑
j=−n

β j exp(−2πıjs) , with β j :=


0, for j = n + 1 ,
1
2 αj, for j = 1, . . . , n ,
α0, for j = 0 ,
1
2 α−j, for j = −n, . . . ,−1 .

(5.38)

Having written q(s) in such a nice Fourier sum, we next plug in the interpolation conditions
(5.37) with the goal of constructing a linear system of equations with the Fourier matrix:

Tj(t) = cos(j · arccos(t))

Tj(cos(2πs)) = cos(j · 2πs) s ∈
[

0,
1
2

]
(5.37)
=⇒ q

(
2k + 1

4(n + 1)

)
= yk := f (tk) , k = 0, . . . , n . (5.39)

This is an interpolation problem for equidistant points on the unit circle. Note that so far we
can, given the n+ 1 interpolation conditions, build a system of n+ 1 linear equations for the
vector of unknowns β j, with length 2n+ 2. Our goal is to extend this to a (2n+ 2)× (2n+ 2)
system. This is possible due to the following symmetry:

q(s) = q(1− s).
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5 Data Interpolation in 1D

Thus, we can extend the interpolation conditions (5.39) by

q
(

1− 2k + 1
4(n + 1)

)
= yk , k = 0, . . . , n .

Note also that this ensures that the coefficients β j actually satisfy the constraints implied
by their relationship with αj.

Altogether, we obtain the following 2n + 2 equations:

q
(

k
2(n + 1)

+
1

4(n + 1)

)
= zk :=

{
yk, for k = 0, . . . , n ,
y2n+1−k, for k = n + 1, . . . , 2n + 1,

(5.40)

because for k = n + 1, . . . , 2n + 1 : q(sk) = q(1− sk) = q(s2n+1−k) = y2n+1−k.

In a sense, we can mirror the interpolation conditions at x = 1
2 :

10

x = 1/2

We are now in a position to form the (2n + 2)× (2n + 2) linear system of equations:

q
(

k
2(n + 1)

+
1

4(n + 1)

)
= zk, k = 0, . . . , 2n + 1.

Using these interpolation conditions in

q(s) =
n+1

∑
j=−n

β j exp (−2 π ı j s)
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5.2 Global Polynomial Interpolation

yields

n+1

∑
j=−n

β j exp
[
−2 π ı j

(
k

2(n + 1)
+

1
4(n + 1)

)]
= zk,

n+1

∑
j=−n

β j exp
(
−π ı j k

n + 1

)
exp

(
− π ı j

2(n + 1)

)
= zk,

2n+1

∑
j=0

β j−n exp
(
−π ı (j− n) k

n + 1

)
exp

(
−π ı (j− n)

2(n + 1)

)
= zk,


2n+1

∑
j=0

β j−n exp
(
−π ı j k

n + 1

)
︸ ︷︷ ︸

exp(−2πı j k
2(n+1) )

exp
(
−π ı (j− n)

2(n + 1)

)
 exp

(
π ı n k
n + 1

)
= zk,

2n+1

∑
j=0

β j−n exp
(
−π ı (j− n)

2(n + 1)

)
ω

j k
2(n+1) = exp

(
−π ı n k

n + 1

)
zk .

Thus, defining the vectors

c :=
[

β j exp
(
− 2πıj

4(n + 1)

)]2n+1

j=0
, b :=

[
exp

(
−πı

nk
n + 1

)
zk

]2n+1

k=0
, (5.41)

we finally obtain

F2(n+1)c = b . (5.42)

F is a (2n + 2) × (2n + 2) Fourier matrix, see Chapter 4. With the inverse DFT we can
recover c from (5.42), which allows us to recover all β j’s, which then leads to recovering all
αj’s. Furthermore, this can all be done in O(n log(n)) complexity.

Code Snippet 5.3: Efficient computation of Chebyshev expansion coefficient of Chebyshev interpolant →
GITLAB

18 // efficiently compute coefficients αj in the Chebyshev expansion

19 // p =
n
∑

j=0
αjTj of p ∈ Pn based on values yk,

20 // k = 0, . . . , n, in Chebyshev nodes tk, k = 0, . . . , n
21 // IN: values yk passed in y
22 // OUT: coefficients αj
23 VectorXd chebexp ( const VectorXd& y ) {
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24 const int n = y . s i z e ( ) − 1 ; // degree of polynomial
25 const std : : complex<double> M_I ( 0 , 1 ) ; // imaginary unit
26 // create vector z, see (5.40)
27 VectorXcd b ( 2∗ ( n + 1) ) ;
28 const std : : complex<double> om = −M_I∗ (M_PI∗n ) / ( ( double ) ( n+1) ) ;
29 for ( int j = 0 ; j <= n ; ++ j ) {
30 b ( j ) = std : : exp (om∗double ( j ) ) ∗y ( j ) ; // this cast to double is necessary!!
31 b (2∗n+1− j ) = std : : exp (om∗double (2∗n+1− j ) ) ∗y ( j ) ;
32 }
33
34 // Solve linear system (5.42) with effort O(n log n)
35 Eigen : : FFT<double> f f t ; // Eigen’s helper class for DFT
36 VectorXcd c = f f t . inv ( b ) ; // -> c = ifft(z), inverse fourier transform
37 // recover β j, see (5.41)
38 VectorXd beta ( c . s i z e ( ) ) ;
39 const std : : complex<double> sc = M_PI_2/(n + 1) ∗M_I ;
40 for ( unsigned j = 0 ; j < c . s i z e ( ) ; ++ j )
41 beta ( j ) = ( std : : exp ( sc ∗double(−n+ j ) ) ∗c [ j ] ) . r e a l ( ) ;
42 // recover αj, see (5.38)
43 VectorXd alpha = 2∗ beta . segment ( n , n ) ; alpha ( 0 ) = beta ( n ) ;
44 return alpha ;
45 }
46 /*

Computers use approximation by sums of Chebyshev polynomials in the computation of
functions like log, exp, sin, cos, etc. The evaluation by means of the Clenshaw algorithm is
more efficient and stable than the approximation by Taylor polynomials.

5.3 Piecewise polynomial interpolation

As mentioned previously, in order to prevent Runge’s phenomenon from occurring in inter-
polation, an alternative to Chebyshev interpolation is to form an interpolant that is piece-
wise polynomial. In what follows, we discuss two ways to do this. The first is standard
piecewise (Lagrange) polynomial interpolation. The second one is spline interpolation.

5.3.1 Piecewise polynomial Lagrange interpolation

Recall our estimate for the Chebyshev interpolation:

‖ f − LT ( f )‖L∞(I) ≤
2−2n−1

(n + 1)!
|I|n+1

∥∥∥ f (n+1)
∥∥∥

L∞(I)
. (5.43)

Note that the RHS of (5.43) grows with the length of the interval I. This is the motivation
for creating a mesh of the interval I and performing only local Lagrange interpolation on
each cell of the mesh.
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5.3 Piecewise polynomial interpolation

Given an interval [a, b] ⊂ R, create a meshM of I:

M := {a = x0 < x1 < . . . < xm−1 < xm = b}.

We will work with a local Lagrange interpolation (see (5.13)) of f ∈ C(I) on the meshM.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

a b

Terminology:

• xj =̂ nodes of the meshM.

• [xj−1, xj[ =̂ intervals/cells of the mesh.

• hM := max
j
|xj − xj−1| =̂ mesh width.

• If xj = a + jh, we call the mesh equidistant or uniform with meshwidth h > 0.

General local Lagrange interpolation on a mesh

Ê Choose a local degree nj ∈N0 for each cell of the mesh, j = 1, . . . , m.

Ë Choose a set of local interpolation nodes

T j := {tj
0, . . . , tj

nj} ⊂ Ij := [xj−1, xj] , j = 1, . . . , m ,

for each mesh cell/grid interval Ij.

Ì Define a piecewise polynomial interpolant s : [x0, xm]→ K:

sj := s|Ij
∈ Pnj and sj(t

j
i) = f (tj

i) i = 0, . . . , nj , j = 1, . . . , m . (5.44)

Owing to Theorem 5.2.1, sj is well defined.

Thus, in each cell the size of the node set is nj + 1, j = 1, . . . , m.

Corollary 5.3.1 (Continuous local Lagrange interpolants). If the local degrees nj are at least 1

and the local interpolation nodes tj
k, j = 1, . . . , m, k = 0, . . . , nj, for local Lagrange interpolation

satisfy

tj
nj = tj+1

0 ∀j = 1, . . . , m− 1 , (5.45)

then the piecewise polynomial Lagrange interpolant according to (5.44) is continuous on [a, b]:
s ∈ C0([a, b]).
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Example 5.3.1:
We have the function f (t) = arctan t, I = [−5, 5] and the mesh

M := {−5 = x0 < −5
2
= x1 < 0 = x2 <

5
2
= x3 < 5 = x4}.

Local interpolation nodes are equidistant on Ij.

piecewise linear: nj = 1 T j = {tj
0 = xj−1, tj

1 = xj}

piecewise quadratic: nj = 2 T j = {xj−1,
xj−1+xj

2 , xj}

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

t

atan(t)

piecew. linear

piecew. quadratic

piecew. cubic

Plots of the piecewise linear, quadratic and cubic polynomial
interpolants

Note. We see overall that the interpolant is C0 (but not C1) since x1, . . . , xm−1 are interpola-
tion nodes. A special case is when nj = n (fixed). The subsequent question is how can we
improve our error estimate by decreasing the mesh width hM := max

j

∣∣xj−1 − xj
∣∣, i.e. the

asymptotic behaviour as hM → 0 (“h-convergence”).

Note that as hM decreases, the total number of cells increases and therefore also the num-
ber of nodes.

# number of cells ≥ |b−a|
hM

# number of nodes ≥ |b−a|(n−1)
hM
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5.3 Piecewise polynomial interpolation

Example 5.3.2:
We again look at the example f (t) = arctan(t) on [−5, 5] with equidistant mesh width
and 10

hM
cells.
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We observe in this log-log plot algebraic convergence in hM. Also the rate of algebraic
convergence increases with polynomial degree n. The rates α of algebraic convergence
O(hα

M) of the norms of the interpolation error are enlisted below.

n 1 2 3 4 5 6

w.r.t. L2-norm 1.9957 2.9747 4.0256 4.8070 6.0013 5.2012

w.r.t. L∞-norm 1.9529 2.8989 3.9712 4.7057 5.9801 4.9228

Note. A higher polynomial degree provides faster algebraic decrease of interpolation error
norms. The above example shows empiric evidence for rates α = n + 1.

Let us derive an error estimate by applying the estimate (5.21) on each subinterval individ-
ually:

‖ f − LT f ‖L∞(Ij)
≤

∥∥∥ f (n+1)
∥∥∥

L∞(Ij)

(n + 1)!
max
t∈Ij

∣∣∣(t− tj
0) . . . (t− tj

n)
∣∣∣︸ ︷︷ ︸

≤hn+1
M

.

Note that
‖ f − s‖L∞([x0,xm])

= max
j∈{1,...,m}

‖ f − LT f ‖L∞(Ij)
.

Hence,

‖ f − s‖L∞([x0,xm])
≤

hn+1
M

(n + 1)!

∥∥∥ f (n+1)
∥∥∥

L∞([x0,xm])
.

Thus, we have shown algebraic convergence in hM with rate n + 1.
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Note. We can make the following conclusions:

• n is now fixed (and small) , e.g. for piecewise linear interpolation, we have n = 1 and
the estimate holds if f

∣∣
Ij
∈ C2.

• Piecewise smoothness of f is sufficient.

• Since n can be small, we do also obtain convergence result for f with low regularity.

• But: only slow convergence (algebraic as opposed to exponential for Chebyshev in-
terpolation).

5.3.2 Spline interpolation

We have seen that polynomial interpolation can straightforwardly be extended to piecewise
polynomial interpolation by subdividing the global interval with a mesh and performing lo-
cal polynomial interpolation on each individual cell. This leads to continuous interpolants
s ∈ C0([a, b]). However, in many applications, it is desirable to have smooth interpolants.
This is the idea of spline interpolation, which can be described as follows:

• Using a polynomial of degree d on each subinterval [ti−1, ti].

• Matching the first d− 1 derivatives at the nodes ti.

Definition 5.3.1 (Spline space). Given an interval I := [a, b] ⊂ R and a knot set/meshM :=
{a = t0 < t1 < . . . < tn−1 < tn = b}, the vector space Sd,M of the spline functions of degree
d (or order d + 1) is defined by

Sd,M := {s ∈ Cd−1(I): sj := s |[tj−1,tj]
∈ Pd ∀j = 1, . . . , n} .

Spline space are mapped onto each other by differentiation and integration:

s ∈ Sd,M ⇒ s′ ∈ Sd−1,M and
∫ t

a
s(τ)dτ ∈ Sd+1,M.

Spline spaces of the lowest degrees:

• d = 0 : M-piecewise constant discontinuous functions.

• d = 1 : M-piecewise linear continuous functions.

• d = 2 : continuously differentiableM-piecewise quadratic functions.

The dimension of a spline space can be found by a counting argument. We count the
number of “degrees of freedom” of an M-piecewise polynomial of degree d, and subtract
the number of linear constraints implicitly contained in Definition 5.3.1:

dimSd,M = n · dimPd − #{Cd−1 continuity constraints} = n · (d + 1)− (n− 1) · d = n + d.
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5.3 Piecewise polynomial interpolation

Theorem 5.3.1 (Dimension of spline space). The space Sd,M from Definition 5.3.1 has dimension

dimSd,M = n + d.

We already know the special case of interpolation in S1,M, when the interpolation nodes
are the knots of M, because this boils down to simple piecewise linear interpolation, see
Section 5.2.1.

Cubic spline interpolation

The human eye perceives a C2-functions as “smooth”. Thus, cubic spline interpolation is a
very appealing concept. Consider the space:

S3,M = {s ∈ C2(I) : sj := s|[tj−1,tj]
∈ P3 ∀j = 1, . . . , n},

where s ∈ C2(I) implies the conditions: s′j(tj) = s′j+1(tj), s′′j (tj) = s′′j+1(tj). Since each
sj ∈ P3, ∀j = 1, . . . , n we may denote them as:

sj(t) = aj + bjt + cjt2 + djt3.

In this setting, we have to determine 4n coefficients. Next, let us see what s ∈ S3,M implies
for the coefficients:

À Interpolating conditions:

sj(tj−1) = yj−1, sj(tj) = yj,

yield

aj + bjtj−1 + cjt2
j−1 + djt3

j−1 = yj−1,

aj + bjtj + cjt2
j + djt3

j = yj.

Thus, we get 2n conditions.

Á Smoothness conditions (i):

s′j(tj) = s′j+1(tj), j = 1, . . . , n− 1,

implies

bj + 2cjtj + 3djt2
j = bj+1 + 2cj+1tj + 3dj+1t2

j .

This results in n− 1 additional conditions.

Â Smoothness conditions (ii):

s′′j (tj) = s′′j+1(tj), j = 1, . . . , n− 1,
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5 Data Interpolation in 1D

so that

2cj + 6djtj = 2cj+1 + 6dj+1tj,

yields n− 1 additional conditions.

From À, Á and Â we have 2n + 2(n− 1) = 4n− 2 conditions to determine 4n coefficients
resulting in 2 degrees of freedom. To fully determine the system we have to add two
additional constraints.

Ã Additional constraints, e.g. natural/simple boundary conditions:

s′′1 (t0) = 0, s′′n(tn) = 0.

Altogether we have constructed a fully determined LSE for the coefficients {aj, bj, cj, dj}j=1,...,n.

Economical implementation of cubic spline interpolation

Next, we derive an efficient implementation of cubic spline interpolation. For this, we first
introduce a slightly altered ansatz for the polynomials sj:

∀j = 1, . . . , n : sj(t) = ãj + b̃j(t− tj−1) + c̃j(t− tj−1)
2 + d̃j(t− tj−1)

3.

Defining

σj := s′′j (tj) = s′′j+1(tj) and hj := tj − tj−1, j = 1, . . . , n− 1,

where σj are unknowns, one can obtain the following equations for the coefficients of sj:

ãj = yj−1 , (5.46)

b̃j =
yj − yj−1

hj
−

hj(2σj−1 + σj)

6
, (5.47)

c̃j =
σj−1

2
, (5.48)

d̃j =
σj − σj−1

6hj
. (5.49)

Equations (5.46)-(5.49) can be verified as follows:

First, the interpolation condition at tj−1 and the definition of sj imply (5.46):

sj(tj−1) = ãj = yj−1 .

Next, we can express c̃j, d̃j through the second derivatives σj−1, σj:

s′′j (tj−1) = 2c̃j = σj−1 =⇒ c̃j =
σj−1

2
and

s′′j (tj) = 2c̃j︸︷︷︸
σj−1

+6d̃j(tj − tj−1) = σj =⇒ d̃j =
σj − σj−1

6hj
.

156



5.3 Piecewise polynomial interpolation

Next, we can derive the equation for b̃j by employing the interpolating condition at tj:

sj(tj) = ãj + b̃j(tj − tj−1) + c̃j(tj − tj−1)
2 + d̃j(tj − tj−1)

3 = yj .

Plugging in the expressions derived for ãj, c̃j and d̃j then yields:

yj−1 + b̃jhj +
σj−1

2
h2

j +
σj − σj−1

6hj
h3

j = yj

=⇒ b̃jhj = yj − yj−1 − h2
j

(
2σj−1

6
+

σj

6

)
=⇒ b̃j =

yj − yj−1

hj
−

hj(2σj−1 + σj)

6
.

Next, we use the matching of the first derivatives

b̃j + 2c̃jhj + 3d̃jh2
j = b̃j+1

and Equations (5.46)-(5.49) to formulate an LSE for the σj’s. We obtain

yj − yj−1

hj
−

hj(2σj−1 + σj)

6
+ σj−1hj +

σj − σj−1

2
hj =

yj+1 − yj

hj+1
−

hj+1(2σj + σj+1)

6

=⇒ σj−1

(
−

hj

3
−

hj

2
+ hj

)
+ σj

(
−

hj

6
+

hj

2
−

hj+1

3

)
+ σj+1

(
hj+1

6

)
=

yj+1 − yj

hj+1
−

yj − yj−1

hj︸ ︷︷ ︸
=: rj

=⇒ σj−1
hj

6
+ σj

(
hj + hj+1

3

)
+ σj+1

hj+1

6
= rj, j = 1, . . . , n− 1,

which is a tridiagonal system for unknowns [σ1, . . . , σn−1]
>:



h1+h2
3

h2
6 0 · · · 0

h2
6

h2+h3
3

h3
6

. . . ...

0 . . . . . . . . . 0
... . . . . . . . . . hn−1

6

0 · · · 0 hn−1
6

hn−1+hn
3





σ1
...

...

σn−1


=



r1
...

...

rn−1


.

This (n− 1)× (n− 1) LSE is sparse and hence efficiently solvable. If we have [σ1, . . . , σn−1]
>,

then the coefficients {ãj, b̃j, c̃j, d̃j} , j = 1, . . . , n are determined by (5.46)-(5.49).

Note. Finally, we remark that a similar estimate as seen for piecewise Lagrange interpo-
lation is possible for cubic spline interpolation on an equidistant mesh with mesh width
h:

f ∈ C4([t0, tn]) : ‖ f − s‖L∞([t0,tn])
≤ 5

384
h4
∥∥∥ f (4)

∥∥∥
L∞([t0,tn])

.
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6

Numerical Quadrature

Numerical quadrature deals with the approximate numerical evaluation of integrals
(∫

Ω
f (t)dt

)
for a given (closed) integration domain Ω ⊂ Rd by using point evaluations of the function
f . Thus, the underlying integration problem can be reformulated as a mapping:

I :

 C0(Ω) → R

f 7→
∫

Ω f (t)dt
,

with the data space X := C0(Ω) and the result space Y := R.

Why is numerical integration important? There are a number of reasons:

• The function f (t) itself could only be given by some sampling points.

• f (t) could be given as a formula, however the integral
∫

Ω
f (t)dt could be too difficult

to compute analytically.

• Even if we are given a formula for the integral
∫

Ω
f (t)dt, numerical integration could

be faster.

Throughout this chapter, for simplicity, we use the special case where d = 1, Ω = [a, b],
a, b ∈ R is an interval and t ∈ R.

Remark. Multidimensional numerical quadrature is substantially more difficult, unless Ω
is a tensor-product domain. Multidimensional numerical quadrature will be treated in the
course “Numerical Methods for Partial Differential Equations”.
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6 Numerical Quadrature

For d = 1, from a geometric point of view, methods for numerical quadrature aimed at
computing

b∫
a

f (t)dt

seek to approximate an area under the graph of the function f .

1 2 3 4

1

2

3

t

f (t)

?

In green: The area corresponding to the value of the integral on
Ω = [1, 3].

6.1 Quadrature Formulas

Quadrature formulas realize the approximation of an integral through finitely many point
evaluations of the integrand f (t).

Definition 6.1.1 (Quadrature formula/quadrature rule). An n-point quadrature formula/quadrature
rule on [a, b] provides an approximation of the value of an integral through a weighted sum
of point values of the integrand:∫ b

a
f (t)dt ≈ Qn( f ) :=

n

∑
j=1

wn
j f (cn

j ) , (6.1)

where wn
j are called quadrature weights ∈ R and cn

j are the quadrature nodes ∈ [a, b].

A single invocation of Qn( f ) costs n point evaluations of the integrand plus n additions
and multiplications.

In the setting of function approximation by polynomials, it can be shown that an approx-
imation scheme for any interval could be obtained from an approximation scheme on a
single reference interval [−1, 1] (cf. Section 5.2.5). A similar affine transformation tech-
nique makes it possible to derive quadrature formulas for arbitrary intervals from a single
quadrature formula given on a reference interval.
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6.1 Quadrature Formulas

More precisely, suppose we are given the quadrature formula
(
ĉj, ŵj

)n
j=1 on the reference

interval [−1, 1]. Then
∫ b

a f (t)dt can be transformed to [−1, 1]:

∫ b

a
f (t)dt =

∫ 1

−1
f (Φ(τ))Φ′(τ)dτ =

(b− a)
2

∫ 1

−1
f̂ (τ)dτ , (6.2)

with
Φ(τ) =

1
2
(1− τ)a +

1
2
(1 + τ)b ,

and f̂ = f ◦Φ.

-1 1 a b
τ t

τ 7→ t : Φ(τ) := 1
2 (1− τ)a + 1

2 (τ + 1)b

We find the quadrature formula for a general interval [a, b]:

∫ b

a
f (t)dt ≈ 1

2(b− a)
n

∑
j=1

ŵj f̂ (ĉj) =
n

∑
j=1

wj f (cj) ,

with
cj =

1
2(1− ĉj)a + 1

2(1 + ĉj)b , wj =
1
2(b− a)ŵj .

In words, the nodes are just mapped through the affine transformation cj = Φ(ĉj), while

the weights are scaled by the ratio of lengths of [a, b] and [−1, 1]: wj =
|[a,b]|
|[−1,1]| ŵj .

6.1.1 Quadrature by approximation schemes

Given an approximation scheme A : C0([a, b]) → V, where V is a space of “simple func-
tions” on [a, b], we can find a numerical integration method:∫ b

a
f (t)dt ≈

∫ b

a
(A f )(t)dt =: QA( f ) . (6.3)

Recall that every interpolation scheme induces an approximation scheme. An interpolation
scheme IT with node set T = {t1, . . . , tn} ⊂ [a, b] induces:

∫ b

a
f (t)dt ≈

∫ b

a
IT [ f (t1), . . . , f (tn)]

> (t)dt . (6.4)
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6 Numerical Quadrature

We can therefore deduce the following lemma:

Lemma 6.1.1 (Quadrature formulas from linear interpolation schemes). Every linear interpo-
lation operator IT according to Definition 5.1.1 spawns a quadrature formula by (6.4).

Proof. We can rewrite (6.4) in the following way with ej being the j-th unit vector of Rn:

∫ b

a
IT [ f (t1), . . . , f (tn)]

> (t)dt =
∫ b

a
IT

[
n

∑
j=1

f (tj) · ej

]
(t)dt

=
↑

linearity of IT

n

∑
j=1

f (tj)
∫ b

a
(IT (ej))(t)dt︸ ︷︷ ︸
weight wn

j :=

=
n

∑
j=1

wn
j f (tj) . (6.5)

Hence, we have arrived at an n-point quadrature formula with nodes tj, whose weights are
the integrals of the cardinal interpolants for the interpolation scheme IT .

Summing up, we have found:

�
�

�
�

interpolation

schemes
−→

approximation

schemes
−→

quadrature

schemes

Furthermore, we introduce the concept of the quadrature error since, in general, the quadra-
ture formula (6.1) will only provide an approximate value for the integral.

Definition 6.1.2 (Quadrature error). The quadrature error is defined as

En( f ) :=
∣∣∣∣∫ b

a
f (t) dt−Qn( f )

∣∣∣∣ .

As in the case of function approximation by interpolation (Section 5.2.4), our focus will be
on the asymptotic behavior of the quadrature error as a function of the number n of point
evaluations of the integrand. Therefore consider families of quadrature rules {Qn}n (see
Definition 6.1.1) described by

• quadrature weights
{

wn
j , j = 1, . . . , n

}
n∈N

and

• quadrature nodes
{

cn
j , j = 1, . . . , n

}
n∈N

.

We study the asymptotic behavior of the quadrature error En( f ) for n→ ∞. As in the case
of interpolation errors, we make the qualitative distinction:
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6.2 Polynomial Quadrature Formulas

• algebraic convergence: En( f ) = O(n−p), rate p > 0

• exponential convergence: En( f ) = O(qn), 0 ≤ q < 1

Note that the number n of nodes agrees with the number of f -evaluations required for eval-
uation of the quadrature formula. This is usually used as a measure for the cost of comput-
ing Qn( f ). If interpolation is used as the approximation scheme, we can straightforwardly
bound the quadrature error:

En( f ) =
∣∣∣∣∫ b

a

(
f (t)− IT [ f (t1), . . . , f (tn)]

> (t)
)
dt
∣∣∣∣

≤ |b− a| ·
∥∥∥ f (t)− IT [ f (t1), . . . , f (tn)]

> (t)
∥∥∥

L∞([a,b])︸ ︷︷ ︸
interpolation error

. (6.6)

Hence, the various estimates derived in Section 5.2.4 and Section 5.2.5 give us quadrature
error estimates “for free”.

6.2 Polynomial Quadrature Formulas

Now we look at the quadrature formulas induced by Lagrange interpolation schemes IT ( f )
as introduced in Definition 5.2.2.

Idea: Replace integrand f with pn−1 := IT ( f ) ∈ Pn−1, which is the polynomial Lagrange
interpolant of f for a given set of nodes T := {t0, . . . , tn−1} ⊂ [a, b]. Then, integrate
over this approximation of f to obtain an approximation of the integral of f :∫ b

a
f (t) dt ≈ Qn( f ) :=

∫ b

a
pn−1(t)dt . (6.7)

The cardinal interpolants for Lagrange interpolation are the Lagrange polynomials,

Lj(t) :=
n−1

∏
i=0
i 6=j

t− ti

tj − ti
, j = 0, . . . , n− 1

(5.16)
=⇒ pn−1(t) =

n−1

∑
j=0

f (tj)Lj(t) .

Then (6.5) amounts to the n-point quadrature formula

b∫
a

pn−1(t)dt =
n−1

∑
j=0

f (tj)

b∫
a

Lj(t)dt =
n

∑
j=1

f (tj−1)

b∫
a

Lj−1(t)dt , (6.8)

with the nodes cj := tj−1 and the weights wj :=
∫ b

a Lj−1(t)dt .
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6 Numerical Quadrature

6.2.1 Newton-Cotes formulas

The n-point Newton-Cotes formulas arise from Lagrange interpolation on equidistant nodes
(5.2.4) in the integration interval [a, b].

The equidistant quadrature nodes are given by

tj := a + hj, h :=
b− a
n− 1

, j = 0, . . . , n− 1 .

The weights for the interval [0, 1] can be found by e.g. symbolic computation using Mathe-
matica. Weights on general intervals [a, b] can then be deduced by the affine transformation
rule as outlined in Section 6.1.

n = 1: Midpoint rule

The midpoint rule corresponds to (6.8) for n = 1 and t0 = 1
2(a + b). It leads to the 1-point

quadrature formula

b∫
a

f (t)dt ≈ Q̂mp( f ) = (b− a) f (1
2(a + b)) .

1 2 3 4

1

2

3

t

f (t)

The area under the graph of f is approximated by the area of a
rectangle.

n = 2: Trapezoidal rule

Here, an approximation of f is constructed from the linear interpolant through the end-
points. Integrating this approximation yields the trapezoidal quadrature rule:∫ b

a
f (t)dt ≈ Q̂trp( f ) :=

b− a
2

( f (a) + f (b)) . (6.9)
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1 2 3 4

1

2

3

t

f (t)

Note that according to (6.8),

wi =
∫ b

a
Li−1(t)dt ,

so that for n = 2 we can calculate

w1 =
∫ b

a
L0(t)dt =

∫ b

a

t− b
a− b

dt =
b− a

2
,

w2 =
∫ b

a
L1(t)dt =

∫ b

a

t− a
b− a

dt =
b− a

2
.

n = 3: Simpson rule

For n = 3, we can derive the Simpson rule:

Q̂simp( f ) :=
h
6

(
f (0) + 4 f (1

2) + f (1)
)

.

For a general interval [a, b], this can be given by

b∫
a

f (t)dt ≈ b− a
6

(
f (a) + 4 f

(
a + b

2

)
+ f (b)

)
. (6.10)

Recall that the Lagrange interpolation with equidistant nodes is unstable for large n. The
considerations of Section 5.2.5 confirmed the superior stability properties of the “optimal”
Chebyshev nodes (5.25) for global polynomial Lagrange interpolation. This suggests that
we also use these nodes for numerical quadrature with weights given by (6.8). This yields
the so-called Clenshaw-Curtis rules. The weights of any n-point Clenshaw-Curtis rule can be
computed with a computational effort of O(n log n) using the FFT.

One common concept for the quality of a quadrature rule is that of its order. In what
follows, we will introduce this concept and see that it gives rise to a different family of
quadrature rules.
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6 Numerical Quadrature

6.3 Gauss Quadrature

How do we gauge the “quality” of an n-point quadrature formula Qn without testing it for
specific integrands? The next definition gives an answer.

Definition 6.3.1 (Order of a quadrature rule). The order of quadrature rule Qn : C0([a, b])→
R is defined as

order(Qn) := max{m ∈N0: Qn(p) =
∫ b

a
p(t)dt ∀p ∈ Pm}+ 1 , (6.11)

that is, as the maximal degree +1 of polynomials for which the quadrature rule is guaran-
teed to be exact.

Note that the order of a quadrature formula is invariant under affine transformations. Since
we know that a polynomial quadrature formula with n points is exact for p ∈ Pn−1, we can
deduce that it is of order ≥ n. This observation leads to the following question: When does
an n-point quadrature formula have order ≥ n? It is answered in the following theorem.

Theorem 6.3.1 (Sufficient order conditions for quadrature rules). An n-point quadrature rule
on [a, b]

Qn( f ) :=
n

∑
j=1

wj f (cj) , f ∈ C0([a, b]) ,

with nodes cj ∈ [a, b] and weights wj ∈ R, j = 1, . . . , n, has order ≥ n, if and only if

wj =
∫ b

a
Lj−1(t) dt , j = 1, . . . , n ,

where Lk, k = 0, . . . , n− 1, is the k-th Lagrange polynomial (5.14) associated with the ordered
node set {t0, t1, . . . , tn−1}, where tj−1 := cj.

Thus, for a quadrature formula Qn with order ≥ n, the weights wj only depend on the
node set T = {c1, c2, . . . , cn}.

Proof. The property that Qn has order ≥ n is equivalent to

Qn(p) =
∫ b

a
p(t)dt ∀p ∈ Pn−1 .

Also note that Pn−1 = Span{L0, . . . , Ln−1}. Thus,

Qn(p) =
∫ b

a
p(t)dt ∀p ∈ Pn−1

⇐⇒ Qn(Li−1) =
∫ b

a
Li−1(t)dt ∀i ∈ {1, . . . , n}

⇐⇒
n

∑
j=1

wj Li−1(tj−1)︸ ︷︷ ︸
=δi,j

=
∫ b

a
Li−1(t)dt ∀i ∈ {1, . . . , n}

⇐⇒ wi =
∫ b

a
Li−1(t)dt ∀i ∈ {1, . . . , n} .

166



6.3 Gauss Quadrature

Now that we have seen a necessary and sufficient condition for an n-point quadrature
formula to have order at least n, another natural question arises: Can an n-point quadrature
formula achieve order > n? The following result limits the maximal order that can be
achieved:

Theorem 6.3.2 (Maximal order of n-point quadrature rule). The maximal order of an n-point
quadrature rule is 2n.

Proof. Consider a generic n-point quadrature rule according to Definition 6.1.1:

Qn( f ) :=
n

∑
j=1

wn
j f (cn

j ) .

We build a polynomial of degree 2n that cannot be integrated exactly by the quadrature
formula Qn.

For this, we define: q(t) := (t− cn
1)

2 · · · · · (t− cn
n)

2 ∈ P2n.

Note that q(t) > 0 almost everywhere implies
∫ b

a q(t)dt > 0. On the other hand, by the
definition of q(t), the quadrature formula Qn applied to q evaluates to:

Qn(q) =
n

∑
j=1

wn
j q(cn

j )︸ ︷︷ ︸
=0

= 0 .

Hence,

0 = Qn(q) 6=
∫ b

a
q(t)dt > 0.

This implies that Qn has order ≤ 2n.

Example 6.3.1: 2-point quadrature formula Q2 with order 4 (on [−1, 1])
We want to find a 2-point quadrature formula of order 4, i.e.

Q2(p) =
∫ b

a
p(t)dt ∀p ∈ P3.

It suffices to verify the exactness of Q2 for the monomials, since they form a basis of the
space of polynomials:

Q2({t 7→ tq}) = 1
q + 1

(bq+1 − aq+1) , for q = 0, 1, 2, 3.
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6 Numerical Quadrature

We obtain 4 equations for the weights wj and nodes cj, j = 1, 2: (recall: a = −1, b = 1)

∫ 1

−1
1 dt = 2 = 1w1 + 1w2,

∫ 1

−1
t dt = 0 = c1w1 + c2w2,∫ 1

−1
t2 dt =

2
3
= c2

1w1 + c2
2w2,

∫ 1

−1
t3 dt = 0 = c3

1w1 + c3
2w2.

(6.12)

These are 4 (non-linear) equations in 4 unknowns from which we can calculate the
weights wj and nodes cj:

w2 = 1, w1 = 1, c1 =
1√
3

, c2 = − 1√
3

.

These weights and nodes yield the following quadrature formula of order 4:∫ 1

−1
f (x) dx ≈ f

(
1√
3

)
+ f

(
− 1√

3

)
. (6.13)

The above example shows that there exists indeed a (unique) 2-point quadrature formula
of order 4. Does this result generalize? More precisely, is there a family Qn of quadrature
formulas such that Qn is n-point and of order 2n? The following theorem answers this
question affirmatively.

Theorem 6.3.3 (Existence of n-point quadrature formulas of order 2n). Let {P̄n}n∈N0
be a

family of non-zero polynomials that satisfies

• P̄n ∈ Pn,

•
∫ 1

−1
q(t)P̄n(t)dt = 0 for all q ∈ Pn−1 (L2([−1, 1])-orthogonality),

• the set {cn
j }m

j=1, m ≤ n, of real zeros of P̄n is contained in [−1, 1].

Then the quadrature rule

Qn( f ) :=
m

∑
j=1

wn
j f (cn

j )

with weights chosen according to Theorem 6.3.1 provides a quadrature formula of order 2n on the
interval [−1, 1].

One can show that the nodes of an n-point quadrature formula with order 2n have to be
the zeros of P̄n.

Note. n-point quadrature formulas of order 2n are unique.

The polynomials P̄n are equivalent to the Legendre polynomials up to a scaling factor:
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6.3 Gauss Quadrature

Definition 6.3.2 (Legendre polynomials). The n-th Legendre polynomial Pn is defined by

• Pn ∈ Pn,

•
∫ 1

−1
Pn(t)q(t)dt = 0 ∀q ∈ Pn−1,

• Pn(1) = 1.

The first six Legendre polynomials P0, . . . , P5 are depicted in the following figure:
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In addition, we can prove the following lemma:

Lemma 6.3.1 (Zeros of Legendre polynomials). Pn has n distinct zeros in (−1, 1).

Proof. Assume that on (−1, 1), Pn has only m < n distinct zeros given by ζ1, . . . , ζm ∈
(−1, 1). This implies that Pn changes sign at ζ1, . . . , ζm. Now define

q(t) :=
m

∏
j=1

(t− ζ j) ∈ Pm ⊂ Pn−1 .

This implies that q changes sign at ζ1, . . . , ζm. So we can conclude that Pn(t)q(t) cannot
change sign on (−1, 1). Thus

Pn · q ≥ 0 on (−1, 1) or Pn · q ≤ 0 on (−1, 1) .

This implies ∫ 1

−1
Pn(t)q(t)dt 6= 0 .
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6 Numerical Quadrature

However, by definition of Pn, we know that

∫ 1

−1
Pn(t)q(t)dt = 0 ∀q ∈ Pn−1 .

This yields a contradiction and thus, m = n.

The zeros of Legendre polynomials are referred to as the Gauss points, which are plotted
below.
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Definition 6.3.3 (Gauss-Legendre quadrature formulas). The n-point quadrature formulas
whose nodes are given by the zeros of the n-th Legendre polynomial (see Definition 6.3.2),
and whose weights are chosen according to Theorem 6.3.1, are called Gauss-Legendre quadra-
ture formulas.
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The Gauss-Legendre weights are all positive (cf. Lemma 6.3.2).

Lemma 6.3.2 (Positivity of Gauss-Legendre quadrature weights). The weights of the Gauss-
Legendre quadrature formulas are positive.

Proof. Let ξn
j , j = 1, . . . , n denote the Gauss points of the n-point Gauss-Legendre quadra-

ture formula. Define the polynomial

qk(t) :=
n

∏
j=1
j 6=k

(t− ξn
j )

2.

By definition, we have qk ∈ P2n−2. This implies that the n-point Gauss-Legendre quadra-
ture formula integrates qk exactly:∫ 1

−1
qk(t)dt =

n

∑
j=1

wn
j · qk(ξ

n
j ).

Note that the left-hand side of the above is strictly positive and that the right-hand side
reduces to

n

∑
j=1

wn
j · qk(ξ

n
j ) = wn

k · qk(ξ
n
k )

since by definition, qk(ξ
n
j ) = 0 for j 6= k. Thus we obtain

0 < wn
k · qk(ξ

n
k )︸ ︷︷ ︸

>0
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and hence

wn
k > 0 for k = 1, . . . , n.

Recursive formula for Legendre polynomials

Legendre polynomials satisfy a 3-term recursion (similar to Chebyshev polynomials):

Pn+1(t) :=
2n + 1
n + 1

tPn(t)−
n

n + 1
Pn−1(t) , P0 ≡ 1 , P1(t) := t . (6.14)

6.3.1 Quadrature error and best approximation error

The positivity of the weights wn
j for all n-point Gauss-Legendre (and in fact also for all

Clenshaw-Curtis) quadrature rules has important consequences.

Theorem 6.3.4 (Quadrature error estimate for quadrature rules with positive weights). For
every n-point quadrature rule Qn as in (6.1) of order q ∈ N with weights wj ≥ 0, j = 1, . . . , n,
the quadrature error satisfies

En( f ) :=
∣∣∣∣∫ b

a
f (t) dt−Qn( f )

∣∣∣∣ ≤ 2|b− a| inf
p∈Pq−1

‖ f − p‖L∞([a,b])︸ ︷︷ ︸
best approximation error

∀ f ∈ C0([a, b]) . (6.15)

Next, we remark that the following bound holds for the best approximation error:

Theorem 6.3.5 (L∞ polynomial best approximation estimate). If f ∈ Cr([a, b]) (r times con-
tinuously differentiable), r ∈N, then, for any polynomial degree n ≥ r,

inf
p∈Pn
‖ f − p‖L∞([a,b]) ≤

(
1 +

π2

2

)r
(n− r)!

n!

(
b− a

2

)r ∥∥∥ f (r)
∥∥∥

L∞([a,b])
.

With this, we immediately get results about the asymptotic decay of the quadrature error
for n-point Gauss-Legendre and Clenshaw-Curtis quadrature as n → ∞. Appealing to
inequality (5.21), the dependence of the constants on the length of the integration interval
can be quantified for integrands with limited smoothness.
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6.3 Gauss Quadrature

Lemma 6.3.3 (Quadrature error estimates for Cr-integrands). For every n-point quadrature
rule Qn as in (6.1) of order q ∈ N with weights wj ≥ 0, j = 1, . . . , n we find that the quadrature
error En( f ) for an integrand f ∈ Cr([a, b]), r ∈N0, satisfies

in the case q ≥ r: En( f ) ≤ C q−r|b− a|r+1
∥∥∥ f (r)

∥∥∥
L∞([a,b])

, (6.16)

in the case q < r: En( f ) ≤ |b− a|q+1

q!

∥∥∥ f (q)
∥∥∥

L∞([a,b])
, (6.17)

with a constant C > 0 independent of n, f , and [a, b].

If f ∈ Cr([a, b]) : En( f ) = O(n−r), i.e. algebraic convergence with rate r,

If f ∈ C∞([a, b]): En( f ) = O(λn), where λ ∈ (0, 1), i.e. exponential convergence.

Please note the different estimates depending on whether the smoothness of f (as described
by r) or the order of the quadrature rule (q) is the “limiting factor”.

Example 6.3.2: Convergence of global quadrature formulas.
We examine three families of global polynomial quadrature rules: Newton-Cotes for-
mulas, Gauss-Legendre rules, and Clenshaw-Curtis rules. We record the convergence
of the quadrature errors for the interval [0, 1] and two different functions:

1. f1(t) = 1
1+(5t)2 , a smooth function,

2. f2(t) =
√

t, a merely continuous function with singular derivative in t = 0.
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1. The linear-logarithmic plot for En( f1) indicates exponential convergence En ≈
O(λn), 0 < λ < 1.

• Newton-Cotes quadrature : λ ≈ 0.61,
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• Clenshaw-Curtis quadrature : λ ≈ 0.40,

• Gauss-Legendre quadrature : λ ≈ 0.27.

2. The double-logarithmic plot for En( f2) indicates algebraic convergence εn ≈ O(n−r),
r > 0.

• Newton-Cotes quadrature : r ≈ 1.8,

• Clenshaw-Curtis quadrature : r ≈ 2.5,

• Gauss-Legendre quadrature : r ≈ 2.7.

Note. We saw in the second example that the lack of smoothness limits the convergence of
the integrand severely. Next we look at possible manipulations to find a better integrand
for the second function, f2(t) =

√
t, t ∈ [0, 1]: Approximate∫ 1

0

√
t dt

and use the substitution

s =
√

t, dt = 2s ds,

so that ∫ 1

0

√
t dt =

∫ 1

0
2s2︸︷︷︸
∈C∞

ds.

We can now apply the quadrature formula on the new smooth function 2s2 instead of
√

t.

For a more general case, the same argument applies: Approximate∫ b

0

√
tg(t)dt, g ∈ C∞([0, b])

and use the substitution

s =
√

t, dt = 2s ds

to obtain ∫ b

0

√
tg(t)dt =

∫ √b

0
2s2g(s2)︸ ︷︷ ︸
∈C∞([0,b])

ds.

Next, one can apply the Gauss-Legendre quadrature rule to the smooth integrand.

There is one drawback of most n-asymptotic estimates obtained from Theorem 6.3.4: the
bounds usually involve quantities like norms of higher derivatives of the interpolant that
are elusive in general. Such unknown quantities are often hidden in “generic constants C”.
Therefore, we have to ask if we can extract useful information out of such estimates. To
answer this question, we assume sharp algebraic or exponential convergence and ask what
the additional cost is for reducing the error by a certain factor ρ. This is what asymptotic
rates can tell us despite the unknown hidden constants in those rates. We consider error
reduction for both cases of algebraic and exponential convergence:
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6.3 Gauss Quadrature

Sharp algebraic convergence

Fix an integrand f and assume sharp algebraic convergence (in n) with rate r ∈ N of the
quadrature error En( f ) for a family of n-point quadrature rules:

En( f ) = O(n−r)
sharp
=⇒ En( f ) ≈ Cn−r , where C > 0 is independent of n . (6.18)

Task: Change the quadrature formula to reduce the quadrature error by a factor of ρ > 1
by a minimal increase in the number n of quadrature points:

Cn−r
old

Cn−r
new

!
= ρ =⇒ nnew : nold = ρ

1
r . (6.19)

We conclude: In the case of algebraic convergence with rate r ∈ R, a reduction of the quadra-
ture error by a factor of ρ is obtained by an increase of the number of quadrature points by

a factor of ρ
1
r .

Note that (6.19) implies that improving accuracy is “cheaper” for larger r i.e. smoother
integrand.

Sharp exponential convergence

Assume sharp exponential convergence (in n) for a family of n-point quadrature formulas
(for a fixed integrand f ):

En( f ) = O(λn)
sharp
=⇒ En( f ) ≈ Cλn , (6.20)

where we want to reduce the error by a factor of ρ > 1 and C > 0 denotes a “generic”
constant independent of n.

C · λnold

C · λnnew

!
= ρ ⇐⇒ λnold−nnew = ρ

⇐⇒ (nold − nnew) · log λ = log ρ

⇐⇒ nnew − nold = − log ρ

log λ︸ ︷︷ ︸
>0

nnew = nold +

⌈∣∣∣∣ log ρ

log λ

∣∣∣∣⌉ .

We conclude: In the case of exponential convergence given by (6.20), a fixed increase of the
number of quadrature points by

⌈∣∣∣ log ρ
log λ

∣∣∣⌉ results in a reduction of the quadrature error by
a factor greater or equal to ρ > 1.
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6.4 Composite Quadrature

As done in Chapter 5 for interpolation, we can divide any interval into smaller pieces
(called cells) by introducing a mesh and then applying quadrature formulas on the indi-
vidual cells. We denote our mesh by

M := {a = x0 < x1 < . . . < xm−1 < xm = b} ,

and appeal to the trivial identity

∫ b

a
f (t)dt =

m

∑
j=1

∫ xj

xj−1

f (t)dt . (6.21)

On each mesh interval [xj−1, xj] we then use a local quadrature rule, which may be one of the
polynomial quadrature formulas from Section 6.2.

General construction of composite quadrature rules

Idea: • Partition integration domain [a, b] by a mesh/grid

M := {a = x0 < x1 < . . . < xm = b}.

• On each local subinterval Ij := [xj−1, xj], j = 1, . . . , m, apply an nj-point
quadrature formula from Section 6.2.

This yields a composite quadrature rule with the number of evaluations of f being
m

∑
j=1

nj.

6.4.1 The Composite trapezoidal and Composite Simpson rule

The Composite trapezoidal rule

The Composite trapezoidal rule, cf. (6.9), is given by

b∫
a

f (t)dt = 1
2(x1 − x0) f (a) +

m−1

∑
j=1

1
2(xj+1 − xj−1) f (xj) +

1
2(xm − xm−1) f (b) . (6.22)
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The composite trapezoidal rule. This approximation arises from the piecewise linear interpolation of f .

The composite Simpson rule

The composite Simpson rule, cf. (6.10), is given by

b∫
a

f (t)dt =1
6(x1 − x0) f (a) +

m−1

∑
j=1

1
6(xj+1 − xj−1) f (xj)

+
m

∑
j=1

2
3(xj − xj−1) f

(
1
2(xj + xj−1)

)
+ 1

6(xm − xm−1) f (b) . (6.23)
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The composite Simpson rule. This approximation is obtained through piecewise quadratic Lagrange interpo-
lation.
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6.4.2 Errors and orders

To see the main rationale behind the use of composite quadrature rules, recall Lemma 6.3.3:
For a polynomial quadrature rule (6.7) of order q with positive weights and f ∈ Cr([a, b]),
the quadrature error shrinks with the (min{r, q}+ 1)-st power of the length |b− a| of the
integration domain. Hence, applying polynomial quadrature rules to small mesh intervals
should lead to a small overall quadrature error.
We next derive the overall quadrature error by adding the errors on each Ij:

Suppose on each Ij, we use a quadrature formula Qj
nj of order qj and with positive weights.

For f ∈ Cr([xj−1, xj]) we have:∣∣∣∣∣
∫ xj

xj−1

f (t)dt−Qj
nj( f )

∣∣∣∣∣ ≤︸︷︷︸
Lemma 6.3.3

C|xj − xj−1|min{r,qj}+1
∥∥∥ f (min{r,qj})

∥∥∥
L∞([xj−1,xj])

. (6.24)

Here C > 0 is independent of f and j. Let us denote hj := |xj− xj−1|. Therefore, the overall
quadrature error can be computed as:

∣∣∣∣∣ m

∑
j=1

(∫ xj

xj−1

f (t)dt−Qj
nj( f )

)∣∣∣∣∣ ≤ m

∑
j=1

∣∣∣∣∣
∫ xj

xj−1

f (t)dt−Qj
nj( f )

∣∣∣∣∣
≤ C ·

m

∑
j=1

h
min{r,qj}+1
j ·

∥∥∥ f (min{r,qj})
∥∥∥

L∞(Ij)
.

If qj = q, q ∈N, for all j = 1, . . . , m, then, since ∑j hj = b− a, one obtains

∣∣∣∣∫ xm

x0

f (t)dt−Q( f )
∣∣∣∣ ≤ C hmin{q,r}

M |b− a| max
j=1,...,m

∥∥∥ f (min{q,r})
∥∥∥

L∞(Ij)
, (6.25)

≤ C hmin{q,r}
M |b− a|

∥∥∥ f (min{q,r})
∥∥∥

L∞([a,b])
,

with (global) meshwidth hM := maxj hj.

So we have shown that the composite quadrature rule previously described converges al-
gebraically in the mesh width hM (h-convergence). Note that when f is smooth – i.e. r is
large – we obtain algebraic convergence in hM of rate q.

Example 6.4.1: Composite quadrature formula for a smooth and a non-smooth
function
We consider the quadrature error for the composite trapezoidal and Simpson rule for
the two functions from Example 6.3.1. Recall the order of the two methods:

• Composite trapezoidal rule (6.22): local order q = 2.
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• Composite Simpson rule (6.23): local order q = 4.
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Quadrature error, f2(t) :=
√

t on [0, 1]

For the smooth function, f1, the quadrature error decays indeed as O(h2) for the com-
posite trapezoidal rule and as O(h4) for the composite Simpson rule.

For the non-smooth function, f2, the quadrature error decays like O(h3/2) for both the
composite trapezoidal and the composite Simpson rule.

Remark: A comparison to Gauss quadrature

The asymptotic rates of composite quadrature formulas and the global Gauss quadrature
formula compare as follows:

• For f ∈ Cr([a, b]):

– Composite quadrature formula (with local order q): O(n−min{r,q})

– Gauss quadrature formula : O(n−r)

Thus, Gauss is at least as good as the composite quadrature formula and achieves the
best possible rate.

• For f ∈ C∞([a, b]), we obtain:

– Composite quadrature formula (with local order q): O(n−q)

– Gauss quadrature formula : O(λn), λ ∈ (0, 1)

In case of C∞ functions, the global Gauss quadrature formula converges exponentially
whereas composite quadrature formulas converge algebraically. Hence, the Gauss
quadrature formula outperforms the composite quadrature formulas. Note, however,
that the Gauss quadrature formula is based on a specific choice of nodes. Depend-
ing on the application, we might or might not be able to choose the nodes for the
quadrature formula. Thus, the composite quadrature formulas become specifically
important if the node set cannot be chosen.
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7

Numerical Methods for ODEs

7.1 Initial value problems for ordinary differential
equations

Many problems in engineering and science can be formulated in terms of differential equa-
tions. Equations involving derivatives of only one independent variable are called ordinary
differential equations (ODEs) and may be classified as either initial value problems (IVP) or
boundary value problems (BVP). Loosely speaking, an initial value problem has all of the
conditions specified at the same value (initial) of the independent variable in the equation
while a boundary value problem has conditions specified at the extremes of the indepen-
dent variable. This chapter will only cover methods for solving initial value problems of
ordinary differential equations.

7.1.1 Terminology and notations related to ODEs

In our parlance, a (first-order) ordinary differential equation is an equation of the form

ẏ = f(t, y) , (7.1)

with a (continuous) right hand side function f : I × D → Rd of time t ∈ R

and state y ∈ Rd, defined in the (finite) time interval I ⊂ R and on the state space D ⊂ Rd.

In the context of mathematical modelling, the state vector y ∈ Rd is supposed to provide
a complete (in the sense of the model) description of a system. In that case, (7.1) models a
finite-dimensional dynamical system.
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For d > 1, ẏ = f(t, y) can be viewed as a system of ordinary differential equations:

ẏ = f(t, y) ⇐⇒


ẏ1
...

ẏd

 =


f1(t, y1, . . . , yd)

...

fd(t, y1, . . . , yd)

 .

. Notation: ẏ =̂ (total) derivative of y with respect to time t.

Definition 7.1.1 (Solution of an ordinary differential equation). A solution of the ODE
ẏ = f(t, y) with the continuous right hand side function f, is a continuously differen-
tiable function y : J ⊂ I → D, defined on an open interval J, for which ẏ(t) = f(t, y(t))
holds for all t ∈ J.

A solution describes a continuous trajectory in state space or a one-parameter family of
states, parameterized by time. It goes without saying that smoothness of the right hand
side function f is inherited by solutions of the ODE:

Lemma 7.1.1 (Smoothness of solutions of ODEs). Let y : I ⊂ R → D be a solution of the
ODE ẏ = f(t, y) on the time interval I. If f : I × D → Rd is r-times continuously differentiable
with respect to both arguments, r ∈ N0, then, the trajectory t 7→ y(t) is r + 1-times continuously
differentiable in the interior of the time interval I.

Definition 7.1.2 (Autonomous ODE). An ODE of the form ẏ = f(y), with a right hand side
function that does not depend on time, but only on the state, is called autonomous.

For an autonomous ODE the right hand side function defines a vector field (“velocity field”)
y 7→ f(y) on state space.

7.1.2 Modeling with ordinary differential equations: Examples

Example 7.1.1: Growth with limited resources

This is an example from population dynamics with a one-dimensional state space D =
R+

0 , d = 1, and y : [0, T] 7→ R is the bacterial population density as a function of time.

The ODE-based model is an autonomous, logistic differential equation:

ẏ = f (y) := (α− βy) y, (7.2)

where

• y is the population density, [y] = 1
m2 . Therefore, ẏ is the instantaneous change

(growth/decay) of population density.
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• α− βy is the growth rate with coefficients α, β > 0, [α] = 1
s , [β] = m2

s . It decreases
due to more fierce competition as the population density increases.
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Solution for different y(0) (α, β = 5)

By separation of variables, we can compute a family of solutions of (7.2), parameterized
by the initial value y(0) = y0 > 0:

y(t) =
αy0

βy0 + (α− βy0) exp(−αt)
, (7.3)

for all t ∈ R.

Note. f (y∗) = 0 for y∗ ∈ {0, α
β}, which are the stationary points for the ODE given by

(7.2). If y(0) = y∗ the solution will be constant in time. Also note that by fixing the
initial value y(0) we can single out a unique representative from the family of solutions.
This will turn out to be a general principle, see Section 7.1.3.

Example 7.1.2: Predator-prey model

Predators and prey coexist in an ecosystem. Without predators, the population of prey
would be governed by a simple exponential growth law. However, the growth rate
of prey will decrease with increasing numbers of predators and, eventually, become
negative. Similar considerations apply to the predator population and lead to an ODE
model, referred to as the autonomous Lotka-Volterra ODE:

u̇ = (α− βv)u

v̇ = (δu− γ)v
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This is equivalent to:

ẏ = f(y) with y =

u

v

 , f(y) =

(α− βv)u

(δu− γ)v

 , (7.4)

with positive model parameters α, β, γ, δ > 0.

The population densities are u(t) and v(t), which correspond to the the density of the
prey and the predator, respectively, at time t

1

2

 u

 v

The right hand side vector field f of (7.4) with the
parameter values α = 2, β = 1, δ = 1, γ = 1

Solution curves are trajectories of particles carried along the velocity field f.
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Solution curves for (7.4), with the stationary point
at ∗.
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Solution

u(t)

v(t)

 for y0 :=

u(0)

v(0)

 =

4

2


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The solution depends on the initial size of the population u(0), v(0).

As seen in the previous example, we need additional conditions to solve an ODE uniquely.
An initial value problem (IVP) consists of an ODE and some conditions at the initial time
t0 (in the above example, t0 = 0).

7.1.3 Initial value problems

A generic initial value problem for a first-order system of ordinary differential equations can be
stated as:

Find a function y : I → D that satisfies, cf. Definition 7.1.1,

ẏ = f(t, y) , y(t0) = y0 , (7.5)

where

• f : I × D 7→ Rd is the right hand side (r.h.s.) (d ∈N),

• I ⊂ R is the (time) interval with the “time variable” t,

• D ⊂ Rd is the state space/phase space with the “state variable” y,

• Ω := I × D is the extended state space (of tuples (t, y)),

• and the initial conditions are given by t0 ∈ I, the initial time, and the initial state,
y0 ∈ D.

IVPs for autonomous ODEs

Recall Definition 7.1.2: For an autonomous ODE ẏ = f(y), the right hand side f does not
depend on time t.

Hence, for autonomous ODEs, we have I = R and the right hand side function y 7→ f(y)
can be regarded as a stationary vector field (velocity field).

Note. If t 7→ y(t) is a solution of an autonomous ODE, then, for any τ ∈ R, the shifted
function t 7→ y(t− τ) is also a solution. For initial value problems for autonomous ODEs,
the initial time is irrelevant and therefore we can always make the canonical choice t0 = 0.

Autonomous ODEs naturally arise when modeling time-invariant systems or phenomena.
The examples from Section 7.1.2 belong to this class.
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Autonomization: Conversion into autonomous ODE

In fact, autonomous ODEs already represent the general case because every ODE can be
converted into an autonomous one:

Idea: Include time as an extra d+ 1-th component of an extended state vector, i.e. introduce
a component y0(t) = t. This solution component has to grow linearly, that is, the
temporal derivative ẏ0(t) = 1.


ẏ1
...

ẏd

 =


f1(t, y1, . . . , yd)

...

fd(t, y1, . . . , yd)


︸ ︷︷ ︸

Non-autonomous system

⇐⇒


ẏ0

ẏ1
...

ẏd

 =


1

f1(y0, y1, . . . , yd)
...

fd(y0, y1, . . . , yd)


︸ ︷︷ ︸

Autonomous system

From higher order ODEs to first order systems

An ordinary differential equation of order n ∈N has the form

y(n) = f(t, y, ẏ, . . . , y(n−1)) . (7.6)

. Notation: y(n) =̂ n-th temporal derivative: dn

dtn

No special treatment of higher order ODEs is necessary, because (7.6) can be turned into a
1st-order ODE (a system of size nd) by adding all derivatives up to order n− 1 as additional
components to the state vector. This extended state vector z(t) ∈ Rnd is defined as

z(t) :=


y(t)

y(1)(t)
...

y(n−1)(t)

 =


z1

z2
...

zn

 ∈ Rnd. (7.7)

Equation (7.6) can be rewritten as:

ż = g(z) , g(z) :=



z2

z3
...

zn

f(t, z1, . . . , zn)


. (7.8)
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Note that the extended system requires initial values y(t0), ẏ(t0), . . . , y(n−1)(t0). For ODEs
of order n ∈ N, well-posed initial value problems need to specify initial values for y and
its first n− 1 derivatives. This yields a total number of n · d initial values.

Remark. Altogether, it suffices to consider autonomous first order IVPs.

Existence and uniqueness of solutions of IVP

Now we review results about existence and uniqueness of solutions of initial value prob-
lems for first-order ODEs. These are surprisingly general and do not impose severe con-
straints on right hand side functions.

Theorem 7.1.1. If the right hand side function f : Ω 7→ Rd is a differentiable function, then for all
initial conditions (t0, y0) ∈ Ω, the IVP

ẏ = f(t, y), y(t0) = y0, (7.9)

admits a unique solution y ∈ C1(J(t0, y0), Rd) with maximal (temporal) domain of definition
J(t0, y0) ⊂ R.

7.1.4 Domain of definition of solutions of IVPs

Note. Solutions of an IVP have an intrinsic maximal domain of definition. This domain of
definition J(t0, y0) usually depends on (t0, y0).

Terminology: If J(t0, y0) = I, then the solution y : I 7→ Rd is global.

. Notation: For an autonomous ODE, we always have t0 = 0, and therefore we write
J(y0) := J(0, y0).

Example 7.1.3: Finite-time blow-up

Let us explain the “maximal domain of definition” in the statement of Theorem 7.1.1.
It is related to the fact that every solution of an initial value problem (7.9) has its own
largest possible time interval J(y0) ⊂ R on which it is defined naturally.

As an example, we consider the autonomous scalar (d = 1) initial value problem, mod-
eling “explosive growth” with a growth rate increasing linearly with the density:

ẏ = y2 , y(0) = y0 ∈ R . (7.10)

We choose I = D = R.
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We find the solutions

y(t) =

{ 1
y−1

0 −t
, if y0 6= 0 ,

0, if y0 = 0 ,
(7.11)

with domains of definition

J(y0) =


(−∞, y−1

0 ), if y0 > 0 ,
R, if y0 = 0 ,
(y−1

0 , ∞), if y0 < 0 .

In this example, for y0 > 0, the solution experiences a blow-up in finite time and ceases
to exist afterwards.

7.1.5 Evolution operators

Next, we will introduce the concept of evolution operators. In some sense they allow for a
unified treatment of IVPs with the same system of ODEs. Instead of considering different
given initial values with the same ODE system as different problems, we incorporate the
initial value in the mapping and hence consider all solutions for any choice of initial value
simultaneously. For the sake of simplicity, we restrict the discussion to autonomous IVPs
(7.9) with a differentiable right-hand side and make the following assumption.

Assumption 7.1.1 (Global solutions). All solutions of (7.9) are global: J(y0) = R for all y0 ∈
D.

Now we study a generic ODE (7.1) instead of an IVP (7.5). We do this by temporarily
changing the perspective: we fix a “time of interest” t ∈ R \ {0} and follow all trajectories
for the duration t. This induces a mapping of points in state space:
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7.1 Initial value problems for ordinary differential equations

Mapping Φt :

 D 7→ D

y0 7→ y(t)
, t 7→ y(t) solution of IVP (7.9) .

This is a well-defined mapping of the state space into itself, by Theorem 7.1.1 and Assump-
tion 7.1.1.

Now, we may also let t vary, which spawns a family of mappings
{

Φt} of the state space
into itself. However, it can also be viewed as a mapping with two arguments, a duration t
and an initial state value y0.

Definition 7.1.3 (Evolution operator/mapping). Under Assumption 7.1.1, the mapping

Φ :

 R× D 7→ D

(t, y0) 7→ Φty0 := y(t)
,

where t 7→ y(t) ∈ C1(R, Rd) is the unique (global) solution of the IVP ẏ = f(y), y(0) = y0,
is the evolution operator or mapping for the autonomous ODE ẏ = f(y).

Note. t 7→ Φty0 describes the solution of ẏ = f(y) for y(0) = y0 (a trajectory). Therefore,
by virtue of definition, we have

∂Φ

∂t
(t, y) = f(Φty) . (7.12)

Example 7.1.4: Evolution operator for Lotka-Volterra ODE (7.4)

For d = 2, the action of an evolution operator can be visualized by tracking the move-
ment of point sets in the state space. Here, this is done for the Lotka-Volterra ODE
(7.4):
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state mapping y 7→ Φty

7.2 Polygonal Approximation Methods

For an initial value problem (7.5) for a first-order ordinary differential equation

ẏ = f(t, y) , y(t0) = y0,

we want to obtain an approximate model for the evolution operator Φ on a temporal mesh

M := {t0 < t1 < t2 < · · · < tN−1 < tN := T} ⊂ [t0, T] , (7.13)

covering the time interval of interest between initial time t0 and final time T > t0. We
assume that the interval of interest is contained in the domain of definition of the solution
of the IVP: [t0, T] ⊂ J(t0, y0). We start our considerations with the most intuitive methods
(through polygonal approximation). In the next section, general methods for approximat-
ing the evolution operator will be introduced.

Explicit Euler method

Example 7.2.1: Tangent field and solution curves

For d = 1, polygonal methods can be constructed by geometric considerations in the t−
y plane, a model for the extended state space. We explain this for the Riccati differential
equation, a scalar ODE:

ẏ = y2 + t2 I, D = R+ . (7.14)
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solution curves

Idea: “Follow the tangents over short periods of time”

Ê Timestepping: Perform successive approximation of evolution on mesh intervals
[tk−1, tk], k = 1, . . . , N, tN := T.

Ë Approximate the solution on [tk−1, tk] by considering a tangent line to the so-
lution trajectory through (tk−1, yk−1). We know that the slope ot the tangent at
(tk−1, yk−1) is given by f (tk−1, yk−1).

y(t)

t

y

t0 t1

y1

y0

First step of explicit Euler method (d = 1)

Example 7.2.2: Visualization of explicit Euler method

Temporal mesh:

M := {tj := j
5 : j = 0, . . . , 5} .
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7 Numerical Methods for ODEs

IVP for Riccati differential equation (see Example 7.2.1) is given by:

ẏ = y2 + t2 . (7.14)

Here: y0 = 1
2 , t0 = 0, T = 1
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exact solution

explicit Euler

— =̂ “Euler polygon” for uniform timestep h = 0.2;

→ =̂ Tangent field of Riccati ODE

When applied to a general IVP of the form (7.5), the explicit Euler method generates a
sequence (yk)

N
k=0 by the recursion:

yk+1 = yk + hkf(tk, yk) , k = 0, . . . , N − 1, (7.15)

with local (size of) timestep hk := tk+1 − tk .

Note. The explicit Euler method can be viewed as a difference scheme. One can obtain
(7.15) by approximating the derivative d

dt by a forward difference quotient on the (temporal)
meshM := {t0, t1, . . . , tN}:

ẏ = f(t, y) ←→ yk+1 − yk
hk︸ ︷︷ ︸

Forward difference quotient

≈ f(tk, y(tk)) , k = 0, . . . , N − 1. (7.16)

Difference schemes follow a simple policy for the discretization of differential equations:
replace all derivatives by difference quotients connecting solution values on a set of discrete
points (the mesh).
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7.2 Polygonal Approximation Methods

Implicit Euler method

Now we try to approximate the derivative d
dt by a backward difference quotient.

On a (temporal) meshM := {t0, t1, . . . , tN}, we obtain

ẏ = f(t, y) ←→ yk+1 − yk
hk

≈ f(tk+1, y(tk+1)) , k = 0, . . . , N − 1, (7.17)

by applying the backward difference quotient.

This leads to another simple timestepping scheme analogous to (7.15):

yk+1 = yk + hkf(tk+1, yk+1) , k = 0, . . . , N − 1, (7.18)

with local (size of) timestep hk := tk+1 − tk. Equation (7.18) is the implicit Euler method.

Note. The RHS of (7.18) depends on yk+1 which is not known at step k. This requires
solving a (possibly non-linear) system of equations to obtain yk+1. This is the reason that it
is called an “implicit” method.

Geometric interpretation of the implicit Euler method:

Approximate solution through (t0, y0) on [t0, t1] by

• straight line through (t0, y0)

• with slope f(t1, y1)

y(t)

t

y

t0 t1

y1

y0

— =̂ trajectory through (t0, y0),
— =̂ trajectory through (t1, y1),
— =̂ tangent to — at (t1, y1).

Implicit midpoint method

Besides using forward or backward difference quotients, the derivative ẏ can also be ap-
proximated by the symmetric difference quotient,

ẏ(t) ≈ y(t + h)− y(t− h)
2h

. (7.19)
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The idea is to apply this formula in t = 1
2(tk + tk+1), which transforms the ODE into

ẏ = f (t, y) ←→ yk+1 − yk
hk

≈ f
(

1
2(tk + tk+1), y(1

2(tk + tk+1))
)

, k = 0, . . . , N − 1.

(7.20)

The issue is that the value y(1
2(tk + tk+1)) is not available. Therefore we approximate it

by y(1
2(tk + tk+1)) ≈ 1

2(y(tk) + y(tk+1)). This gives the recursion formula for the implicit
midpoint method in analogy to (7.15) and (7.18):

yk+1 = yk + hkf
(

1
2(tk + tk+1), 1

2(yk + yk+1)
)

, k = 0, . . . , N − 1, (7.21)

with local (size of) timestep hk := tk+1 − tk.

Geometric interpretation of the implicit midpoint method:

Approximate trajectory through (t0, y0) on [t0, t1] by

• straight line through (t0, y0)

• with slope f(t∗, y∗), where

t∗ :=
1
2
(t0 + t1), y∗ =

1
2
(y0 + y1).

t

y

t0 t1

y1

y0

y∗

t
∗

f(t∗, y∗)

— =̂ trajectory through (t0, y0),
— =̂ trajectory through (t∗, y∗),
— =̂ tangent at — at (t∗, y∗).

As in the case of (7.18), (7.21) also entails solving a (non-linear) system of equations in
order to obtain yk+1.

Note. The solutions of the involved non-linear systems in implicit Euler and implicit mid-
point method exist, if h is sufficiently small.

7.3 General single step methods

Now we fit the numerical schemes introduced in the previous section into a more general
class of methods for the solution of (autonomous) initial value problems (7.9) for ODEs.
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Throughout we assume that all times considered belong to the domain of definition of the
unique solution t 7→ y(t) of (7.9), that is, for T > 0 we take for granted that [0, T] ⊂ J(y0).

7.3.1 Discrete evolution operators

Recall the methods we have seen so far for solving the autonomous ODE ẏ = f(y):

Explicit Euler: yk+1 = yk + hkf(yk) ,
Implicit Euler: yk+1 = yk + hkf(yk+1) ,

Implicit midpoint: yk+1 = yk + hkf
(

1
2(tk + tk+1), 1

2(yk + yk+1)
)

.

These formulas, for sufficiently small h, provide a mapping

(yk, hk) 7→ Ψ(hk, yk) := yk+1 . (7.22)

If y0 is the initial value, then y1 := Ψ(h, y0) can be regarded as an approximation of y(h),
the value returned by the evolution operator (see Definition 7.1.3) for ẏ = f(y) applied to
y0 over the period h.

y1 = Ψ(h0, y0) ←→ y(t1) = Φh0y0,

yk+1 = Ψ(hk, yk) ←→ y(tk+1) = Φhk yk.

More generally,

Ψ(h, y) ≈ Φhy . (7.23)

In a sense, the polygonal approximation methods are based on approximations for the
evolution operator associated with the ODE. Every single step method tries to approximate
the evolution operator Φ for an ODE by a mapping of the type (7.22).

Note. The mapping Ψ from (7.22) is called the discrete evolution operator.

. Notation: For discrete evolutions, we often write Ψhy := Ψ(h, y).

Note. The adjective “discrete” used above designates (components of) methods that attempt
to approximate the solution of an IVP by a sequence of finitely many states. “Discretization”
is the process of converting an ODE into a discrete model. This parlance is adopted for all
procedures that reduce a “continuous model” involving ordinary (or partial) differential
equations to a form with a finite number of unknowns.

In the above, we identified the discrete evolutions underlying the polygonal approximation
methods. More generally, a mapping Ψ as given in (7.22) defines a single step method.
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Definition 7.3.1 (Single step method (for autonomous ODEs)). Given a discrete evolution
Ψ : Ω ⊂ R× D → Rd, an initial state y0, and a temporal meshM := {0 =: t0 < t1 < · · · <
tN := T}, the recursion

yk+1 := Ψ(tk+1 − tk, yk) , k = 0, . . . , N − 1, (7.24)

defines a single step method (SSM) for the autonomous IVP ẏ = f(y), y(0) = y0 on the
interval [0, T].

Note. In a sense, a single step method defined through its associated discrete evolution
does not approximate a concrete initial value problem, but tries to approximate an ODE in
the form of its evolution operator.

The concept of single step method, according to Definition 7.3.1, can be generalized to
non-autonomous ODEs, which leads to recursions of the form:

yk+1 := Ψ(tk, tk+1, yk) , k = 0, . . . , N − 1 ,

for a discrete evolution operator Ψ defined on I × I × D.

7.3.2 Consistent single step methods

So far, the definition of discrete evolution is not meaningful yet in the sense that it does
not necessarily approximate the evolution operator Φ. We introduce the following basic
requirement of consistency of the discrete evolution. In a sense it asks that in the limit
h → 0, the update direction of the discrete evolution should be in the direction of the
derivative of y, which is equal to f(y). In view of Equation (7.12), this is precisely the
property that we would want in order to assure that the discrete evolution Ψ is a good
approximation of Φ for h sufficiently small.

Consistent discrete evolution

The discrete evolution Ψ defining a single step method according to Definition 7.3.1
and (7.24) for the autonomous ODE ẏ = f(y) invariably is of the form

Ψhy = y + hψ(h, y) with
ψ : I × D → Rd continuous,
ψ(0, y) = f(y) .

(7.25)

Definition 7.3.2 (Consistent single step methods). A single step method, according to Def-
inition 7.3.1, based on a discrete evolution of the form (7.25) is called consistent with the
ODE ẏ = f(y).
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Example 7.3.1: Consistency of implicit midpoint method

The discrete evolution Ψ and, hence, the function ψ = ψ(h, y) for the implicit midpoint
method are defined only implicitly, of course. Thus, consistency cannot immediately be
seen from a formula for ψ.

We examine consistency of the implicit midpoint method, as defined by (7.21):

yk+1 = yk + hf
(

1
2(tk + tk+1), 1

2(yk + yk+1)
)

, k = 0, . . . , N − 1.

Assume that

• the right hand side function f is smooth, at least f ∈ C1(D),

• and |h| is sufficiently small to guarantee the existence of a solution yk+1 of (7.21).

First, note that

Ψ0y = y.

Next, expressing the implicit midpoint method as

Ψhy = y + hf(1
2(y + Ψhy)),

one obtains

ψ(h, y) = f(1
2(y + Ψhy)).

Thus,

ψ(0, y) = f(y),

i.e. consistency holds.

Note. In the literature, a single step method is often specified by writing down the first
step for a general stepsize h, i.e.

y1 = expression in y0, h and f.

Actually, this fixes the underlying discrete evolution. This course will also adopt this prac-
tice sometimes.
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7.3.3 Convergence of single step methods

Discretization error of single step methods

Errors in numerical integration are called discretization errors, cf. Section 7.3.1. Depend-
ing on the objective of numerical integration, different notions of discretization error are
appropriate.

(I) If only the solution at final time is sought, the discretization error is

εN := ‖y(T)− yN‖ ,

where ‖·‖ is some vector norm on Rd.

(II) If we want to approximate the solution trajectory for (7.9), the discretization error is
the function

t 7→ e(t) , e(t) := y(t)− yh(t) ,

where t 7→ yh(t) is the approximate trajectory obtained by post-processing. In this
case accuracy of the method is gauged by looking at norms of the function e.

(III) A compromise between Item (I) and Item (II) would be the pointwise discretization
error, which is the sequence (grid function)

e :M→ D , ek := y(tk)− yk , k = 0, . . . , N. (7.26)

In this case, we may consider the maximum error in the mesh points

‖(e)‖∞ := max
k∈{1,...,N}

‖ek‖ ,

where ‖·‖ is a suitable vector norm on Rd, usually the Euclidean vector norm.

Asymptotic convergence of single step methods

Once the discrete evolution Ψ associated with the ODE ẏ = f(y) is specified, the single step
method according to Definition 7.3.1 is fixed. The only way to control the accuracy of the
solution yN or t 7→ yh(t) is through the selection of the mesh M = {0 = t0 < t1 < · · · <
tN = T}.

Hence, we study convergence of single step methods for families of meshes {M`}`∈N and
track the decay of (a norm) of the discretization error (see Section 7.3.3) as a function of the
number of mesh points N := ]M. In other words, we examine h-convergence. We already
did this in the case of piecewise polynomial interpolation in Section 5.3 and composite
numerical quadrature in Section 6.4.

When investigating asymptotic convergence of single step methods, we often resort to fam-
ilies of equidistant meshes of [0, T]:

MN := {tk := k
N T: k = 0 . . . , N} . (7.27)
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7.3 General single step methods

We refer to this as the use of uniform timesteps of size h := T
N .

Example 7.3.2: Speed of convergence of Euler and implicit midpoint methods

We consider the following IVP for the logistic ODE (see Example 7.1.1):

ẏ = λy(1− y), y(0) = 0.01.

We apply the explicit Euler (7.15) and implicit Euler (7.18) methods with uniform
timestep h = 1/N, N ∈ {5, 10, 20, 40, 80, 160, 320, 640} and monitor the error at final
time: |eN(h)| = |y(1)− yN|.
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Note. Algebraic convergence of O(N−1) = O(h) is observed in both cases as h→ 0.

However, polygonal approximation methods can do better:
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Implicit midpoint method

Note. For the implicit midpoint method, we observe algebraic convergence O(h2) as
h→ 0.

Parlance: Based on the observed rate of algebraic convergence, the two Euler meth-
ods are said to “converge with first order”, whereas the implicit midpoint
method is called “second-order convergent”.

The observations made for polygonal timestepping methods reflect a general pattern:

Algebraic convergence of single step methods

Consider numerical integration of an initial value problem

ẏ = f(t, y) , y(t0) = y0 ,

with sufficiently smooth right hand side function f : I × D → Rd.

Then, customary single step methods (see Definition 7.3.1) will enjoy algebraic conver-
gence in the meshwidth. More precisely (see [7, Thm. 11.25]), there is a p ∈ N such
that the sequence (yk)k generated by the single step method for ẏ = f(t, y) on a mesh
M := {t0 < t1 < · · · < tN = T} satisfies

max
k
‖yk − y(tk)‖ ≤ Chp for h := max

k=1,...,N
|tk − tk−1| → 0 , (7.28)

with C > 0 independent ofM.
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7.3 General single step methods

Definition 7.3.3 (Order of a single step method). The maximal integer p ∈ N for which
(7.28) holds for a single step method when applied to an ODE with (sufficiently) smooth
right hand side, is called the order of the method.

As in the case of quadrature rules (see Definition 6.3.1), their order is the principal intrinsic
indicator for the “quality” of a single step method.

Convergence analysis for the explicit Euler method

In Example 7.3.2, we empirically derived the order of the Euler methods and the implicit
midpoint method. In what follows, we derive this algebraic convergence for the explicit
Euler method. Recall the pointwise discretization error defined in (7.26) and rewrite it
using the evolution and the discrete evolution operator:

ek+1 :=y(tk+1)− yk+1 , k = 0, . . . , N − 1.

=Ψhyk −Φh(y(tk)).

We would now like to perform a convergence analysis for this error.

We consider the explicit Euler method (7.15) on a mesh M := {0 = t0 < t1 < · · · < tN =
T} for a generic autonomous IVP (7.5) with sufficiently smooth and (globally) Lipschitz
continuous f, that is,

∃L > 0: ‖f(y)− f(z)‖ ≤ L ‖y− z‖ ∀y, z ∈ D , (7.29)

and the exact solution t 7→ y(t). We assume that solutions of ẏ = f(y) are defined on [0, T]
for all initial states y0 ∈ D.

Recall the recursion for the explicit Euler method:

yk+1 = yk + hkf(yk) , k = 1, . . . , N − 1 .
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— =̂ trajectory t 7→ y(t)
— =̂ Euler polygon,
• =̂ y(tk),
• =̂ yk,
−→ =̂ discrete evolution Ψhk ,
↔ =̂ Error sequence: ek := yk − y(tk)

Abstract splitting of error:

Here and in what follows we rely on the abstract concepts of the evolution operator Φ

associated with the ODE ẏ = f(y) (see Definition 7.1.3) and discrete evolution operator Ψ

(see Definition 7.3.1) defining the explicit Euler method (see Equation (7.15)). The discrete
evolution operator for the explicit Euler method may be written as:

Ψhy = y + hf(y) . (7.30)

We argue that, in this context, the abstraction pays off because it helps elucidate a general
technique for the convergence analysis of single step methods.

Fundamental error splitting:

ek+1 =Ψhk yk −Φhk y(tk)

=Ψhk yk −Ψhk y(tk)︸ ︷︷ ︸
propagated error (PE)

+Ψhk y(tk)−Φhk y(tk)︸ ︷︷ ︸
one-step error (OE)

. (7.31)
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7.3 General single step methods

To give an upper bound on ‖ek+1‖, it suffices to bound the propagated error and the one-
step error separately. A generic one-step error can be expressed through continuous and
discrete evolutions:

τ(h, y) := Ψhy−Φhy . (7.32)

Geometric visualisation of the one-step error for the ex-
plicit Euler method
— : solution trajectory through (tk, y)

À Estimate for one-step error τ(hk, y(tk)):

From geometric considerations, we can show that the distance of a smooth curve to its
tangent shrinks as the square of the distance to the intersection point (i.e., the curve locally
looks like a parabola in the ξ − η coordinate system).
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If y ∈ C2([0, T]), which is ensured for smooth f (see Lemma 7.1.1), then the geometric
considerations can be made rigorous by using Taylor’s formula:

y(tk+1)− y(tk) = ẏ(tk)hk +
1
2 ÿ(ξk)h2

k = f(y(tk))hk +
1
2 ÿ(ξk)h2

k ,

for some tk ≤ ξk ≤ tk+1. This leads to an expression for the one-step error from (7.32):

τ(hk, y(tk))=Ψhk y(tk)− y(tk+1)

(7.30)
= y(tk) + hkf(y(tk))− y(tk)− f(y(tk))hk +

1
2 ÿ(ξk)h2

k

= 1
2 ÿ(ξk)h2

k .

(7.33)

Sloppily speaking, we observe that τ(hk, y(tk)) converges uniformly with order O(h2
k) for

hk → 0.

Á Estimate for the propagated error in (7.31):

∥∥∥Ψhk yk −Ψhk y(tk)
∥∥∥ = ‖yk + hkf(yk)− y(tk)− hkf(y(tk))‖

= ‖ek + hk (f(yk)− f(y(tk)))‖
≤ ‖ek‖+ hk ‖f(yk)− f(y(tk))‖
(7.29)
≤ ‖ek‖+ hkL ‖ek‖ = (1 + hkL) ‖ek‖ .

(7.34)

Total error:

We can now combine the two estimates to obtain one for the total error. For this, define

εk := ‖ek‖ and ρk := 1
2 h2

k max
tk≤τ≤tk+1

‖ÿ(τ)‖ .

By the 4-inequality, (7.31) yields:

εk+1 ≤ (1 + hkL)εk + ρk . (7.35)
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Taking into account ε0 = 0, this leads to

εk ≤
k

∑
l=1

l−1

∏
j=1

(1 + hjL) ρl , k = 1, . . . , N . (7.36)

Using the estimate 1 ≤ (1 + Lhj) ≤ ehjL, we further obtain:

εk ≤
k

∑
l=1

l−1

∏
j=1

ehjL · ρl =
k

∑
l=1

eL ∑l−1
j=1 hj ρl .

Since
l−1
∑

j=1
hj ≤ T, we can deduce

εk ≤ eLT
k

∑
l=1

ρl ≤ eLT max
k

ρk
hk

k

∑
l=1

hl

and conclude that:

εk = ‖yk − y(tk)‖ ≤ TeLT
(

max
l=1,...,k

hl

)
·
(

max
t0≤τ≤tk

‖ÿ(τ)‖
)

. (7.37)

Note. The total error arises from accumulation of the propagation of one-step errors.

We can summarize the insights gleaned through this theoretical analysis as follows: The
error bound

- is O(hM), where hM := max
l

hl. In other words, we observe a first order algebraic
convergence.

- grows exponentially with the length T of the integration interval.

- grows exponentially with the Lipschitz constant of f.

- is linear in max
t0≤τ≤tk

‖ÿ(τ)‖.

This implies that rapidly varying functions require much smaller time steps to maintain a
certain error.

Note. In practice, an adaptive step size control is implemented. This involves the use of
larger step sizes in slowly varying regions and use the of smaller step sizes in rapidly
varying regions.

One-step error and order of a single step method

In the analysis of the global discretization error of the explicit Euler method in Section 7.3.3,
a one-step error of size O(h2

k) led to a total error of O(hM) through the effect of error
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accumulation over N ≈ h−1
M steps. This relationship remains valid for almost all single step

methods:

Consider an IVP (7.5) with solution t 7→ y(t), the evolution map Φ associated with the
ODE, and a single step method defined by the discrete evolution Ψ. If the one-step error
along the solution trajectory satisfies∥∥∥Ψhy(t)−Φhy(t)

∥∥∥ ≤ Chp+1 ∀ h sufficiently small, t ∈ [0, T] ,

for some p ∈N and C > 0, then, usually,

max
k
‖yk − y(tk)‖ ≤ Chp

M ,

with C > 0 independent of the temporal meshM.

A rigorous statement as a theorem would involve some particular assumptions on Ψ, which
we do not want to give here.

7.4 Higher order Single-step methods (Runge-Kutta
Methods)

So far we only know first and second order methods from Section 7.2: In Example 7.3.2,
we observed that the explicit Euler (7.15) and implicit Euler (7.18) method are of first order,
while the implicit midpoint method (7.21) is of second order.

Thus, barring the impact of roundoff, the low-order polygonal approximation methods
are guaranteed to achieve any prescribed accuracy provided that the mesh is fine enough.
Why should we need any other timestepping schemes? We argue that the use of higher-
order timestepping methods is highly advisable for the sake of efficiency. In what follows,
we introduce general higher order schemes. The attribute “single-step” (or “one-step”)
indicates that for this family of methods, at each time step, only information from the last
previous time step is used (as opposed to “multi-step” methods that we will not cover). We
start by introducing two well-known schemes for solving ODEs: RK-2 and RK-4.

The Runge-Kutta-2 method (RK-2)

We consider the IVP (7.9) in the time interval [0, T], where T ∈ (0, ∞) is some fixed time
and we assume the time-discretization described in (7.13). Then for all time levels tk, k ∈
{0, 1, . . . , N − 1}, by the Fundamental Theorem of calculus, it holds that

y(tk+1)− y(tk) =
∫ tk+1

tk

ẏ(t)dt,

=
∫ tk+1

tk

f(t, y(t))dt.
(7.38)
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We can then use numerical quadrature to approximate (7.38). In particular, using the mid-
point rule yields ∫ tk+1

tk

f(t, y(t))dt ≈ hf
(

tk +
h
2

, y
(

tk +
h
2

))
. (7.39)

Of course the mid-point value of y is still unknown so we can perform a further approxi-
mation of this value using the Forward Euler method, i.e.,

y
(

tk +
h
2

)
≈ y(tk) +

h
2

f (tk, y(tk)) . (7.40)

Finally, combining (7.9) and (7.40), we obtain a two-stage numerical scheme for approximat-
ing solutions to the IVP (7.9):

k1 = f (tk, yk) ,

k2 = f
(

tk +
h
2

, yk +
h
2

k1

)
,

yk+1 = yk + hk2.

(7.41)

The numerical scheme given in (7.41) is termed the standard 2-stage Runge-Kutta (RK-2)
method and is of second order. The 2-stages refer to the calculation of the two terms k1, k2
in Equation (7.41) in order to compute the solution at the next time level.

We remark that the RK-2 method (7.41) can be re-written in the update form as

yk+1 = yk + hf
(

tk +
h
2

, yk +
h
2

f (tk, yk)

)
,

y0 = y(0),
(7.42)

and therefore represents an explicit method.

The Runge-Kutta-4 method (RK-4)

An even higher-order accurate numerical method for approximating solutions to the IVP
(7.9) can be obtained by considering the following 4-stage numerical method:

k1 = f (tk, yk) ,

k2 = f
(

tk +
h
2

, yk +
h
2

k1

)
,

k3 = f
(

tk +
h
2

, yk +
h
2

k2

)
,

k4 = f (tk + h, yk + hk3) ,

yk+1 = yk +
h
6
(k1 + 2k2 + 2k3 + k4) .

(7.43)

The numerical scheme given in (7.43) is termed the classical 4-stage Runge-Kutta (RK-4)
method and is of fourth order.

We remark that this scheme is also an explicit method similar to the RK-2 method.
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7.4.1 General form of Runge-Kutta methods

The RK-2 method and the RK-4 method suggest a general form of an s-stage Runge-Kutta
method for approximating solutions to the IVP (7.9):

Let s ∈ N be an integer, let {aij}s
i,j=1, {bi}s

i=1 and {ci}s
i=1 be real numbers and for all time

levels tk, k ∈ {0, 1, . . . , N − 1}, define:

k1 = f

(
tk + c1h, yk + h

s

∑
j=1

a1jkj

)
,

...
...

ks = f

(
tk + csh, yk + h

s

∑
j=1

asjkj

)
,

yk+1 = yK + h
s

∑
i=1

biki ,

(7.44)

where

ci :=
s

∑
j=1

aij. (7.45)

Then the coefficients {aij}s
i,j=1, {bi}s

i=1 and {ci}s
i=1 uniquely specify an s-stage Runge-Kutta

method given by Equation (7.44).

For increased clarity and simplicity, the coefficients {aij}s
i,j=1, {bi}s

i=1 and {ci}s
i=1 associated

with an s-stage RK method are usually presented in tabular format as a Butcher Tableau.
The Butcher Tableau for an s-stage RK method is given by

c A

b>
:=

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

...

cs as1 as2 . . . ass

b1 b2 . . . bs

(7.46)

Examples of Runge-Kutta methods

We consider two main classes of Runge-Kutta methods in this section.

• Explicit Runge-Kutta Methods
Consider an s-stage Runge-Kutta method of the form (7.44) for approximating solu-
tions to the IVP (7.9) with the property that for all i, j ∈ {1, . . . , s}

aij = 0 if j ≥ i.
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Then this numerical method is termed an explicit RK method.

We observe that by definition of explicit RK schemes, each stage ki, i ∈ {2, . . . , s} can
be computed using only the previous stages kj, j < i, and therefore an explicit RK
method can be implemented as a time marching scheme:

yk 7→ k1 7→ k2 7→ k3 7→ . . . 7→ ks−1 7→ ks 7→ yk+1.

We also remark that the matrix A = {aij}s
i,j=1 in the Butcher tableau (7.46) associated

with an explicit RK scheme has a strictly lower triangular structure with zero diagonal
entries. Examples of explicit RK schemes include the RK-2 and the RK-4 methods.

Example 7.4.1: Butcher schemes for some explicit RK-SSM

The following explicit Runge-Kutta single step methods are often mentioned in
literature.

– Explicit Euler method (7.15):
0 0

1
→ order = 1

– Explicit trapezoidal rule:

0 0 0

1 1 0
1
2

1
2

→ order = 2

– Classical 2nd-order RK-SSM
(7.41):

0 0 0
1
2

1
2 0

0 1

→ order = 2

– Classical 4th-order RK-SSM
(7.43):

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0
1
6

2
6

2
6

1
6

→ order = 4
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– Kutta’s 3/8-rule:

0 0 0 0 0
1
3

1
3 0 0 0

2
3 −

1
3 1 0 0

1 1 −1 1 0
1
8

3
8

3
8

1
8

→ order = 4

Further examples of Runge-Kutta methods can be found in the literature, see for
example the Wikipedia page. They are stated in the form of Butcher schemes
(7.46) most of the time.

• Diagonally Implicit Runge-Kutta (DIRK) Methods
Consider an s-stage Runge-Kutta method of the form (7.44) for approximating solu-
tions to the IVP (7.9) with the property that for all i, j ∈ {1, . . . , s}

aij = 0 if j > i,

and with the property that there exists at least one non-zero diagonal entry, i.e., there
exists some i ∈ {1, . . . , s} such that

aii 6= 0.

Then this numerical method is termed a diagonally implicit RK method.

We observe that by definition of diagonally implicit RK schemes, each stage ki, i ∈
{1, . . . , s} can be computed using the stages kj, j ≤ i and therefore computing each
stage ki requires the solution of a non-linear system of equations. This implies that
we must use some numerical method such as, e.g., Newton’s method (cf. Chapter
8) to find the approximate solution to one or more non-linear equations at each time
step.

Example 7.4.2:
As a concrete example, we consider the Butcher Tableau for the 3-stage second-
order DIRK method given by

0 0 0 0
1
2

1
4

1
4 0

1 1
3

1
3

1
3

1
3

1
3

1
3

Notice that, in constrast to the explicit RK methods, this method has some non-
zero diagonal entries. We remark that the DIRK-2 method is also known as the
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Trapezoidal Rule with the second order Backward Difference Formula (TR-BDF2).

7.4.2 Consistency conditions for Runge-Kutta methods

In general, an arbitrary combination of the coefficients {aij}s
i,j=1, {bi}s

i=1 and {ci}s
i=1 will

not specify a consistent s-stage Runge-Kutta method (7.44). Instead we need to impose
certain conditions on these coefficients in order to ensure consistency.

Corollary 7.4.1 (Consistent Runge-Kutta single step methods). A Runge-Kutta single step
method according to (7.44) is consistent (see Definition 7.3.2) with the ODE ẏ = f(t, y), if and
only if

s

∑
i=1

bi = 1. (7.47)

Proof. The simplest way to see that the condition (7.47) must be satisfied in order to ensure
consistency is to ensure that the consistency criterion from (7.25) is satisfied, i.e.,

ψ(0, y) = f(y).

The discrete evolution of Runge-Kutta methods can be expressed as:

Ψhy = y + h
s

∑
i=1

biki(y)︸ ︷︷ ︸
=ψ(h,y)

.

We note that for h = 0, the expressions of ki(y) in (7.44) simplify to

ki(y) = f(y).

Thus, for RK methods one obtains:

ψ(0, y) =

(
s

∑
i=1

bi

)
f(y).

Hence, consistency holds if and only if

s

∑
i=1

bi = 1 .

Note. Condition (7.47) must hold together with (7.45).
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Note. It is desirable to need as few stages as possible to obtain a method of order p. There
is a limit to this, also referred to as the Butcher barriers. The following table gives lower
bounds for the number of stages needed to achieve order p for an explicit Runge-Kutta
method.

order p 1 2 3 4 5 6 7 8 ≥ 9

minimal no. s of stages 1 2 3 4 6 7 9 11 ≥ p + 3

No general formula has been discovered. However, it is known that for explicit Runge-
Kutta single step methods according to Equation (7.44), the following can be said:

order p ≤ number s of stages of an RK-SSM.

7.5 Stability of Numerical Methods for ODEs

Convergence in the sense of (7.28) is merely a necessary condition for a ’good’ numerical
method but is by no means a sufficient condition. The following example helps illustrate
this.

Example 7.5.1:
Consider the scalar IVP

ẏ(t) = λ
(
y(t)− sin(t)

)
+ cos(t),

y(0) = 0,
(7.48)

where λ ∈ R is a constant.

It can be easily shown that y(t) = sin(t) is the unique solution of the IVP (7.48) for any
value of the constant λ. We compute the numerical solution of the IVP (7.48) using the
explicit Euler method (7.15) for λ = −100 and different values of the time step h up to
the final time T = 10. Our results are displayed in Table 7.1.
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N Error |1 + λh|

100 6.70× 1066 5.283

200 1.04× 1059 2.141

300 1.79× 105 1.094

320 2.29× 10−6 0.964

400 3.74× 10−7 0.571

Table 7.1: Error table for the explicit Euler method for the IVP (7.48).

Clearly, the global error associated with the explicit Euler method for different values
of h is very large. Indeed, Figure 7.1 displays the result for N = T

h = 300 points and
indicates that the approximate solution contains very large oscillations and seems to
blow up.

0 1 2 3 4 5 6 7

×105

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 7.1: Approximate solution produced by the explicit Euler method for the IVP (7.48) using
N=300 points.

The behavior of the explicit Euler method is very surprising considering that we have
shown that this method produces approximate solutions that converge to the exact
solution as h→ 0. Interestingly, this result is still true for very small values of the time
step h. Indeed Figure 7.2 displays the results for N = T

h = 400 points and indicates that
the approximate solution in this case is very close to the exact solution as evidenced by
a global error of 3.74× 10−7.
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0 1 2 3 4 5 6

-1

-0.5

0

0.5

1
Forward Euler, N=400
Exact Solution

Figure 7.2: Approximate solution produced by the explicit Euler method for the IVP (7.48) using
N=400 points.

Table 7.1 contains a clue pertaining to this behaviour. Based on our numerical experi-
ments it seems that the value |1 + λh| plays a significant role in the value of the global
error associated with the explicit Euler method as h is varied.

Finally, we remark that the implicit Euler method is able to produce accurate solutions
to the IVP (7.48) even for very small values of the number of points N, as shown in
Figure 7.3.

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1
N=20

N=40

N=80

N=160

Exact

Figure 7.3: Approximate solutions produced by the implicit Euler method for the IVP (7.48).

Example 7.5.2:
In this example we will witness the near failure of a high-order explicit Runge-Kutta

method with adaptive stepsize control for the logistic ODE (see Example 7.1.1):

ẏ = λy2(1− y) , λ := 500 , y(0) = 1
100 . (7.49)
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We solve it with Matlab using its built-in adaptive explicit Runge-Kutta method ode45:
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The solution is virtually constant for t > 0.2. Nevertheless, the integrator uses unnec-
essarily tiny timesteps until the end of the integration interval.

7.5.1 Absolute Stability

The examples we have seen above provide motivation for a stronger notion of stability for
numerical methods. Consider the following model IVP:

ẏ(t) = λy(t),
y(0) = y0

(7.50)

where λ ∈ R− is a negative constant. Note that the exact solution of the IVP (7.50) is
given by y(t) = y0eλt and therefore the solution will decay rapidly to zero for any initial
condition as long as λ < 0. In terms of an approximation (yk), this decay condition implies

|yk+1| < |yk|. (7.51)

We will start by analyzing this condition for the Euler methods and then consider this
concept of stability for general Runge-Kutta methods.

Absolute Stability of Explicit Euler Method

Applying the explicit Euler method (7.15) to approximate solutions to the IVP (7.50) leads
to

yk+1 =
(
1 + λh

)
yk. (7.52)

In view of Equation (7.51), we say that the explicit Euler method (7.15) is absolutely stable if
it holds that

|1 + λh| < 1. (7.53)
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Note. We observe that this notion of stability only makes sense when the constant λ is
negative, so that the exact solution is strictly monotonically decreasing.

Equation (7.53) implies that the time step h must be chosen such that (see Figure 7.4)

−2 < λh < 0.

Hence, the explicit Euler method (7.15) is absolutely stable only if the time step h, relative
to the constant λ, is sufficiently small. This provides justification for the results of our
numerical experiments in Example 7.5.1.

λ∆t
-5 -4 -3 -2 -1 0 1 2 3 4 5

Unstable Region
    Stable Region

λh

Figure 7.4: Stable and unstable regions of λh for the explicit Euler scheme.

Absolute Stability of the Implicit Euler Method

Applying the implicit Euler method (7.18) to approximate solutions to the IVP (7.50) leads
to

yk+1 − yk
h

= λyk+1

=⇒ yk =
(
1− λh

)
yk+1

=⇒ yk+1 =
1

1− λh
yk.

The implicit Euler method (7.18) is absolutely stable if (7.51) holds, i.e., if it holds that

1
|1− λh| < 1, (7.54)

or equivalently if (see Figure 7.5)

λh ∈ (−∞, 0) ∪ (2, ∞). (7.55)

The large stability region for the implicit Euler scheme given by (7.55) indicates that the
implicit Euler scheme remains stable even for large values of the time step h. This explains
why the implicit Euler method performs well in the numerical experiments considered in
Example 7.5.1.
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λ∆t
-5 -4 -3 -2 -1 0 1 2 3 4 5

Unstable Region
    Stable Region

λh

Figure 7.5: Stable and unstable regions of λh for the implicit Euler scheme.

Absolute Stability of Runge-Kutta methods

Prior to generalizing for all Runge-Kutta methods, we consider a specific example of the
explicit trapezoidal method.

Example 7.5.3: Explicit trapezoidal method for decay equation

Recall the butcher tableau for the explicit trapezoidal method (see Example 7.4.1):

0 0 0

1 1 0
1
2

1
2

Applying it to the IVP (7.50) leads to

k1 = f (tk, yk) = λyk ,
k2 = f (tk + h, yk + hk1) = λ(yk + hk1) ,

yk+1 = yk +
h
2 (k1 + k2)

= yk +
h
2 (λyk + λyk + λ2hyk)

=
(

1 + λh + 1
2(λh)2

)
yk.

We can now define the stability function

S(λh) := 1 + λh + 1
2(λh)2 . (7.56)

The sequence of approximations generated by the explicit trapezoidal rule can be ex-
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pressed as
yk+1 = S(λh)yk, k = 0, . . . , N − 1 ,

yk = S(λh)ky0, k = 1, . . . , N .
(7.57)

Clearly, the decay of the sequence (yk)k can only be guaranteed if |S(λh)| < 1:

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

1.5
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2.5

 z

Stability polynomial for explicit trapezoidal rule

X

 S
(z

)

Figure 7.6: The stability function for the explicit trapezoidal method.

Therefore, the stability region can be given by:

−2 < λh < 0 . (7.58)

Now we may generalize the stability analysis for a general Runge-Kutta single step method

encoded by the Butcher scheme
c A

b>
, applied to the autonomous scalar linear ODE

(7.50). We write down the equations for the increments and yk+1 from (7.44):

ki = λ(yk + h
s

∑
j=1

aijk j),

yk+1 = yk + h
s

∑
i=1

biki.

Defining k := [k1, . . . , ks]>/λ ∈ Rs as the vector of increments, and z := λh, we obtain

k = yk[1, . . . , 1]> + zAk ,

yk+1 = yk + zb>k.

This system of equations can then be converted into matrix form:I− zA 0

−zb> 1

 k

yk+1

 = yk

1

1

 . (7.59)
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Applying block Gaussian elimination to solve for yk+1, we obtain

yk+1 = yk + zb> (I− zA)−1 yk1

= yk

(
1 + zb> (I− zA)−1 1

)
.

Therefore we can define the stability function for a general RK-SSM as

S(z) := 1 + zb> (I− zA)−1 1 , (7.60)

which implies

yk+1 = S(λh)yk.

Alternatively, we can express yk+1 through determinants by appealing to Cramer’s rule,

yk+1 = yk

det

I− zA 1

−zb> 1


det

I− zA 0

−zb> 1

 . (7.61)

This can be simplified using Schur’s determinant identity:

det

A B

C D

 = det D · det(A− BD−1C).

Therefore

yk+1 = yk
det

(
I− zA + z1b>

)
det (I− zA)

,

which shows that the stability function for a general RK-SSM can also be written as

S(z) :=
det

(
I− zA + z1b>

)
det (I− zA)

,

and the general solution yk can be related to the initial value y0 as

yk = S(λh)ky0.

For an explicit RK method, note that A is a strictly lower triangular matrix, which means
that det(I− zA) = 1. Therefore,

yk+1 = yk det
(

I− zA + z1b>
)

.

Thus, the stability function for an explicit RK method can be written as

S(z) = det(I− zA + z1b>).

Therefore, we have proven the following theorem.
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Theorem 7.5.1 (Stability function of general Runge-Kutta methods). The discrete evolution

Ψh of an s-stage Runge-Kutta single step method (see (7.44)) with the Butcher scheme,
c A

b>
, for

the ODE ẏ = λy is given by

Ψh = S(λh) ⇔ yk+1 = S(λh)yk ,

where S is the stability function

S(z) := 1 + zb> (I− zA)−1 1 =
det(I− zA + z1b>)

det(I− zA)
, z := λh, 1 := [1, . . . , 1]> ∈ Rs .

(7.62)

Note. For an explicit s-stage Runge-Kutta single step method, the stability function in (7.62)
simplifies to

S(z) := det(I− zA + z1b>) , z := λh, 1 := [1, . . . , 1]> ∈ Rs . (7.63)

Equation (7.63) confirms an immediate consequence of the determinant formula for the
stability function S(z).

Corollary 7.5.1 (Polynomial stability function of explicit RK-SSM). For a consistent s-stage
explicit Runge-Kutta single step method according to (7.44), the stability function S defined by
(7.63) is a non-constant polynomial of degree ≤ s: S ∈ Ps.

From the determinant formula (7.62) for the stability function S(z), we can conclude a
generalization of Corollary 7.5.1.

Corollary 7.5.2 (Rational stability function of explicit RK-SSM). For a consistent (see Defini-
tion 7.3.2) s-stage general Runge-Kutta single step method according to (7.44), the stability function

S is a non-constant rational function of the form S(z) =
P(z)
Q(z)

with polynomials P ∈ Ps, Q ∈ Ps.

Region of (absolute) stability of Runge-Kutta methods

We consider a general Runge-Kutta single step method with stability function S for the
model linear scalar IVP ẏ = λy, y(0) = y0, λ ∈ C, i.e. λ can be complex valued. From
Theorem 7.5.1, we learn that for uniform stepsize h > 0, we have yk = S(λh)ky0 and
conclude that

yk → 0 for k→ ∞ ⇔ |S(λh)| < 1 . (7.64)

Hence, the modulus |S(λh)| indicates the combinations of λ and stepsize h for which we
achieve exponential decay yk → 0 as k→ ∞, which is the desirable behavior of the approx-
imations for Re(λ) < 0.
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Definition 7.5.1 (Region of (absolute) stability). Let the discrete evolution Ψ for a single
step method applied to the scalar linear ODE ẏ = λy, λ ∈ C, be of the form

Ψhy = S(z)y , y ∈ C, h > 0 with z := λh (7.65)

and a function S : C→ C. Then the region of (absolute) stability of the single step method is
given by

SΨ := {z ∈ C: |S(z)| < 1} ⊂ C .

Of course, by Theorem 7.5.1, in the case of a general RK-SSM, the function S will coincide
with their stability function from (7.62).

Note. We can conclude that

• the regions of (absolute) stability of explicit RK-SSM are bounded, since the stability
function S(z) is a non-constant polynomial (see Corollary 7.5.1).

• on the other hand, the stability function S(z) of an implicit RK-SSM is a rational
function (see Corollary 7.5.2) that can satisfy lim|z|→∞ |S(z)| < 1. As a consequence,
the region of stability for an implicit RK-SSM does not have to be bounded.

Example 7.5.4: Region of absolute stability of explicit RK-SSM

From Theorem 7.5.1 and the Butcher schemes, we can instantly compute the stability
functions of explicit RK-SSM and use them to obtain the region of absolute stability.
The domains in C highlighted in green depict the bounded regions of stability for some
RK-SSM from Example 7.4.1.

Explicit Euler method (7.15):
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Explicit trapezoidal method:
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0 0 0

1 1 0
1
2

1
2

S(z) = 1 + z + 1
2 z2

Re

Im

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Classical RK4 method:

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0
1
6

2
6

2
6

1
6

S(z) = 1 + z + 1
2 z2 + 1

6 z3 + 1
24 z4

Re

Im

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Note that the region of stability is bounded in each case.

In general, for a consistent explicit RK-SSM (see Definition 7.3.2), its stability function
satisfies S(z) = 1+ z +O(z2) for z→ 0. Therefore, SΨ 6= ∅ and the imaginary axis will
be tangent to SΨ at z = 0.

Example 7.5.5: Regions of stability for simple implicit RK-SSM

We compute the stability functions for some simple implicit RK-SSM using Theo-
rem 7.5.1. Their regions of stability SΨ, as defined in Definition 7.5.1, can be easily
found from the respective stability functions.

• Implicit Euler method:
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1 1

1

S(z) =
1

1− z

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Re

Im

• Implicit midpoint method:

1
2

1
2

1

S(z) =
1 + 1

2 z
1− 1

2 z

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Re

Im

We see that in both cases |S(z)| < 1, if Re(z) < 0. Also note that the region of stability
is not bounded in either case.

7.5.2 A-stability

A general RK-SSM with stability function S applied to the scalar linear IVP ẏ = λy, y(0) =
y0 ∈ C, λ ∈ C, with uniform timestep h > 0 will yield the sequence (yk)

∞
k=0 defined by

yk = S(z)ky0 , z = λh . (7.66)

Hence, the next property of a RK-SSM guarantees that the sequence of approximations
decays exponentially whenever the exact solution of the model problem IVP (7.50) does so.
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Definition 7.5.2 (A-stability of a Runge-Kutta single step method). A Runge-Kutta single
step method with stability function S is A-stable, if

C− := {z ∈ C:Re(z) < 0} ⊂ SΨ . (SΨ is the region of stability, see Definition 7.5.1)

From Example 7.5.5, we conclude that both the implicit Euler method and the implicit
midpoint method are A-stable.

Note. An A-stable method is necessarily implicit.

The family of A-stable Runge Kutta methods include the s-stage Gauss-Legendre methods
(or Gauss collocation methods) which have order 2s.

Example 7.5.6: Gauss-Legendre method of order 2 and 4
The Gauss-Legendre method of order 2 is also known as the midpoint rule. Its Butcher
scheme is given by

1
2

1
2

1
.

And the Butcher scheme of the Gauss-Legendre method of order 4 is given by:

1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

.

The stability region of Gauss-Legendre methods is SΨ = C−. Higher order Gauss-
Legendre methods (order p > 6) are rarely used, due to high computational costs.

7.5.3 Systems of linear ordinary differential equations

So far, we have studied stability of numerical methods for ODEs for the scalar model
problem (7.50). Next, we derive that the above results extend to general linear systems of
ODEs. A generic system of linear ordinary differential equations on state space Rd has the
form

ẏ = My , (7.67)
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where matrix M ∈ Rd,d is assumed to be diagonalizable, i.e., we can find a regular matrix
V ∈ Cd,d such that

M = VDV−1, (7.68)

where

D =


λ1 0

. . .

0 λd

 ∈ Cd,d

is a diagonal matrix and the columns of

V =

 v1 v2 . . . vd


are a basis of eigenvectors of M. Then, λj ∈ C, j = 1, . . . , d are the associated eigenvalues of
M. In other words,

Mvi = λivi.

The idea behind diagonalization is the transformation of (7.67) into d decoupled scalar linear
ODEs.

We apply an s-stage RK-SSM described by the Butcher scheme
c A

b>
to the autonomous

linear ODE (7.67), and obtain (for the first step with timestep size h > 0)

k` = M(y0 + h
s−1

∑
j=1

a`jkj) , ` = 1, . . . , s , y1 = y0 + h
s

∑
`=1

b`k` . (7.69)

Then, we introduce the substitutions

k̂` := V−1k` , ` = 1, . . . , s , ŷk := V−1yk , k = 0, 1

to (7.69). Owing to (7.68), this yields

k̂` = D(V−1y0 + h
s−1

∑
j=1

a`jV−1kj) , ` = 1, . . . , s , ŷ1 = V−1y0 + h
s

∑
`=1

b`V−1k` .

=⇒ k̂` = D(ŷ0 + h
s−1

∑
j=1

a`jk̂j) , ` = 1, . . . , s , ŷ1 = ŷ0 + h
s

∑
`=1

b`k̂` . (7.70)

Rewriting this in a componentwise format yields:(
k̂`

)
i
= λi

(
(ŷ0)i + h

s−1

∑
j=1

a`j

(
k̂j

)
i

)
, (ŷ1)i = (ŷ0)i + h

s

∑
`=1

b`
(

k̂`

)
i

, i = 1, . . . , d.

(7.71)
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We infer that, if (yk)k is the sequence produced by an RK-SSM applied to ẏ = My, then

yk = Vŷk ,

where (ŷk)k is the sequence generated by the same RK-SSM with the same sequence of
timesteps for the IVP ˙̂y = Dŷ, ŷ(0) = V−1y0.

Note. The RK-SSM generates uniformly bounded solution sequences (yk)
∞
k=0 for ẏ = My

with diagonalizable matrix M ∈ Rd,d with eigenvalues λ1, . . . , λd, if and only if it generates
uniformly bounded sequences for all the scalar ODEs ż = λiz, i = 1, . . . , d.

Hence, understanding the behavior of RK-SSMs for autonomous scalar linear ODEs ẏ = λy
with λ ∈ C is enough to predict their behavior for general autonomous linear systems of
ODEs.

Theorem 7.5.2 ((Absolute) stability of RK-SSMs for linear systems of ODEs). The sequence
(yk)k of approximations generated by an RK-SSM with stability function S (defined in (7.62))
applied to the linear autonomous ODE ẏ = My, M ∈ Cd,d, with uniform timestep h > 0 decays
exponentially for every initial state y0 ∈ Cd, if and only if |S(λih)| < 1 for all eigenvalues λi of
M.

Note. If

Re(λi) < 0 ∀i ∈ {1, . . . , d},

then

‖y(t)‖ → 0 as t→ ∞ ,

for any solution of ẏ = My.

7.6 Stiff Initial Value Problems

Stiffness is a property of differential equations with strong implications for their practical
solution using numerical methods. Stiff ODEs arise in various applications; e.g., when
modeling chemical reactions, in control theory, or electrical circuits, such as the Van der
Pol equation in relaxation oscillation. Unfortunately, a precise mathematical definition of
stiffness covering all occurrences of this phenomenon has not been found. Some attempts
at describing a stiff problem are:

• An initial value problem is called stiff , if stability imposes much tighter timestep
constraints on explicit single step methods than the accuracy requirements.

• A problem is stiff if it contains widely varying time scales, i.e., some components of
the solution decay much more rapidly than others.
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• A problem is stiff if explicit methods with adaptive stepsize control work only ex-
tremely slowly.

How to distinguish stiff initial value problems

An initial value problem for an autonomous ODE ẏ = f(y) will probably be stiff,
if, for substantial periods of time,

min{Re(λ) : λ ∈ σ(D f(y(t)))} � 0 , (7.72)

where t 7→ y(t) is the solution trajectory, D f(y) is the Jacobian matrix and σ(D f(y)) is
the set of eigenvalues of the matrix D f(y).

Equation (7.72) means that we have at least one eigenvalue with a large negative real part.

Example 7.6.1: Predicting stiffness of non-linear IVPs

Ê We consider the IVP from Example 7.5.2:

ẏ = f (y) := λy2(1− y) , λ := 500 , y(0) = 1
100 .

We are interested in the behavior of this ODE close to the stationary point y = 1,
since this is where the solver ode45 in Example 7.5.2 had problems choosing a
reasonable timestep. We find

f ′(y) = λ(2y− 3y2) ⇒ f ′(1) = −λ .

Hence, in case λ � 0, we encounter stiffness close to the stationary state y = 1.
The observations made in Figure 7.7 exactly match this prediction.
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Figure 7.7: Stepsize control of ode45 solver running crazy!

The solution is virtually constant from t > 0.2 and, nevertheless, the integrator
uses tiny timesteps until the end of the integration interval because of stability
constraints.

Ë The solution of the IVP

ẏ =

0 −1

1 0

 y + λ(1− ‖y‖2) y , ‖y0‖2 = 1 .

satisfies ‖y(t)‖2 = 1 for all times t. Using the product rule of multi-dimensional
differential calculus, we find

D f(y) =

0 −1

1 0

+ λ
(
−2yy> + (1− ‖y‖2

2 I)
)

.

And the eigenvalues,

σ(D f(y)) =
{
−λ−

√
λ2 − 1,−λ +

√
λ2 − 1

}
, if ‖y‖2 = 1 .

Thus, for λ� 1, D f(y(t)) will always have an eigenvalue with large negative real
part, whereas the other eigenvalue is close to zero. This implies that the IVP is
stiff.

Note. There is no unified definition or characterization of stiffness. In the literature, one
also often refers to stiffness if additionally to one eigenvalue having large negative real
part, there is also one eigenvalue whose real part is close to zero (as in the above example).
In this case, one speaks of a large stiffness ratio.

Note (Characteristics of stiff IVPs). One can often tell from the expected behavior of the
solution of an IVP, which is usually clear from the modeling context, that one has to brace
for stiffness.
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Typical features of stiff IVPs:

• Presence of fast transients in the solution.

• Occurrence of strongly attractive fixed points/limit cycles.

However, recall from Example 7.5.1 that one has to be cautious: there, the solution itself
was very nice (y(t) = sin(t)), and stiffness was a property of the ODE itself rather than
of the solution. One way to deal with a stiff problem is to have an unconditionally stable
solver. This is where the notion of A-stability becomes useful and stiff problems should be
solved with A-stable methods.
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8

Iterative Methods for Non-Linear
Systems of Equations

So far we have considered direct methods for solving linear systems of equations. Many
real-world applications do, however, involve non-linear systems of equations. In general,
such systems cannot be solved directly – or even exactly. In this chapter, we will present
iterative methods for finding approximations to their solutions instead.

Example 8.0.1: Spherical Water Tank
We look at a spherical water tank with radius r and constant outflow ρ. At the beginning
t = 0, we have a full tank (h0 = 2r) and our task is to determine the height h at any
given time t. The height h can be shown to satisfy

−1
3

πh3 + πrh2 +

(
ρt− 4

3
πr3
)
= 0.

We define

ft?(h) := −1
3

πh3 + πrh2 +

(
ρt? − 4

3
πr3
)

and aim at finding a root h? of ft?(h), i.e. we solve for ft?(h?) = 0.
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Plot of ft?(h) for t? = 1
3 tend.

If we want to obtain the height at t? = 1
3 ·

4
3 πr3

ρ︸ ︷︷ ︸
tend

, where r = 1.5m, we can observe that

the root lies at h? ≈ 1.8391m.

Typical examples of non-linear equations are

• thermodynamic models (these involve equations of state for real gases),

• the Colebrook equation for the Darcy friction factor (which quantifies the pressure
drop in oil or gas pipelines).

• solving for timestepping in implicit RK methods for solving ODEs.

Since, in general, nonlinear equations f (x) = 0 cannot be solved directly (nor exactly), the
question of how to solve them becomes fundamental.

Before answering that question, let us first analyze when f (x) = 0 is solvable. For example,
the function f (x) = e−πx2

does not have roots. A first simple criterion to decide whether a
function f has roots is the intermediate value theorem.

Theorem 8.0.1 (Intermediate value theorem). If f : [a, b] → R is continuous and for some
t`, tr ∈ [a, b]

f (t`) < u < f (tr)

holds, then there exists a point z ∈ (t`, tr) such that

f (z) = u.

In particular, for f ∈ C0([a, b], R) it suffices to find t`, tr ∈ [a, b] with f (t`) < 0 and f (tr) > 0
in order to guarantee that f has a root in (t`, tr). We may refine this idea to devise the
following root finding algorithm known as the bisection algorithm.

Code Snippet 8.1: Bisection Algorithm
14 // Searching zero of f in [a, b] by bisection
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15 template <typename Func , typename Sca lar >
16 S c a l a r b i s e c t ( Func&& f , S c a l a r a , S c a l a r b , S c a l a r t o l )
17 {
18 if ( a > b ) std : : swap ( a , b ) ; // sort interval bounds
19 if ( f ( a ) ∗ f ( b ) > 0) throw "f(a) and f(b) have same sign" ;
20 s t a t i c _ a s s e r t ( s td : : i s _ f l o a t i n g _ p o i n t <Sca lar > : : value ,
21 "Scalar must be a floating point type" ) ;
22 int v= f ( a ) < 0 ? 1 : −1;
23 S c a l a r x = ( a+b ) /2; // determine midpoint
24 // termination, relies on machine arithmetic if tol = 0
25 while ( b−a > t o l ) { //
26 a s s e r t ( a<x && x<b ) ; // assert invariant
27 // sgn( f (x)) = sgn( f (b)), then use x as next right boundary
28 if ( v∗ f ( x ) > 0) b=x ;
29 // sgn( f (x)) = sgn( f (a)), then use x as next left boundary
30 else a=x ;
31 x = ( a+b ) /2; // determine next midpoint
32 }
33 return x ;
34 }
35 /*

The C++ code above implements the bisection method for finding the zeros of a function
passed through the function handle f in the interval [a, b] with absolute tolerance tol. When
f is continuous, we always search in a region where a root exists. The region/interval size
is halved in each step which guarantees convergence.

Example 8.0.2: Spherical Water Tank
In Example 8.0.1, we wanted to find the height of a fluid in a spherical water tank at
time

t∗ =
1
3

tend.

In order to do this, we needed to perform root finding on the function

f (h) = −1
3

πh3 + πrh2 − 8
9

πr3.

It is readily seen that f (0) < 0 as well as f (2r) > 0 and thus we may apply the bisection
method with t` = 0 as well as tr = 2r.

For an iterative method to the root finding problem (such as the bisection method) we will
denote the iterates as (x(k))k∈N and define the iteration error as

e(k) := x(k) − x∗︸︷︷︸
exact solution

.

233



8 Iterative Methods for Non-Linear Systems of Equations

For the bisection method, we can easily give the rate of convergence of x(k) → x∗: We have
that ∣∣∣e(1)∣∣∣ ≤ 1

2
|a− b| ,∣∣∣e(2)∣∣∣ ≤ 1

22 |a− b| ,
...∣∣∣x(k) − x∗
∣∣∣ ≤ 1

2k |a− b| ,
∣∣∣e(k)∣∣∣→ 0 as k→ ∞.

As we can see this is a "linear-type" of convergence since the error is reduced by a fixed
factor (here: 1

2 ) in each step. The bisection method has the advantage that it is rather robust
and converges globally. On the other hand, bisection exhibits comparably slow convergence
and cannot easily be extended to higher dimensions (n different quantities have to be zero
simultaneously). In the following, we try to find methods which can be extended to higher
dimension and guarantee faster convergence (under additional assumptions).

8.1 Fixed Point Iterations in 1D

As before, we want to find a root of f , i.e. f (x) = 0. We can reformulate this equivalently
as finding a fixed point of Φ(x) := f (x) + x, where Φ is called iteration function.

Definition 8.1.1 (Fixed point). The point x∗ is a fixed point (FP) of an iteration function Φ if
and only if Φ(x∗) = x∗.

Note that a fixed point x∗ of the iteration function Φ(x) := f (x) + x satisfies f (x?) = 0,
by definition. Remember that in the case of the bisection method, the continuity of f
was sufficient for convergence. For more general iteration methods, we assume that Φ is
Lipschitz continuous, however. Recall the following definition:

Definition 8.1.2 (Lipschitz Continuity). A function Φ : [a, b]→ R is Lipschitz continuous if

∃ L > 0 : ‖Φ(x)−Φ(y)‖ ≤ L ‖x− y‖ ∀ x, y ∈ [a, b].

In general, Lipschitz continuity of Φ will not be sufficient to guarantee convergence of an
iterative method. We will also need to assume that L < 1. In this case, we say that Φ is a
contractive mapping.

Definition 8.1.3 (Contractive Mapping). An iteration function Φ : [a, b] → R is contractive
(w.r.t. the norm ‖·‖ on R) if

∃ L ∈ (0, 1) : ‖Φ(x)−Φ(y)‖ ≤ L ‖x− y‖ ∀ x, y ∈ [a, b].
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8.1 Fixed Point Iterations in 1D

The idea behind the fixed point iteration (FPI) is to start with an initial guess x(0) and to
iterate according to the rule

x(k) = Φ
(

x(k−1)
)

.

The condition L < 1 guarantees that if Φ has a fixed point x∗, i.e. there exists a point x∗

such that Φ(x∗) = x∗, then the FPI will converge to x∗.

Lemma 8.1.1 (Convergence of FPI). Let Φ : [a, b] → [a, b] be a contractive mapping and let
x∗ ∈ [a, b] be a fixed point of Φ, i.e. Φ(x∗) = x∗. Then, the FPI

x(k) = Φ
(

x(k−1)
)

with initial guess x(0) ∈ [a, b] converges to x∗.

Proof. We need to show that
∣∣∣e(k)∣∣∣→ 0 as k→ ∞. Consider∣∣∣e(k)∣∣∣ = ∣∣∣x(k) − x∗

∣∣∣ = ∣∣∣Φ (x(k−1)
)
−Φ (x∗)

∣∣∣ ,

where we used Φ(x∗) = x∗ and the definition of the FPI. As Φ is a contractive mapping
and maps [a, b] into itself, it follows that∣∣∣e(k)∣∣∣ ≤ L ·

∣∣∣x(k−1) − x∗
∣∣∣ = L ·

∣∣∣e(k−1)
∣∣∣ .

Iteratively, we find that ∣∣∣e(k)∣∣∣ ≤ Lk ·
∣∣∣e(0)∣∣∣ .

Thus
∣∣∣e(k)∣∣∣ tends to zero as k→ ∞ since L < 1.

Note. We can make the following remarks about Lemma 8.1.1:

• It would suffice to have a Lipschitz continuous Φ with L < 1 on [x∗ − δ, x∗ + δ] and
initial guess x(0) ∈ [x∗ − δ, x∗ + δ] to deduce convergence.

• If Φ ∈ C1([a, b]) and |Φ′(x∗)| < 1, we have convergence of the fixed point iteration in
a neighborhood of x∗. This is because there are δ > 0, ε > 0 such that |Φ′(x)| < 1− ε,
for all x ∈ [x∗ − δ, x∗ + δ] =: I∗. Hence the mean value theorem implies that for all
x, y ∈ I∗, there is a θ ∈ [x, y] such that

|Φ(x)−Φ(y)| =
∣∣Φ′(θ)∣∣ · |x− y| < (1− ε) |x− y| .

Thus, Φ is Lipschitz continuous with L = 1− ε < 1 on I∗.

• The convergence rate of an FPI is at least linear.

Definition 8.1.4 (Linear Convergence). A sequence (x(k))k∈N in Rn converges linearly to
x∗ ∈ Rn if

∃ L ∈ (0, 1) :
∥∥∥x(k+1) − x∗

∥∥∥ ≤ L ·
∥∥∥x(k) − x∗

∥∥∥ ∀ k ∈N0.
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8 Iterative Methods for Non-Linear Systems of Equations

Note. The bisection method was not linear, only "linear-type". Recall that we had shown∣∣∣e(k)∣∣∣ ≤ Lk |a− b|. Note, however, that
∣∣∣e(k)∣∣∣ ≥ L

∣∣∣e(k−1)
∣∣∣ is possible.

• If Φ′(x∗) = 0 and Φ ∈ C2 in a neighborhood of x∗, then, the FPI converges quadrati-
cally to x∗. To see this, we consider the Taylor expansion of Φ at x(k) around x∗:

Φ(x(k)) = Φ(x∗) + e(k) ·Φ′(x∗)︸ ︷︷ ︸
=0

+
1
2
(e(k))2Φ′′(x∗) +O((e(k))3).

Thereby, we obtain∣∣∣e(k)∣∣∣ = ∣∣∣x(k) − x∗
∣∣∣ = ∣∣∣Φ(x(k−1))−Φ(x∗)

∣∣∣ = 1
2
(e(k−1))2Φ′′(x∗) +O((e(k−1))3).

Now, let k ∈N be sufficiently large such that
∣∣∣x(k−1) − x∗

∣∣∣ ≤ δ < 1 (this is guaranteed
by the convergence of the FPI). Then, we get∣∣∣e(k)∣∣∣ ≤ 1

2

∣∣∣e(k−1)
∣∣∣2 (∣∣Φ′′(x∗)

∣∣+O(δ))
and the FPI converges quadratically.

Definition 8.1.5 (Order of Convergence). A convergent sequence (x(k))k∈N in Rn with limit
x∗ ∈ Rn converges with order p if

∃C > 0 :
∥∥∥x(k+1) − x∗

∥∥∥ ≤ C ·
∥∥∥x(k) − x∗

∥∥∥p
∀ k ∈N,

and, in case of p = 1, an additional constraint of C < 1 is necessary (see Definition 8.1.4).

Thus, a higher order p implies faster convergence (and fewer iterations are needed to reach
the same accuracy).

Note. If Φ is not globally Lipschitz continuous (on [a, b]), but only locally (e.g. Φ ∈
C1, |Φ′(x∗) < 1|), then the fixed point iteration is also only locally convergent (i.e. x(0)

has to be sufficiently close to x∗).

Example 8.1.1: Fixed Point Iteration
Let

F(x) = xex − 1, x ∈ [0, 1].
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8.1 Fixed Point Iterations in 1D
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Consider three different fixed point forms

Φ1(x) = e−x,

Φ2(x) =
1 + x
1 + ex ,

Φ3(x) = x + 1− xex.
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We tabulate the iteration error of the FPI’s designed above with inital guess x(0) = 0.5
and mark correct digits with red:
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k |x(k+1)
1 − x∗| |x(k+1)

2 − x∗| |x(k+1)
3 − x∗|

0 0.067143290409784 0.067143290409784 0.067143290409784

1 0.039387369302849 0.000832287212566 0.108496074240152

2 0.021904078517179 0.000000125374922 0.219330611898582

3 0.012559804468284 0.000000000000003 0.288178118764323

4 0.007078662470882 0.000000000000000 0.723649245792953

5 0.004028858567431 0.000000000000000 0.410183132337935

6 0.002280343429460 0.000000000000000 1.186907542305364

7 0.001294757160282 0.000000000000000 0.146569797006362

8 0.000733837662863 0.000000000000000 0.310516641279937

9 0.000416343852458 0.000000000000000 0.357777386500765

10 0.000236077474313 0.000000000000000 0.974565695952037

We observe that Φ1 converges roughly linearly, Φ2 converges roughly quadratically
and Φ3 does not converge at all. We will try to explain how this comes about in the
following.

Let us start with Φ1. Clearly, Φ′1(x) = −e−x and therefore |Φ′1(x)| < 1, for x ∈ [δ, 1] =
I∗δ , where δ > 0. Hence, the FPI with iteration function Φ1 and initial guess x(0) = 0.5
converges (at least) linearly.

Similarly, we have

Φ′2(x) =
1− xex

(1 + ex)2

and therefore ∣∣Φ′2(x)
∣∣ ≤ ∣∣∣∣max

y∈[0,1]
Φ′2(y)

∣∣∣∣ = |1− e|
4

<
1
2

, x ∈ [0, 1] = I∗.

Hence, the FPI with iteration function Φ2 and initial guess x(0) = 0.5 converges (at
least) linearly. In addition, one may see that |Φ′′2 (x∗)| = 0 and thus the FPI converges
quadratically, in fact.

Finally, Φ′3(x) = 1− ex − xex and thus Φ′3(x∗) = −ex∗ . In addition, we know that the
fixed point satisfies −ex∗ = − 1

x∗ whereby it follows that

∣∣Φ′3(x∗)
∣∣ = ∣∣∣∣− 1

x∗

∣∣∣∣ > 1, since x∗ ∈ (0, 1).
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8.1 Fixed Point Iterations in 1D

So, the iteration function Φ3 is not contractive around x∗ and thus the FPI cannot
converge.

x

Φ(x)

−1 < Φ
′(x

∗) ≤ 0 → convergence

x

Φ(x)

Φ
′(x

∗) < −1 → divergence

x

Φ(x)

0 ≤ Φ
′(x

∗) < 1 → convergence

x

Φ(x)

1 < Φ
′(x

∗) → divergence

8.1.1 Algorithm for Root-Finding with Quadratic Convergence

In this subsection, we will assume f ∈ C1. Therefore, we can use the first-order Taylor
approximation around x(k):

f (x) ≈ f (x(k)) + (x− x(k)) f ′(x(k)).

To find x∗ such that f (x∗) = 0, we define the next iterate x(k+1) in such a way that

f (x(k)) + (x(k+1) − x(k)) f ′(x(k)) = 0.

In this way, we obtain Newton’s iteration

x(k+1) := x(k) − f (x(k))
f ′(x(k))

, (8.1)

which requires f ′(x(k)) 6= 0.
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8 Iterative Methods for Non-Linear Systems of Equations

x(k)x(k+1)f

tangent

Do we have quadratic convergence when f ∈ C2? To answer this question, we reformulate
Newton’s iteration as a fixed point iteration

Φ(x) := x− f (x)
f ′(x)

and x(k+1) = Φ(x(k)) = x(k) − f (x(k))
f ′(x(k))

.

Thus, Newton’s method for f is equivalent to a fixed point iteration with iteration function
Φ(x). Let us look at the derivative of Φ(x). We have

Φ′(x) = 1− ( f ′(x))2 − f ′′(x) · f (x)
( f ′(x))2 =

f ′′(x) · f (x)
( f ′(x))2 .

It follows that if f ′(x∗) 6= 0, then Φ′(x∗) = 0 since f (x∗) = 0. Thus, as remarked after
Definition 8.1.4, this yields local quadratic convergence in a neighborhood I∗ of x∗.

Note.

• If the iteration is started with x(0) ∈ I∗, contractivity of Φ on I∗ guarantees f ′(x(k)) 6= 0
for all the iterates. The FPI is ill-defined should this not be guaranteed.

• For quadratic convergence of Newton’s method, it is sufficient to assume f ∈ C2(I∗).
In particular, we do not need to assume Φ ∈ C2(I∗). In summary, we need a neigh-
borhood I∗ of x∗ such that

– I∗ is sufficiently small,

– f ′(x) 6= 0 on I∗,

– f ∈ C2(I∗).

8.1.2 Secant Method

Depending on the underlying problem, the computation of f ′(x(k)) in each Newton itera-
tion could be costly. Thus, an alternative method might be to approximate f ′(x(k)) instead.
The following realization of this idea is called the secant method:

f ′(x(k)) ≈ f (x(k))− f (x(k−1))

x(k) − x(k−1)
,
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8.2 Nonlinear Systems of Equations

x(k+1) := x(k) − f (x(k))(x(k) − x(k−1))

f (x(k))− f (x(k−1))
.

x(k−1) x(k)x(k+1)

f (x)

For the secant method, the iterate x(k+1) is obtained
by approximating the derivative at x(k) through the
secant between the points x(k−1) and x(k).

Note.

• The secant method requires no evaluation of derivatives.

• The secant method converges super-linearly but not quadratically. To be precise, its
order is p = 1+

√
5

2 ≈ 1.618.

• We call the secant method a 2-point method as computing x(k+1) requires x(k) and
x(k−1).

More generally, we have the following definition:

Definition 8.1.6 (m-Point Iteration). A stationary m-point (m ∈ N) iterative method for x(k)

depends on the m most recent iterates x(k−1), . . . , x(k−m) and is of the following form:

x(k) = ΦF(x(k−1), . . . , x(k−m)), (8.2)

with iteration function ΦF designed for solving F(x) = 0.

Note. An m-point method also requires m initial guesses x(0), . . . , x(m−1) in order to be de-
scribed completely.

8.2 Nonlinear Systems of Equations

We will consider non-linear functions F : D ⊂ Rn → Rn describing non-linear systems of
n equations for n unknowns. Our goal is to find a point x∗ ∈ D such that F(x∗) = 0.
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x
(0)

x
(1)

x
(2)

x
(3)

x
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x
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x
∗

Φ

D

We use the following general m-point iteration rule:

x(k) = ΦF(x(k−1), . . . , x(k−m)),

with initial guess x(0).

The following three aspects of such iteration rules are essential:

• Convergence: (x(k))k∈N is said to be convergent if limk→∞ x(k) = x∗.

• Consistency: ΦF is said to be consistent if ΦF(x∗, . . . x∗) = x∗ ⇐⇒ F(x∗) = 0.

• Convergence rate: rate at which
∥∥∥x(k) − x∗

∥∥∥ decreases (see Definition 8.1.5).

For the convergence, we may work with any norm ‖·‖ on Rn since all norms on Rn (which
is a finite dimensional vector space) are equivalent:

Definition 8.2.1 (Equivalence of Norms). Two norms ‖·‖a and ‖·‖b on a vector space V are
equivalent if

∃ c1, c2 > 0 such that ∀ v ∈ V : c1 · ‖v‖a ≤ ‖v‖b ≤ c2 · ‖v‖a .

This implies that the convergence in Rn is independent of the choice of norm. But, in
general, the convergence rate depends on the chosen norm. For the concept of convergence,
we need to distinguish local vs. global convergence:

Definition 8.2.2 (Local and Global Convergence). A stationary m-point iterative method
converges locally to x∗ ∈ Rn if there is a neighbourhood U ⊂ D of x∗ such that x(0), . . . , x(m−1) ∈
U implies that x(k) is well-defined and limk→∞ x(k) = x∗, where (x(k))k∈N denotes the (infi-
nite) sequence of iterates.

If U = D, the iterative method is said to be globally convergent.
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x
∗

D

U

Illustration of local convergence in 2D. Only initial guesses that are “sufficiently close” to x∗ guarantee
convergence. Unfortunately, the neighbourhood U is rarely known a-priori. It may also be very small.

8.2.1 Fixed Point Iterations in Rn

Definition 8.2.3 (Contractive Mapping in Rn). An iteration function Φ : U ⊂ Rn → Rn is
contractive (w.r.t. the norm ‖·‖ on Rn) if

∃ L ∈ (0, 1) : ‖Φ(x)−Φ(y)‖ ≤ L ‖x− y‖ ∀ x, y ∈ U.

Note.

• Φ : U → U being contractive implies that if Φ(x∗) = x∗, then the fixed point iteration
converges to x∗∥∥∥x(k+1) − x∗

∥∥∥︸ ︷︷ ︸
‖e(k+1)‖

=
∥∥∥Φ(x(k))−Φ(x∗)

∥∥∥ ≤ L︸︷︷︸
<1

·
∥∥∥x(k) − x∗

∥∥∥︸ ︷︷ ︸
‖e(k)‖

.

This implies ∥∥∥e(k+1)
∥∥∥ ≤ Lk︸︷︷︸

→0

∥∥∥e(0)
∥∥∥ .

• The convergence is at least linear.

• When Φ is a contractive mapping, then Φ has at most one fixed point.

The last remark can be verified as follows: Suppose there are two fixed points x∗1 , x∗2 . Then,
by the definition of a fixed point,

‖x∗1 − x∗2‖ = ‖Φ(x∗1)−Φ(x∗2)‖ ≤ L · ‖x∗1 − x∗2‖ ,

where L < 1 as Φ is a contractive mapping. Therefore,

(1− L) · ‖x∗1 − x∗2‖ ≤ 0,
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8 Iterative Methods for Non-Linear Systems of Equations

which implies that x∗1 = x∗2 .

The following theorem (cf. course on Analysis) guarantees the existence of a fixed point
under certain conditions on Φ:

Theorem 8.2.1 (Banach’s Fixed Point Theorem). If D ⊂ Kn (K = R, C) is closed and bounded
and Φ : D → D satisfies

∃ L < 1 : ‖Φ(x)−Φ(y)‖ ≤ L · ‖x− y‖ ∀ x, y ∈ D,

then there is a unique fixed point x∗ ∈ D, Φ(x∗) = x∗, which is the limit of the sequence of iterates
x(k+1) := Φ(x(k)), for any x(0) ∈ D.

Next, we consider local convergence criteria for differentiable iteration functions Φ.

Lemma 8.2.1 (Sufficient condition for Local Linear Convergence of FPI). If Φ : U ⊂ Rn →
Rn, Φ(x∗) = x∗, Φ differentiable in x∗, and ‖DΦ(x∗)‖ < 1, then the fixed point iteration

x(k+1) := Φ(x(k))

converges locally and at least linearly.

Here DΦ(x) is the Jacobi matrix of Φ at x ∈ D.

DΦ(x) :=

[
∂Φi

∂xj
(x)

]n

i,j=1

=



∂Φ1
∂x1

(x) ∂Φ1
∂x2

(x) · · · · · · ∂Φ1
∂xn

(x)
∂Φ2
∂x1

(x) ∂Φ2
∂xn

(x)
...

...
∂Φn
∂x1

(x) ∂Φn
∂x2

(x) · · · · · · ∂Φn
∂xn

(x)

 . (8.3)

We can furthermore use the information contained in the Jacobian for the following Lemma:

Lemma 8.2.2 (Sufficient condition for Linear Convergence of FPI). Let U be convex and Φ :
U ⊂ Rn → Rn be continuously differentiable with

L := sup
x∈U
‖DΦ(x)‖ < 1 .

If Φ(x∗) = x∗ for some interior point x∗ ∈ U, then the fixed point iteration x(k+1) = Φ(x(k))
converges to x∗ at least linearly with rate L.

Stopping Criterion for Contractive FPIs

A stopping criterion, as the name implies, determines when we stop the fixed point iteration
Φ for solving F(x∗) = 0.

A stopping criterion for a convergent iteration is deemed reliable if it lets the iteration con-
tinue until the iteration error e(k) := x(k) − x∗ satisfies certain conditions (usually imposed
before the start of the iteration). We will mostly consider the following two conditions:
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8.2 Nonlinear Systems of Equations∥∥∥x(k) − x∗
∥∥∥ ≤ τabs, τabs =̂ prescribed (absolute) tolerance.

or ∥∥∥x(k) − x∗
∥∥∥ ≤ τrel ‖x∗‖, τrel =̂ prescribed (relative) tolerance.

Note that the second condition can be problematic for some iterations. For example, when
‖x∗‖ = 0, it is possible that the second condition is never satisfied and the algorithm never
terminates. Thus, the “ideal” stopping rule is obtained by combining both conditions, that
is, we terminate when

∥∥∥x(k) − x∗
∥∥∥ ≤

 τabs, or

τrel ‖x∗‖ .
(8.4)

Obviously, the optimal termination (8.4) cannot be used since x∗ is unknown. Hence, we
construct a stopping criterion by choosing an approximation for x∗. We introduce two
choices, namely, À residual based and Á correction based termination.

À Residual based termination: Stop convergent iteration {x(k)}k∈N0
when∥∥∥F(x(k))

∥∥∥ ≤ τ , τ=̂ prescribed tolerance > 0 .

Á Correction based termination: Stop convergent iteration {x(k)}k∈N0
when

∥∥∥x(k+1) − x(k)
∥∥∥ ≤

 τabs, or

τrel

∥∥∥x(k+1)
∥∥∥

where τabs > 0 and τrel > 0 are the absolute and relative tolerances respectively.

Recall from the discussion about the condition number that∥∥∥∥∥∥F(x(k))− F(x∗)︸ ︷︷ ︸
=0

∥∥∥∥∥∥ ,

which is computable, being small does not necessarily imply that∥∥∥x(k) − x∗
∥∥∥ ,

which is not computable, is small as well. Consider the following examples:
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F(x)

x

∣

∣

∣
F(x(k))

∣

∣

∣
small 6⇒ |x(k) − x∗| small

F(x)

x

∣

∣

∣
F(x(k))

∣

∣

∣
small ⇒ |x(k) − x∗| small

Our ultimate goal is a guarantee of the form:
∥∥∥x(k) − x∗

∥∥∥ ≤ τ. Suppose the iteration is
linearly convergent. Then, we may compute

∥∥∥x(k) − x∗
∥∥∥ 4-ineq.
≤

∥∥∥x(k) − x(k+1)
∥∥∥+ ∥∥∥x(k+1) − x∗

∥∥∥ ≤ ∥∥∥x(k+1) − x(k)
∥∥∥+ L

∥∥∥x(k) − x∗
∥∥∥ ,

which implies

(1− L) ·
∥∥∥x(k) − x∗

∥∥∥ ≤ ∥∥∥x(k+1) − x(k)
∥∥∥ . (8.5)

Hence, we can conclude that linearly converging iterates satisfy:

∥∥∥x(k+1) − x∗
∥∥∥ ≤

↑
contractivity

L ·
∥∥∥x(k) − x∗

∥∥∥ ≤
↑

(8.5)

L
1− L

∥∥∥x(k+1) − x(k)
∥∥∥ . (8.6)

Thereby, we have found an upper bound on something not computable
(∥∥∥x(k+1) − x∗

∥∥∥) in

terms of something we can compute
(∥∥∥x(k+1) − xk

∥∥∥).

Based on this estimate, we may design the a-posteriori stopping criterion

L
1− L

∥∥∥x(k+1) − x(k)
∥∥∥ ≤ τ

which guarantees
∥∥∥x(k) − x∗

∥∥∥ ≤ τ. Note that estimating L directly can be difficult. How-

ever, if a more pessimistic estimate L̃ > L is easier to find, it can also serve as a suitable
bound.
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8.2 Nonlinear Systems of Equations

In a similar fashion, one can also obtain a more general estimate as follows:∥∥∥x(k+m) − x(k)
∥∥∥ 4-ineq.
≤

k+m−1

∑
j=k

∥∥∥x(j+1) − x(j)
∥∥∥

≤
k+m−1

∑
j=k

Lj−k
∥∥∥x(k+1) − x(k)

∥∥∥
=

1− Lm

1− L

∥∥∥x(k+1) − x(k)
∥∥∥

≤ 1− Lm

1− L
Lk−l

∥∥∥x(l+1) − x(l)
∥∥∥ for some l < k .

Note that for m→ ∞, Lm → 0. With x∗ := lim
k→∞

x(k), we find the estimate

∥∥∥x∗ − x(k)
∥∥∥ ≤ Lk−l

1− L

∥∥∥x(l+1) − x(l)
∥∥∥ . (8.7)

Hence, we can obtain an a-priori stopping criterion by setting l = 0 in (8.7):∥∥∥x∗ − x(k)
∥∥∥ ≤ Lk

1− L

∥∥∥x(1) − x(0)
∥∥∥ (8.8)

Note that using a pessimistic value for L in (8.8) will result in a bound that is not even near
as optimal as the original bound (if k� 1). Then the stopping criterion (8.8) will terminate
the iteration long after the accuracy requirements were first met. This will thwart the
efficiency of the method.

8.2.2 Newton’s Method in Higher Dimensions

We extend the idea of Section 8.1.1 from the one dimensional case to higher dimensions.
The first order approximation of F around x(k) is

F(x) ≈ F(x(k)) + D F(x(k))︸ ︷︷ ︸
∈Rn,n

Jacobian of F at x(k)

(x− x(k)) =: Fk(x).

Definition 8.2.4 (Newton’s Method in Rn). Newton’s iteration in Rn may be defined by the
recursive rule

x(k+1) = x(k) −D F(x(k))−1F(x(k)), (8.9)

if D F(x(k)) is regular. We call −D F(x(k))−1F(x(k)) the Newton correction term.

Recall that for the one-dimensional Newton’s method, we required that f ′(x(k)) 6= 0. In
higher dimensions, D F(x(k)) has to be invertible so that one can solve the LSE

D F(x(k))y = −F(x(k))
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to obtain the Newton correction term y. Thereafter, we may update x(k+1) = x(k) + y.

The analysis of convergence of Newton’s method in higher dimensions is much more com-
plicated than one might think. Consider the following theorem.

Theorem 8.2.2 (Local Quadratic Convergence of Newton’s Method). Suppose that the follow-
ing conditions hold:

(A) D ⊂ Rn is open and convex.

(B) F : D → Rn is continuously differentiable.

(C) D F(x) is regular for all x ∈ D.

(D) ∃ L ≥ 0 for all v ∈ Rn, x ∈ D, x+ v ∈ D such that
∥∥D F(x)−1(D F(x + v)−D F(x))

∥∥
2 ≤

L · ‖v‖2.

(E) ∃ x∗ such that F(x∗) = 0 (existence of a solution in D).

(F) The initial guess x(0) ∈ D satisfies ρ :=
∥∥∥x∗ − x(0)

∥∥∥ < 2
L and Bρ(x∗) ⊂ D.

Then, Newton’s iteration (8.9) satisfies:

(i) x(k) ∈ Bρ(x∗) for all k ∈N.

(ii) lim
k→∞

x(k) = x∗.

(iii)
∥∥∥x(k+1) − x∗

∥∥∥
2
≤ L

2

∥∥∥x(k) − x∗
∥∥∥2

2
(local quadratic convergence).

Here we have used the notation: Bρ(x∗) := {y ∈ Rn, ‖y− x∗‖ < ρ}, which refers to a ball
of radius ρ centered at x∗.

Usually, it is hardly possible to verify the assumptions of the theorem for a concrete non-
linear system of equations, because neither L nor x∗ are known.

However, we may condense this theorem down to the following result.

Note (Convergence of Newton’s Method). If F(x∗) = 0 and D F(x∗) is regular, then New-
ton’s method is locally quadratic convergent.

Consider the following remaining questions:

1. What is a good stopping criterion for Newton’s method?

2. Can we obtain convergence on a larger region? Maybe at the cost of losing quadratic
convergence.

3. Computing the Newton correction term is costly as it involves solving an LSE in every
iteration step whose system matrix also changes at every step. Is there a remedy to
this problem?
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8.2 Nonlinear Systems of Equations

A Stopping Criterion for Newton’s Method in Rn

In Section 8.2.1, termination criteria for general FPIs have been discussed. We will now
consider such criteria specifically for Newton’s method. The intuition behind the stopping
criterion we are about to derive is that one expects∥∥∥x(k+1) − x∗

∥∥∥� ∥∥∥x(k) − x∗
∥∥∥

due to the quadratic convergence of Newton’s method. Therefore, we roughly have∥∥∥x(k) − x∗
∥∥∥ ≈ ∥∥∥x(k+1) − x(k)

∥∥∥ .

x∗
x(k)

x(k+1)

Thus, the computable stopping criterion∥∥∥x(k+1) − x(k)
∥∥∥ =

∥∥∥D F(x(k))−1F(x(k))
∥∥∥ ≤ τ

∥∥∥x(k)
∥∥∥

guarantees that ∥∥∥x(k) − x∗
∥∥∥ .
↑

(8.5)

τ
∥∥∥x(k)

∥∥∥ .

Note that this stopping criterion requires the computation of the Newton correction term
−D F(x(k))−1F(x(k)) of the new iterate x(k+1). Therefore, if x(k) was a good approximation,
we would have solved one LSE too many for verifying the stopping criterion. A cheaper
stopping criterion would be∥∥∥D F(x(k−1))−1F(x(k))

∥∥∥ ≤ τ
∥∥∥x(k)

∥∥∥ ,

where −D F(x(k−1))−1F(x(k)) is called simplified Newton correction term. The motivation be-
hind this simplification is that due to the fast convergence of Newton’s iteration, D F(x(k)) ≈
D F(x(k−1)) during the last steps of the iteration. Note that we may then reuse the LU fac-
torization of D F(x(k−1)) for the stopping criterion.

Example 8.2.1: Failures of Newton’s Method
The following are cases in which Newton’s method will fail unless one chooses the
initial guess carefully.

1. Functions with local minima or maxima:
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-20 -15 -10 -5 5
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-2
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6

2. Functions with asymptotes such as F(x) = xex − 1:

-6 -4 -2

-1.5

-1.0

-0.5

0.5

1.0

1.5

For the aforementioned function, one may compute that F′(−1) = 0. In this
way, one may show that, for x(0) < −1, Newton’s method diverges, that is,
limk→∞ x(k) = −∞. For x(0) > −1, Newton’s method converges, that is, limk→∞ x(k) =
x∗.

3. Functions for which Newton’s method is prone to overshoot its target such as
F(x) = arctan(x):

-4 -2 2 4

-1.5

-1.0

-0.5

0.5

1.0

1.5

The remedy for over/under-shooting is dampening, as we will see in the following
subsection.

250



8.2 Nonlinear Systems of Equations

8.2.3 Damped Newton Method

Newton’s method converges quadratically, but only locally, which may render it useless, if
convergence is guaranteed only for initial guesses very close to the exact solution. Here, we
study a method to enlarge the region of convergence, at the expense of quadratic conver-
gence, of course. The idea behind the damped Newton method is to check in each iteration
step whether the distance between x(k) and x(k+1) decreased by a factor of 2. Roughly
speaking, we check whether∥∥∥x(k+2) − x(k+1)

∥∥∥ ≤ 1
2

∥∥∥x(k+1) − x(k)
∥∥∥ .

If this is not the case, we do not take the full Newton step and instead damp the Newton
correction:

x(k+1) = x(k) − λ(k) D F(x(k))−1F(x(k)), (8.10)

where λ(k) ∈ (0, 1] is called damping factor.

Our strategy for choosing the damping factor will be to take the largest λ(k) possible such
that the distance between iterates decreases. A simple realization of this strategy is the
natural monotonicity test.

Affine Invariant Damping Strategy

We present the affine invariant natural monotonicity test (NMT):

Choose the maximal 0 < λ(k) ≤ 1 such that∥∥∥∆x(λ(k))
∥∥∥ ≤ (1− λ(k)

2

)
·
∥∥∥∆x(k)

∥∥∥ , (8.11)

where ∆x(k) := −D F(x(k))−1F(x(k)) denotes the current Newton correction and

∆x(λ(k)) := D F(x(k))−1F
(

x(k) + λ(k)∆x(k)
)

is a tentative simplified Newton correction.

Note. First, note that ∆x(k) corresponds to x(k+1) − x(k) without damping, x(k) + λ(k)∆x(k)

is a tentative new iterate x̃(k+1) with damping and thus ∆x(λ(k)) is an approximation for
x(k+2) − x̃(k+1). So in particular, the NMT checks whether

∥∥∥∆x(λ(k))
∥∥∥ is strictly smaller

than
∥∥∥x(k+1) − x(k)

∥∥∥, where x(k+1) = x(k) + ∆x(k).

In practice, we take λ(k) = 1 and check the NMT (Equation (8.11)). We then repeatedly
assign λ(k) ← λ(k)

2 until (8.11) is fulfilled for the first time. A lower bound λmin has to
be specified for the termination of the NMT: if the test fails to find a λ ≥ λmin fulfilling
the NMT, then the iteration is terminated and failure of the damped Newton method is
reported.
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x(k)x(k+1)F

tangent

x(k+2) x̃(k+1)

≈ ∆x̄(λ(k))

∆x(k)

A damped Newton step with λ(k) = 1
2 .

Example 8.2.2: Damped Newton method
We test the damped Newton method for the third problem of Example 8.2.1, where
F(x) = arctan(x) and we choose x(0) = 20 and λmin = 0.001. The full Newton correc-
tions had made Newton’s method fail in this example.

k λ(k) x(k) F(x(k))

1 0.03125 0.94199967624205 0.75554074974604

2 0.06250 0.85287592931991 0.70616132170387

3 0.12500 0.70039827977515 0.61099321623952

4 0.25000 0.47271811131169 0.44158487422833

5 0.50000 0.20258686348037 0.19988168667351

6 1.00000 -0.00549825489514 -0.00549819949059

7 1.00000 0.00000011081045 0.00000011081045

8 1.00000 -0.00000000000001 -0.00000000000001

We observe that damping is effective and asymptotic quadratic convergence is recov-
ered.
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Example 8.2.3: Failure of damped Newton method
We examine the effect of damping in the case of the second problem of Example 8.2.1,
where F(x) = xex − 1 and we choose x(0) = −1.5 and λmin = 0.001.

k λ(k) x(k) F(x(k))

1 0.25000 -4.4908445351690 -1.0503476286303

2 0.06250 -6.1682249558799 -1.0129221310944

3 0.01562 -7.6300006580712 -1.0037055902301

4 0.00390 -8.8476436930246 -1.0012715832278

5 0.00195 -10.5815494437311 -1.0002685596314

Bailed out because of lambda < λmin !

We observe that the Newton correction is pointing in the “wrong direction”. Therefore,
we obtain no convergence despite damping.

8.2.4 Quasi-Newton Method

At the beginning of Section 8.2.2, we formulated three questions to be addressed for New-
ton’s method. The last one of these was the question of computational cost: At each step,
Newton’s method requires the solution of a LSE, with different system matrix at each step.
We will now address how to design approximate Newton corrections, that can be obtained
more efficiently.

Recall the secant method in one dimension (see Section 8.1.2) which made use of the ap-
proximation

f ′(x(k)) ≈ f (x(k))− f (x(k−1))

x(k) − x(k−1)
.

Can we devise a similar (cheaper) approximate Newton method in the multidimensional
case? Let us start with a higher dimensional analog to the above equation: an approxima-
tion Jk ∈ Rn×n of D F(x(k)) such that

Jk

(
x(k) − x(k−1)

)
= F(x(k))− F(x(k−1)). (8.12)

Performing an approximate Newton iteration step with Jk yields

x(k) = x(k−1) − J−1
k−1F(x(k−1)),

which is equivalent to
Jk−1

(
x(k) − x(k−1)

)
= −F(x(k−1)). (8.13)
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The equations (8.12) and (8.13) together yield the underdetermined linear system

(Jk − Jk−1)
(

x(k) − x(k−1)
)
= F(x(k)).

A possible cheap choice for Jk − Jk−1 is

Jk − Jk−1 =
F(x(k))

(
x(k) − x(k−1)

)>
∥∥x(k) − x(k−1)

∥∥2
2

.

This choice results in a rank-1 matrix for Jk − Jk−1. So given an initial J0 (take J0 =

D F(x(0))), we can obtain Jk, an approximation of D F(x(k)), by k subsequent rank-1 up-
dates

Jk = Jk−1 +
F(x(k))

(
x(k) − x(k−1)

)>
∥∥x(k) − x(k−1)

∥∥2
2

.

This choice results in Broyden’s quasi-Newton method for solving F(x) = 0:

x(k+1) := x(k) + ∆x(k) , ∆x(k) := −J−1
k F(x(k)) ,

Jk+1 := Jk +
F(x(k+1))(∆x(k))>∥∥∆x(k)

∥∥2
2

.

Note that we can use the Sherman-Morrison-Woodbury formula to calculate J−1
k+1 from J−1

k :

J−1
k+1 =

(
I−

J−1
k F(x(k+1))(∆x(k))>∥∥∆x(k)
∥∥2

2 + (∆x(k))> J−1
k F(x(k+1))

)
J−1

k

Note. We conclude the discussion on iterative methods for nonlinear systems with the
remark that any such method should have a convergence monitor, i.e. a simple way to
check in each iteration whether convergence is to be expected or not. An example of such
a test is the natural monotonicity test for the damped Newton method. If the NMT fails
repeatedly so that λmin is reached, we stop the iteration and report an error.

8.3 Unconstrained Optimization

Many problems in practical applications involve finding the optimum of some objective
function, that is, finding a maximum or a minimum. This question is closely linked to the
solution of nonlinear systems of equations, as we will see, although in its full generality,
optimization is a much more general field and deserves its own treatment. However, with
what we have seen in the previous discussions, we can derive iterative methods for solving
simple (that is, convex unconstrained) optimization problems. We have already seen a few
optimization problems in Chapters 2 and 3:

• Least-squares solution: Find an x ∈ Kn such that ‖Ax− b‖2 → min.
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• Generalized solution: Find a least-squares solution x to Ax = b such that ‖x‖2 → min.

• Best low-rank approximation: Given A ∈ Km,n, find Ã ∈ Km,n, rank(Ã) ≤ k, such
that

∥∥∥A− Ã
∥∥∥

2/F
→ min over the set of rank-k matrices.

General Problem Formulation

Given a function F : Rn → R, how do we find a minima/maxima of F?

Example 8.3.1:
We first look at an application from machine learning which is the maximum likelihood
estimation. Suppose some quantity can be modelled with a probability distribution. For
example, the weight of 5-year olds in Switzerland (which is modelled by a normal dis-
tribution). Can we estimate the mean µ and variance σ through randomized samples?

Consider samples {w1, . . . , wn}. The normal distribution has the density function

f (w; µ, σ) =
1√
2πσ

e−
(w−µ)2

2σ2 ,

i.e. f (wi; µ, σ) describes the likelihood to observe weight wi. Let us assume that the
weight of the children are independent and so the probability to observe our samples
is

P [{w1, . . . , wn}; µ, σ] =
n

∏
i=1

f (wi; µ, σ).

Note that we view this probability as a function of µ and σ, while the samples {w1, . . . , wn}
are fixed. To estimate the model parameters µ and σ, we may maximize the likelihood
of observing {w1, . . . , wn} by maximizing P. A common trick to use is that this is, in
fact, equivalent to maximizing log P (to be precise, the logarithm of P has the same
location of the maximum but better numerical properties).

Note that maximizing an objective F is equivalent to minimizing −F. Hence, it suffices
to only consider minimization problems. Finally, we need to distinguish between local and
global minima:

• We call x∗ a global minimum of F : Rn → R if F(x∗) ≤ F(x), for all x ∈ Rn.

• We call x∗ a local minimum of F : Rn → R if there is an ε > 0 such that for all x ∈ Rn

with ‖x− x∗‖ ≤ ε it holds that F(x∗) ≤ F(x).

We call
Bε(x∗) := {x ∈ Rn : ‖x− x∗‖ ≤ ε}

an ε-ball around x∗.
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8.3.1 Optimization with a Differentiable Objective Function

When the function F : Rn → R is differentiable, ∇F indicates the direction of greatest
increase and −∇F the direction of steepest descent. One can see this when considering the
first-order Taylor approximation of F around x given by

F(x) ≈ F(x) +∇F(x)>(x− x).

Taking x as a (sufficiently close) update of x in the direction of the gradient ∇F, we obtain

F(x + τ∇F(x)) ≈ F(x) + τ ‖∇F(x)‖2 ,

and witness an increase of F whenever τ > 0 and a decrease of F whenever τ < 0. We call x
a stationary point of F if ∇F(x) = 0. Stationary points can be local/global maxima/minima
or saddle points of F. If F is twice differentiable, we can use its Hessian matrix at the
stationary point to identify which one is the case:

HF(x) :=

(
∂2F(x)
∂xi∂xj

)n

i,j=1

.

This can be seen by considering the second-order Taylor expansion around x given by

F(x) ≈ F(x) +∇F(x)>(x− x) +
1
2
(x− x)>HF(x)(x− x).

For a stationary point x, we have ∇F(x) = 0 and therefore

F(x) ≈ F(x) +
1
2
(x− x)>HF(x)(x− x).

Suppose that HF(x) is positive definite. Then, it follows that

(x− x)>HF(x)(x− x) > 0

and therefore there exists an ε > 0 such that for all x ∈ Bε(x), we have that F(x) ≥ F(x).
Therefore, x is a local minimum of F.

Similarly, one may show that if HF(x) is negative definite, then x is a local maximum of
F, and that if HF(x) is indefinite, then x is a saddle point of F. Additionally, if HF(x) is
not invertible, then there is a whole region of saddle points. One can check the positive
definiteness of the Hessian, for instance, by checking whether a Cholesky factorization
exists.

8.3.2 Optimization with a Convex Objective Function

As already hinted at in the beginning of this chapter, general optimization problems can be
difficult to solve. However, for minimization problems with convex objective functions, the
theory is rather straightforward.
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Definition 8.3.1 (Convex Function). A function F : Rn → R is called convex if for all
x, y,∈ Rn, and for all α ∈ (0, 1), the following holds:

F((1− α)x + αy) ≤ (1− α)F(x) + αF(y). (8.14)

If the inequality holds in a strict sense, then the function is strictly convex.

x y(1− α)x + αy

F((1− α)x + αy)

(1− α)F(x) + αF(y)

Lemma 8.3.1 (Minimum of Convex Function). If x ∈ Rn is a local minimum of F : Rn → R,
then it is a global minimum.

Proof. We prove the claim by contradiction: Let x be a local minimum of F, but not its
global minimum. This implies that there exists an x0 ∈ Rn such that F(x0) < F(x). For
α ∈ (0, 1), convexity implies

F(x + α(x0 − x)︸ ︷︷ ︸
=αx0+(1−α)x

) ≤ (1− α)F(x) + α F(x0)︸ ︷︷ ︸
<F(x)

< F(x).

We construct a sequence αk → 0 and consider (1 − αk)F(x) + αkF(x0) < F(x). By con-
struction, for every ε > 0, we can find a k ∈ N such that ‖xk − x‖ < ε, where xk :=
αkx0 + (1 − αk)x. However, for this sequence xk approaching x, one has F(xk) < F(x).
Hence, x cannot be a local minimum, which contradicts our assumption.

8.3.3 Optimization Algorithms

Gradient Descent

We had seen that for a differentiable function F : Rn → R, its negative gradient ∆x =
−∇F(x) points in the direction of steepest descent. This provides us the guarantee that
if ∇F(x) 6= 0 and α > 0 is sufficiently small, then F(x− α∇F(x)) ≤ F(x). Based on this
insight, we define the gradient descent iteration by

x(k+1) = x(k) − t(k)∇F(x(k)),

where t(k) > 0 is a step-size whose determination will be a 1D problem.
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In each iteration F(x(k)) decreases and hence we terminate the search when ∇F(x(k)) ≈ 0.
There are different methods to determine the step sizes t(k):

• Exact line search: t∗ = argmint≥0 F(x(k) − t∇F(x(k))).

• Backtracking line search: Note that for t which is small enough and α ∈ (0, 1), we have

F(x− t∇F(x)) ≈ F(x)− t ‖∇F(x)‖2 < F(x)− αt ‖∇F(x)‖2 .

So, we might start with t = 1 and fix a parameter α ∈ (0, 1
2). Then, we decrease t

through t← t
2 until

F(x− t∇F(x)) < F(x)− αt ‖∇F(x)‖2 (8.15)

is satisfied. Equation (8.15) guarantees that we iterate until a "good decrease" is
reached.

This guarantees that F(x(k))− F(x(k+1)) > αt‖∇F(x(k))‖2, i.e. that there is a decrease
in the value of F.

0 t
F(x)− αt||∇F(x)||2

(slope smaller by a factor α)
linear approximation

F(x)− t||∇F(x)||2

F(x− t∇F(x))

t0

This method is called backtracking line-search since we start at t = 1 and stop once
t ≤ t0 for the first time.

Newton’s Method

As an alternative to gradient descent, one can formulate an iteration based on Newton’s
method. The idea is that now, instead of solving for F(x) = 0 (i.e. root finding), the goal is
to find the minimum of F, and hence, we solve for ∇F(x) = 0, which can be interpreted as
a root finding problem for the gradient of F. We require that F is twice differentiable. This
allows us to compute the Taylor approximation of second-order around x(k) by

F(x) ≈ F(x(k)) +∇F(x(k))>(x− x(k)) +
1
2
(x− x(k))>HF(x(k))(x− x(k)).

We might differentiate the right-hand side and set it to zero (this yields the minimum of
the quadratic approximation) and find the iteration rule

x(k+1) = x(k) − [HF(x(k))]−1∇F(x(k)).
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One can show that near the minima of F, the above iteration converges quadratically. Ad-
ditionally note that

• Newton’s method typically needs fewer iterations than gradient descent,

• Gradient descent typically converges on a larger region than Newton’s method.

Finally, we observe that both Newton’s method and Gradient Descent may get stuck at
local minima.

Broyden–Fletcher–Goldfarb–Shanno (BFGS) Method

This method is a quasi-Newton method. Instead of working with the exact Hessian HF(x(k)),
we will approximate it by a matrix Bk ∈ Rn×n with the property that Bk+1 is obtained from
a simple update of Bk. Similar to the procedure of Broyden’s method (see Section 8.2.4), we
will make use of a secant-like condition

Bk+1(x(k+1) − x(k)︸ ︷︷ ︸
=:s(k)

) = ∇F(x(k+1))−∇F(x(k))︸ ︷︷ ︸
=:y(k)

,

or
Bk+1s(k) = y(k). (8.16)

Now, we will force Bk+1 to be symmetric positive definite (recall that this is the property of
the Hessian at a local minimum) by making the ansatz

Bk+1 = Bk + αuu> + βvv>

and requiring (8.16) to hold. The choice

u = y(k), v = Bks(k),

α =
1(

y(k)
)> s(k)

, β = − 1(
s(k)
)> Bks(k)

,

results in (8.16) being satisfied. The update becomes

Bk+1 = Bk +
y(k)

(
y(k)

)>
(
y(k)

)> s(k)
−

Bks(k)
(

Bks(k)
)>

(
s(k)
)> Bks(k)

.

The BFGS iteration is then given by

x(k+1) = x(k) − B−1
k ∇F(x(k)) ,

which suggests using the Sherman-Morrison-Woodbury formula

B−1
k+1 =

I−
s(k)

(
y(k)

)>
(
y(k)

)> s(k)

B−1
k

I−
s(k)

(
y(k)

)>
(
y(k)

)> s(k)

+
y(k)

(
y(k)

)>
(
s(k)
)> s(k)

for the update procedure.
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8 Iterative Methods for Non-Linear Systems of Equations

Note. A variant of the BFGS method is the L-BFGS method, where the L stands for "limited
memory". The L-BFGS method does not store the dense matrices Bk.
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