NumCSE exercise sheet 2
LU decomposition, sparsity, least squares

soumil.gurjar@sam.math.ethz.ch
oliver.rietmann@sam.math.ethz.ch

October 17, 2018

Exercise 2.1. LU decomposition and pivoting.

We consider the family of invertible matrices

e 1
Ae—(l 1), 0§€<1

and the permutation matrix
We will examine the equation

with solution

(a) Show that Ay has no LU decomposition, while P - A does.
(b) If 0 < e < 1, then A, admits the LU decomposition A, = L, - U, where

1 0 € 1
Le'—(% 1)’ Ue'—(o 1—%)'

However for sufficiently! small € > 0, cancellation will occur: Instead of U,, we will end up with

Solve (1) using the erroneous LU decomposition (L., U,) and compare this solution with (2).

(c) Now we do the same, but with pivoting: For all 0 < € < 1, we have P - A, = LF - UP| where

10 1 1
P ._ P ._
L ._<E 1), Ut ._(0 1_€>.
Again, for sufficiently small € > 0, we have to consider fjf’, where
~ 11
P
oo (1),

Solve (1) using the erroneous LU decomposition (LF, UP) of P - A.. Compare this solution with
(2) and the one from (b).

IThis issue occurs for instance if € is of type float and has value 1.0e-8f.

1



Exercise 2.2. LU decomposition and sparsity.

Fix n € N and let T € R™" be the tridiagonal matrix

2 -1 0 0
-1 2 -1

T=10 -1 0

L2 -1

0 0 -1 2

(a) How many real numbers are needed to store T for given n in CCS format?

(b) Write a function
std::vector<Eigen::Triplet<double>> MakeTripletList(int n)

which for given dimension n returns a vector of triplets representing T.

(c) Write a function
double Runtime(const std::function<void(void)> &f)

that returns the runtime of a function void f() in seconds.

(d) Compare sparse vs. dense LU decomposition of T in terms of execution time as follows:
Measure the runtime of Eigen: :SparseLU: :compute and Eigen: :FullPivLU: : compute for all
n € {64,128,256,512}. What are the asymptotic complexities (large n)?



Exercise 2.3. least squares.

We consider the (scaled) Runge? function 7 : [—1,1] — R defined by

B 1
14 2522

r(z)

for all x € [—1,1]. Fix m € N and suppose that r is given only by sampled data (x;,y;), where
21

xi:m_l—l, yi = r(x;),
for all i € {0,...,m — 1}. For given n € N we shall use this data to approximate r by a polynomial
n—1
p(:l?) = Z aixla
i=0
where the coefficients ag,...,a,_1 € R are to be determined. To this end, we introduce the linear
system
I S ao Yo
12l o apt ap Y1
: - : ! (3)
1z .. m:f@__ll Q1 Ym—1
V()=

which is equivalent to p(z;) = y; for alli € {0, ..., m—1}. The matrix V(z,n) is called Vandermonde®
matrix.

(a) Implement a function
Eigen::MatrixXd Vandermonde(const Eigen::VectorXd &x, int n)

which takes the vector x of sample points zg, ..., x,,—1 and the number n of coefficients of p and
returns the associated Vandermonde matrix V(z,n).

(b) We set m = n. Then V(x,n) is invertible and (3) admits a unique solution. Use C++/Eigen to
find this solution and print the coefficients of p for n = 11.

(c) Now we consider m = 3n data points (yielding a tall V(z,n)). In general, Equation (3) will no
longer be solvable and we resort to a least squares solution. Write a short C++/Eigen code to
obtain the least squares solution. Print the coefficients of p again for n = 11.

(d) Plot the exact Runge function r and the polynomial p obtained in Tasks (b) and (c). What do
you observe?

2Named after the German mathematician and physicist Carl David Tolmé Runge.
3Named after the French mathematician Alexandre-Théophile Vandermonde.



