
NumCSE exercise sheet 1
Cancellation errors, manipulating matrices

alexander.dabrowski@sam.math.ethz.ch
oliver.rietmann@sam.math.ethz.ch

October 9, 2018

Exercise 1.1. Summing floating point numbers.

Suppose you have a vector<float> v which contains some unknown numbers with very different
magnitudes, and you want to compute its total sum.

(a) Suppose in this subpoint that v has size 107, and that it has a single element equal to 1 and
the rest are all in the range [1e-8, 2e-8]. Consider the following simple code to sum all the
numbers in v:

float sum = 0;

for (float x : v) sum += x;

What is the final value of sum if 1 is in the first position of v? What can you say if 1 is in the
last position of v?

Solution: In the first case it is 1, because at each iteration we add something smaller than
2e-8 to 1, which with float precision remains 1. In the second case we add small numbers first,
so no catastrophic cancellation occurs, so we would expect the final sum to lie approximately in
the range [1.1, 1.2].

(b) Implement a function sum which returns the sum of v with good accuracy (if v is as in subpoint
(a), the sum should have an error smaller than 1e-3 (Correction: approximately 1e-2) for any
possible position of 1).

Hint : add up first the numbers which have small magnitude.

Solution:

13 float sum(vector<float> v) {

14 float sum = 0, prev_sum = 0;

15 sort(v.begin(), v.end(), [] (auto x, auto y) { return abs(x) < abs(y); });

16 for(int i = 0; i < v.size(); i++) {

17 prev_sum = sum;

18 sum += v[i];

19 }

20 return sum;

kahan sum.cpp

Notice that adding up from smallest to largest doesn’t guarantee best accuracy. For instance,
just by replacing line 15 with

swap(*max element(v.begin(), v.end()), *(v.end()-1));

which puts the 1 in last position, gives an error of approximately 1e-3 for our test vector.

1

(c) What if instead v has size 108, with all elements in the range [1e-8, 2e-8] except for a single
element 1?

Solution: Simply sorting and adding up in order the numbers will give'1.5, which is incorrect.
This is due to the fact that 0.5+2e-8 is still 0.5 for a float. A possible solution to this issue
would be to take the two smallest numbers of v, delete them from v, re-insert their sum, and
so on. This strategy would require modifying (or copying) v and additional time for finding the
minimum (or for keeping v sorted). A better solution is given in the next subpoint.

(d) Implement a function acc sum which returns the sum of v by adapting the simple code of Point
(a) to keep track in an accumulator variable of cancellation errors which arise in each iteration
of the loop.

Hint : There are many possible solutions to this problem. The following hint might be helpful to
derive one of the “best” strategies. At each loop: add x to the accumulator, then try to add the
accumulator to the running sum, then add to the accumulator the cancellation error.

Solution:

This strategy is also called Kahan algorithm1.

22

23 float acc_sum(vector<float> &v) {

24 float sum = 0, e = 0;

25 for (float x : v) {

26 e += x;

27 float tmp = sum + e;

28 e += sum - tmp;

29 sum = tmp;

30 }

31 return sum;

kahan sum.cpp

1William Kahan, “Further remarks on reducing truncation errors”, Communications of the ACM, vol. 8, 1965.

2

Exercise 1.2. Structured matrix–vector product.

Let n ∈ N and A be a real n× n matrix defined as:

(A)i,j = ai,j = min{i, j}, i, j = 1, . . . , n. (1)

The matrix-vector product y = Ax can be implemented as

23 VectorXd one = VectorXd::Ones(n);

24 VectorXd linsp = VectorXd::LinSpaced(n,1,n);

25 y = ((one * linsp.transpose())

26 .cwiseMin(linsp * one.transpose())) * x;

Code 1: structured matrix vector.cpp

(a) What is the asymptotic complexity of Code 1 w.r.t. the problem size n?

Solution: Notice the following:

• the outer product of two vectors has complexity O(n2);

• the Matrix–vector multiplication has quadratic complexity O(n2);

• component-wise minimum has complexity O(n2).

Therefore, the overall complexity is O(n2).

(b) Write a C++ function

void multAmin(const VectorXd &x, VectorXd &y);

which computes y = Ax with complexity O(n). You can test your implementation by comparing
with the output from Code 1.

Hint : Make use of partial sums
∑n

i=j xi.

Solution: We set vn = xn and define for all i = 1, . . . , n− 1

vi = vi+1 + xi.

Then our solution vector is given by y1 = v1 and

yi = yi−1 + vi (2)

for all i = 2, . . . , n.

55 void multAmin(const VectorXd & x, VectorXd & y) {

56 unsigned int n = x.size();

57

58 if (n == 0) return;

59

60 y = VectorXd::Zero(n);

61 VectorXd v = VectorXd::Zero(n);

62

63 v(n-1) = x(n-1);

64 for (unsigned int i = n-1; 0 < i; --i)

65 v(i-1) = v(i) + x(i-1);

66

67 y(0) = v(0);

68 for (unsigned int i = 1; i < n; ++i)

69 y(i) = y(i-1) + v(i);

70 }

structured matrix vector.cpp

3

(c) Measure and compare the runtimes of your multAmin and Code 1 for n = 24, . . . , 210. Report
the minimum runtime in seconds with scientific notation using 3 decimal digits.

Solution: The matrix multiplication in Code 1 has complexity O(n2). The faster implementa-
tion has complexity O(n). The time measurements are shown in Figure 1.

94 unsigned int nruns = 10;

95

96 std::cout << "--> Timings:" << std::endl;

97 // Header, see iomanip documentation

98 std::cout << std::setw(15)

99 << "N"

100 << std::scientific << std::setprecision(3)

101 << std::setw(15) << "multAminSlown"

102 << std::setw(15) << "multAminLoops"

103 << std::setw(15) << "multAmin"

104 << std::endl;

105 // From 2^4 to 2^{13}

106 for(unsigned int i = 0; i<nLevels; i++) {

107 // Compute runtime many times

108 double min_slow = std::numeric_limits<double>::infinity();

109 double min_slow_loops = std::numeric_limits<double>::infinity();

110 double min_fast = std::numeric_limits<double>::infinity();

111

112 for(unsigned int r = 0; r < nruns; ++r) {

113 VectorXd x = VectorXd::Random(n[i]);

114 VectorXd y;

115

116 std::chrono::time_point<std::chrono::high_resolution_clock> start, end;

117 std::chrono::duration<double, std::ratio<1>> duration;

118

119 // Runtime of slow method

120 start = std::chrono::high_resolution_clock::now();

121 multAminSlow(x, y);

122 end = std::chrono::high_resolution_clock::now();

123 duration = end - start;

124 min_slow = std::min(min_slow, (double)duration.count());

125

126 // Runtime of slow method with loops

127 start = std::chrono::high_resolution_clock::now();

128 multAminLoops(x, y);

129 end = std::chrono::high_resolution_clock::now();

130 duration = end - start;

131 min_slow_loops = std::min(min_slow_loops, (double)duration.count());

132

133 // Runtime of fast method

134 start = std::chrono::high_resolution_clock::now();

135 multAmin(x, y);

136 end = std::chrono::high_resolution_clock::now();

137 duration = end - start;

138 min_fast = std::min(min_fast, (double)duration.count());

139 }

140

141 minTime[i] = min_slow;

142 minTimeLoops[i] = min_slow_loops;

143 minTimeEff[i] = min_fast;

144

4

145 std::cout << std::setw(15)

146 << n[i]

147 << std::scientific << std::setprecision(3)

148 << std::setw(15) << minTime[i]

149 << std::setw(15) << minTimeLoops[i]

150 << std::setw(15) << minTimeEff[i]

151 << std::endl;

152 }

structured matrix vector.cpp

Figure 1: Runtime comparison.

(d) Sketch the matrix B created by the following C++ snippet:

190 MatrixXd B = MatrixXd::Zero(nn,nn);

191 for(unsigned int i = 0; i < nn; ++i) {

192 B(i,i) = 2;

193 if(i < nn-1) B(i+1,i) = -1;

194 if(i > 0) B(i-1,i) = -1;

195 }

196 B(nn-1,nn-1) = 1;

Code 2: structured matrix vector.cpp

Solution: The matrix B is the following:

B :=

2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. 0

...
. . . −1 2 −1

0 · · · 0 −1 1

Notice the value 1 in the entry (n, n).

(e) Write a short Eigen-based C++ program, which computes ABej using A from Equation (1) and
B from Code 2. Here ej is the j-th unit vector in Rn, j = 1, . . . , n and n = 10. Based on the
result of the computation ABej, can you predict the relation between A and B?

5

Solution: You should have observed that you recover the same unit vector that you have
multiplied with AB. Hence, the matrix B is the (unique) inverse of A.

6

Exercise 1.3. Strassen algorithm

Note: In this exercise focus on understanding the algorithms presented and calculating their com-
plexity. The coding parts are optional, and their aim is only to allow you to check your understanding
of the definitions and practice C++/Eigen. We recommend to not spend your time optimizing code
in this exercise (for instance, don’t worry about excessive copies of matrices in recursive calls).

Let N = 2n and let A,B be two matrices of size N × N . Let C = AB. By definition of matrix
product

ci,j =
∑
k

ai,kbk,j. (3)

Equivalently, partitioning the matrices in equally sized sub-blocks

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
,

we have
Cij = Ai1B1j + Ai2B2j for i, j ∈ {1, 2}. (4)

Strassen discovered2 that defining the matrices

M1 = (A11 + A22)(B11 + B22)

M2 = (A21 + A22)B11

M3 = A11(B12 −B22)

M4 = A22(B21 −B11)

M5 = (A11 + A12)B22

M6 = (A21 − A11)(B11 + B12)

M7 = (A12 − A22)(B21 + B22)

one can compute C as
C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6

(5)

(a) Implement a function mult which computes the matrix product AB by applying directly the
definition of (3).

Solution:

7 MatrixXf mult(const MatrixXf &A, const MatrixXf &B) {

8 int N = A.rows();

9 MatrixXf C = MatrixXf::Zero(N, N);

10 for (int i = 0; i < N; i++) {

11 for (int j = 0; j < N; j++) {

12 for (int k = 0; k < N; k++) {

13 C(i, j) += A(i, k) * B(k, j);

14 }

15 }

16 }

2Volker Strassen, “Gaussian elimination is not optimal”, Numerische Mathematik, vol. 13, 1969.

7

17 return C;

18 }

strassen.cpp

(b) What is the asymptotic complexity of mult?

Solution: Since there are three nested loops of length N , the algorithm is Θ(N3).

(c) Implement a function mult rec which computes the matrix product recursively using (4) (the
base case is when the blocks have size 1× 1).

Solution:

20 // unorthodox but handy utility macros

21 #define b11 .block(0, 0, N/2, N/2)

22 #define b12 .block(0, N/2, N/2, N/2)

23 #define b21 .block(N/2, 0, N/2, N/2)

24 #define b22 .block(N/2, N/2, N/2, N/2)

25

26 MatrixXf mult_rec(const MatrixXf &A, const MatrixXf &B) {

27 int N = A.rows();

28 if (N <= 1) return A*B;

29

30 MatrixXf C(N, N);

31 C << mult_rec(A b11, B b11) + mult_rec(A b12, B b21),

32 mult_rec(A b11, B b12) + mult_rec(A b12, B b22),

33 mult_rec(A b21, B b11) + mult_rec(A b22, B b21),

34 mult_rec(A b21, B b12) + mult_rec(A b22, B b22);

35

36 return C;

37 }

strassen.cpp

(d) What is the asymptotic complexity of mult rec?

Hint : Indicate f(n) as the number of elementary operations required to multiply two 2n × 2n

matrices, find a recurrence relation for f , and solve it.

Solution: To compute (4) for a single pair of indices (i, j) we need to compute twice the
product of two 2n−1 × 2n−1 matrices, which takes 2f(n − 1) operations, and add the results
together, which takes 22(n−1) operations. Since we have to do it for 4 pair of indices ((i, j) =
(1, 1), (1, 2), (2, 1), (2, 2)), we have that

f(n) = 8f(n− 1) + 22n.

Since f(0) = 1, solving this recurrence relation3 we have f(n) = 2(23n) − 22n, and thus f(n) =
Θ(23n) = Θ(N3) as for the iterative algorithm.

(e) Implement a function strassen which computes the matrix product recursively using (5).

Solution:

3For the purpose of the exercise it would be enough to rewrite informally f(n) = 8f(n−1)+· · · = 8(8f(n−2))+· · · =
· · · = C8n + The formula in the solution can be obtained formally from the theory of difference equations (for an
overview see /en.wikipedia.org/wiki/Recurrence_relation).

8

40 MatrixXf strassen(const MatrixXf &A, const MatrixXf &B) {

41 int N = A.rows();

42 if (N <= 1) return A*B;

43

44 MatrixXf M1 = strassen(A b11 + A b22, B b11 + B b22);

45 MatrixXf M2 = strassen(A b21 + A b22, B b11);

46 MatrixXf M3 = strassen(A b11, B b12 - B b22);

47 MatrixXf M4 = strassen(A b22, B b21 - B b11);

48 MatrixXf M5 = strassen(A b11 + A b12, B b22);

49 MatrixXf M6 = strassen(A b21 - A b11, B b11 + B b12);

50 MatrixXf M7 = strassen(A b12 - A b22, B b21 + B b22);

51 MatrixXf C(N, N);

52 C << M1 + M4 - M5 + M7, M3 + M5,

53 M2 + M4, M1 - M2 + M3 + M6;

54 return C;

55 }

strassen.cpp

(f) What is the asymptotic complexity of strassen?

Hint : adapt the approach of Point (d).

Solution: At each step of (5) we need to compute 7 multiplications and 18 additions between
2n−1 × 2n−1 matrices, thus

f(n) = 7f(n− 1) + 18(22(n−1)).

Since f(0) = 1, solving this recurrence relation we have f(n) = 7(7n)− 6(22n), thus

f(n) = Θ(7n) = Θ(N log2 7).

Therefore Strassen algorithm is asymptotically faster than naive matrix multiplication.

Figure 2: Log-plot of number of elementary operations as a function of n

7 (7^n) - 6(2^{2n}) (strassen)

2(2^{3n}) -2^{2n} (mult_rec)

2^{3n+1} (mult)

5 10 15 20

1000.0

10
7

10
11

10
15

10
19

9

