
NumCSE exercise sheet 4
Convolution and FFT, filtering, Lagrange interpolation

alexander.dabrowski@sam.math.ethz.ch
oliver.rietmann@sam.math.ethz.ch

November 13, 2018

Exercise 4.1. (Long exercise) Sparse vectors, their convolution and FFT

Given a vector x of numbers, we want to represent it with a new data structure which should be
suitable in case most of its entries are negligible. We also want to implement convolution and fast
Fourier transform for this new data structure.

(a) Consider the following two structs:

• template<class T> duplet, which has members

– int ind, the index of an element in x;

– T val, the value of the element at position ind;

• template<class T> sparse vec, which has members

– double tol. We consider negligible any number with absolute value smaller than tol;

– duplets, a vector of objects duplet<T> which stores the indices and values of the
non-negligible elements of x;

– len, an integer which records the length of x.

Implement in sparse vec<T> the following utility methods:

• void append(int ind, T val), which appends to duplets a new duplet with index ind

and value val, if abs(val)>=tol;

• void cleanup(), which sorts duplets with respect to ind, eliminates repetitions, with the
convention that if two elements have the same index their values should be added up, and
eliminates any element with norm smaller than tol or with index larger than len-1. If
x.cleanup() leaves x as it is, we say that x is clean;

• T get val(int ind), which returns the element of x in position ind. It should work in
O(log duplets.size()) time and assumes that x is clean.

Example: A representation of x = (0, 0, 1, 0, 7 + i, 0) can be obtained with a sparse vec with
duplets = {(ind=4,val=6-I), (ind=1,val=1e-7), (ind=22,val=9), (ind=4,val=1+2I),

(ind=2,val=1)}, len=6, tol=1e-6. Notice that duplets.size()!=len. Running cleanup() on
such an object, duplets would become {(ind=2,val=1), (ind=4,val=7+I))}.
Important notes: In all the subproblems below, you can assume all vectors of type sparse vec

which are passed as inputs are already clean. Do not convert the sparse vecs to/from dense vectors.

(b) In struct sparse vec implement a method cwise mult which returns the component-wise mul-
tiplication between sparse vec a and sparse vec b in O(sza + szb) time, where sza, szb are
respectively the number of non-negligible elements of a and b.

1



(c) Implement a method conv which returns the discrete convolution of sparse vec a and sparse vec

b in O(sza szb) time.

(d) Implement a method fft which returns the discrete Fourier transform of sparse vec x in
O(n(log n)2) time, where n = x.len. You can assume that n is a power of 2. Your function
should return a sparse vec which is clean.

(Optional) Improve your code so that it runs in O(n log n). Even if you don’t implement this
improvement, you can suppose in the following subproblems that the runtime of fft is O(n log n).

(e) Implement a method ifft which returns the inverse discrete Fourier transform of sparse vec

x in O(n log n) time. You can assume that n is a power of 2.

(f) Let a and b be two complex vectors of length n + 1 and n respectively. Assume that n is a
power of 2. Implement a method conv fft which returns the discrete convolution of a and b in
O(n log n) time.

(g) Can conv fft(x, y) be asymptotically slower than conv(x, y) for a particular choice of x and
y? Briefly motivate your answer.

2



Exercise 4.2. 2D convolution, FFT2 and Laplace filter

We review the two dimensional convolution, its relation with the discrete Fourier transform, and
implement a discrete Laplacian filter.
Consider the 2-dimensional infinite arrays X = (Xk1,k2)k1,k2∈Z and Y = (Yk1,k2)k1,k2∈Z. We can define
their convolution as the 2-dimensional infinite array X ∗ Y such that

(X ∗ Y )k1,k2 =
∞∑

j1=−∞

∞∑
j2=−∞

Xj1,j2Yk1−j1,k2−j2 .

In the same way as in the 1-dimensional case, given two matrices X ∈ Rm1,m2 and Y ∈ Rn1,n2 we can
define their discrete convolution as the convolution between the zero extensions of X and Y trimmed
of unnecessary zeros, and their circular convolution as the smallest period of the convolution between
the periodic extension of X and the zero extension of Y .
Consider two matrices A ∈ Rn,m and F ∈ Rk,k with k < n,m.

(a) How should we extend A and F to larger matrices Ã and F̃ so that the discrete convolution of
A with F is equal to the circular convolution of Ã with F̃?

(b) By recalling to the 1-dimensional fast fourier transform (see the Eigen::FFT module), implement
a function fft2 which returns the 2-dimensional fast fourier transform of a matrix.

(c) Implement a function ifft2 which returns the 2-dimensional inverse fast fourier transform of a
matrix.

(d) Implement an efficient function with arguments A and F which computes their discrete convo-
lution.

Hint: use the result derived in the previous steps and the two dimensional circular convolution
theorem.

(e) The discrete Laplacian filter is defined as

F =

 0 −1 0
−1 4 −1
0 −1 0

 .

It is often used to detect edges in images. Test your filter on the black and white “picture”
provided in the template.

3



Exercise 4.3. Lagrange interpolation.

Fix n ∈ N0 and let t0, . . . , tn ∈ R be distinct nodes, i.e. ti 6= tj if i 6= j. Then

Li(t) :=
n∏

j=0
j 6=i

t− tj
ti − tj

is called the i-th Lagrange polynomial for these given nodes. For y0, . . . , yn ∈ R we call

p(t) :=
n∑

i=0

yiLi(t)

the Lagrange interpolant through (ti, yi)
n
i=0.

(a) Prove that
n∑

i=0

Li(t) = 1

for all t ∈ R.

Hint: Choose yi = 1 for all i ∈ {0, . . . , n} and use uniqueness of Lagrange interpolants.

(b) For t ∈ R define ω(t) :=
∏n

j=0(t− tj) and fix i ∈ {0, . . . , n}. Prove that ω′(ti) 6= 0 and

Li(t) = ω(t)
λi

t− ti

for all t ∈ R, where

λi :=
1

ω′(ti)
.

(c) Compute the Lagrange interpolant p(t) corresponding to the data given in Table 1.

i ti yi
0 -1 2
1 0 -4
2 1 6

Table 1: data

(d) Use the Newton basis approach to compute the interpolating polynomial p̃(t) for the data in
Table 1.

(e) Is p̃(t) different from p(t)? Explain your answer.

(f) What are the advantages of using the Newton basis compared to the Lagrange polynomials?

4


