
NumCSE exercise sheet 2
LU decomposition, sparsity, least squares

soumil.gurjar@sam.math.ethz.ch
oliver.rietmann@sam.math.ethz.ch

October 17, 2018

Exercise 2.1. LU decomposition and pivoting.

We consider the family of invertible matrices

Aε :=

(
ε 1
1 1

)
, 0 ≤ ε < 1

and the permutation matrix

P :=

(
0 1
1 0

)
.

We will examine the equation

Aε ·
(
x1
x2

)
=

(
1
0

)
(1)

with solution

x1 =
−1

1− ε
, x2 =

1

1− ε
. (2)

(a) Show that A0 has no LU decomposition, while P ·A0 does.

(b) If 0 < ε < 1, then Aε admits the LU decomposition Aε = Lε ·Uε, where

Lε :=

(
1 0
1
ε

1

)
, Uε :=

(
ε 1
0 1− 1

ε

)
.

However for sufficiently1 small ε > 0, cancellation will occur: Instead of Uε, we will end up with

Ũε :=

(
ε 1
0 −1

ε

)
.

Solve (1) using the erroneous LU decomposition (Lε, Ũε) and compare this solution with (2).

(c) Now we do the same, but with pivoting: For all 0 < ε < 1, we have P ·Aε = LP
ε ·UP

ε , where

LP
ε :=

(
1 0
ε 1

)
, UP

ε :=

(
1 1
0 1− ε

)
.

Again, for sufficiently small ε > 0, we have to consider ŨP
ε , where

ŨP
ε :=

(
1 1
0 1

)
.

Solve (1) using the erroneous LU decomposition (LP
ε , Ũ

P
ε) of P ·Aε. Compare this solution with

(2) and the one from (b).

1This issue occurs for instance if ε is of type float and has value 1.0e-8f.

1

Exercise 2.2. LU decomposition and sparsity.

Fix n ∈ N and let T ∈ Rn×n be the tridiagonal matrix

T =


2 −1 0 . . . 0

−1 2 −1
. . .

...

0 −1
. 0

...
. 2 −1

0 . . . 0 −1 2

 .

(a) How many real numbers are needed to store T for given n in CCS format?

(b) Write a function

std::vector<Eigen::Triplet<double>> MakeTripletList(int n)

which for given dimension n returns a vector of triplets representing T.

(c) Write a function

double Runtime(const std::function<void(void)> &f)

that returns the runtime of a function void f() in seconds.

(d) Compare sparse vs. dense LU decomposition of T in terms of execution time as follows:
Measure the runtime of Eigen::SparseLU::compute and Eigen::FullPivLU::compute for all
n ∈ {64, 128, 256, 512}. What are the asymptotic complexities (large n)?

2

Exercise 2.3. least squares.

We consider the (scaled) Runge2 function r : [−1, 1]→ R defined by

r(x) =
1

1 + 25x2

for all x ∈ [−1, 1]. Fix m ∈ N and suppose that r is given only by sampled data (xi, yi), where

xi =
2i

m− 1
− 1, yi = r(xi),

for all i ∈ {0, . . . ,m− 1}. For given n ∈ N we shall use this data to approximate r by a polynomial

p(x) =
n−1∑
i=0

aix
i,

where the coefficients a0, . . . , an−1 ∈ R are to be determined. To this end, we introduce the linear
system 

1 x10 . . . xn−1
0

1 x11 . . . xn−1
1

...
...

. . .
...

1 x1m−1 . . . xn−1
m−1


︸ ︷︷ ︸

V(x,n) :=


a0
a1
...

an−1

 =


y0
y1
...

ym−1

 , (3)

which is equivalent to p(xi) = yi for all i ∈ {0, . . . ,m−1}. The matrix V(x, n) is called Vandermonde3

matrix.

(a) Implement a function

Eigen::MatrixXd Vandermonde(const Eigen::VectorXd &x, int n)

which takes the vector x of sample points x0, . . . , xm−1 and the number n of coefficients of p and
returns the associated Vandermonde matrix V(x, n).

(b) We set m = n. Then V(x, n) is invertible and (3) admits a unique solution. Use C++/Eigen to
find this solution and print the coefficients of p for n = 11.

(c) Now we consider m = 3n data points (yielding a tall V(x, n)). In general, Equation (3) will no
longer be solvable and we resort to a least squares solution. Write a short C++/Eigen code to
obtain the least squares solution. Print the coefficients of p again for n = 11.

(d) Plot the exact Runge function r and the polynomial p obtained in Tasks (b) and (c). What do
you observe?

2Named after the German mathematician and physicist Carl David Tolmé Runge.
3Named after the French mathematician Alexandre-Théophile Vandermonde.

3

