
NumCSE exercise sheet 6
Initial Value Problems and Non-Linear Equations

soumil.gurjar@sam.math.ethz.ch
oliver.rietmann@sam.math.ethz.ch

December 18, 2018

Exercise 6.1. Explicit vs. Implicit Time Stepping.

The universal oscillator equation with no forcing term is given by:

ẍ+ 2ζẋ+ x = 0, t ∈ (0, T), (1)

for T > 0. In (1), x : R+ → R denotes the position of the oscillator, and ẋ its velocity. The real
parameter ζ > 0 determines the damping behavior in the transient regime. For ζ > 1 we have
overdamping, for ζ = 1 the so-called critical damping and for ζ < 1 underdamping. In this exercise
we consider the case ζ < 1, ζ 6= 0.
As initial conditions we impose

x(0) = x0, ẋ(0) = v0. (2)

(a) Equations (1) and (2) can be rewritten as a linear system of first order differential equations
with appropriate initial conditions, i.e.:

ẏ = Ay (3)

y(0) = y0. (4)

Specify A ∈ R2×2 and y,y0 ∈ R2.

Solution: Setting y1 = x and y2 = ẋ, we get that (1) and (2) are equivalent to the following
linear system:

ẏ2 + 2ζy2 + y1 = 0, t ∈ (0, T),

ẏ1 = y2, t ∈ (0, T),

y1(0) = x0,

y2(0) = v0.

In matrix form, we can write the system as in (3) with y = (x, ẋ)>, y0 = (x0, v0)
> and

A =

(
0 1
−1 −2ζ

)
.

(b) Compute the solution to (1) with initial conditions given by (2) with

x0 = 1, v0 = 0.

1

Hint: Diagonalizing A is the key to finding an analytic solution. Recall that ζ < 1 and that, for
a real number α, it holds that eαi = cosα + i sinα, where i =

√
−1 denotes the imaginary unit.

Solution: First, note that A is diagonalizable. Indeed:∣∣∣∣−λ 1
−1 −2ζ − λ

∣∣∣∣ = λ2 + 2ζλ+ 1.

Thus A has two eigenvalues (complex, as ζ < 1) given by

λ1 = −ζ +
√
ζ2 − 1, λ2 = −ζ −

√
ζ2 − 1.

The associated eigenvectors are

v1 = s1(1, λ1)
>, s1 ∈ R, v2 = s2(1, λ2)

>, s2 ∈ R.

Then A = RΛR−1, with R = (v1|v2) the matrix having as columns an eigenbasis and Λ =
diag(λ1, λ2). Note that, since A is not symmetric, the eigenvectors associated to distinct eigen-
values are not necessarily orthogonal. We have:

Λ =

(
λ1 0
0 λ2

)
, R =

(
1 1
λ1 λ2

)
, R−1 =

1

λ2 − λ1

(
λ2 −1
−λ1 1

)
Denote w(t) = R−1y(t). Then immediately:

y′(t) = Ay(t) = RΛR−1y(t) ⇐⇒
R−1y′(t) = ΛR−1y(t) ⇐⇒ w′(t) = Λw(t)

Now observe that this defines two decoupled ODEs, with immediate solutions:

w′1(t) = λ1w1(t)⇒ w1(t) = C1e
λ1t

w′2(t) = λ1w2(t)⇒ w2(t) = C2e
λ2t

And then we have a solution

y(t) = Rw(t) =

(
1 1
λ1 λ2

)(
C1e

λ1t

C2e
λ2t

)
where C1, C2 ∈ R are such that the initial conditions are verified; i.e., for t = 0,

y(0) = Rw(0)⇒
(
x0
v0

)
= R

(
C1

C2

)
,

from which, using the expression for R−1: C1 = λ2
λ2−λ1 , C2 = −λ1

λ2−λ1 .

Remark 1: this is the only point at which we have used the explicit expression for R−1. For a
large problem, one would typically solve this with a fast linear solver, e.g. with LU factorization,
and never explicitly invert R.

Remark 2: Remember that we are asked for a solution for x : R+ → R; our answer must be
only the first component (i.e. x) of y. So finally, our solution is:

x(t) =
λ2

λ2 − λ1
eλ1t − λ1

λ2 − λ1
eλ2t

Finally, using that for α ∈ R, eiα = cosα + i sinα, and after some operations, we get to the
solution:

x(t) = e−ζt
(
ζ

K
sin(Kt) + cos(Kt)

)
, K :=

√
1− ζ2

2

(c) Recall the explicit Euler timestepping introduced in the lecture. Using template harmonic oscill.cpp,
implement the function explicitEuler to compute the solution y = y(t) to (3) up to the time
T > 0. The function should take as input the following parameters:

• The initial position x0 and initial velocity v0, stored in the 2× 1 vector y0.

• The damping parameter ζ.

• The step size h.

• The final time T , that we assume to be a multiple of h.

In output, the function returns the vectors y1, y2 and time, where the i-th entry contains
the particle position, the particle velocity, and the time, respectively, at the i-th iteration, i =
1, . . . , T

h
. The size of the output vectors has to be initialized inside the function according to the

number of time steps.

Solution:

21 void explicitEuler(std::vector<double> & y1, std::vector<double> &y2, std::vector<

double> & time,

22 const Eigen::Vector2d& y0,

23 double zeta, double h, double T) {

24

25

26 const unsigned int nsteps = T/h;

27 y1.resize(nsteps+1);

28 y2.resize(nsteps+1);

29 time.resize(nsteps+1);

30 Eigen::Vector2d yold;

31 Eigen::Vector2d ynew;

32 /* Initialize A */

33 Eigen::Matrix2d A;

34 A << 0,1,-1,-2*zeta;

35 /* Initialize y */

36 yold[0]=y0[0];

37 yold[1]=y0[1];

38 y1[0]=y0[0];

39 y2[0]=y0[1];

40 time[0]=0.;

41 for(unsigned i=0; i<nsteps; i++)

42 {

43 Eigen::Matrix2d B=Eigen::MatrixXd::Identity(2,2)+h*A;

44 ynew=B*yold;

45 y1[i+1]=ynew[0];

46 y2[i+1]=ynew[1];

47 yold=ynew;

48 time[i+1]=(i+1)*h;

49 }

50

51 }

harmonic oscill.cpp

(d) Recall the implicit Euler timestepping introduced in the lecture. Using template harmonic oscill.cpp

provided in the handout, implement the function implicitEuler to compute the solution y =
y(t) to (3) up to the time T > 0. The input and output parameters are as in the function
explicitEuler from the last subproblem.

Solution:

3

56 void implicitEuler(std::vector<double> & y1, std::vector<double> & y2, std::vector<

double> & time,

57 const Eigen::Vector2d& y0,

58 double zeta, double h, double T) {

59

60 const unsigned int nsteps = T/h;

61 y1.resize(nsteps+1);

62 y2.resize(nsteps+1);

63 time.resize(nsteps+1);

64 Eigen::Vector2d yold;

65 Eigen::Vector2d ynew;

66 /* Initialize A */

67 Eigen::Matrix2d A;

68 A << 0,1,-1,-2*zeta;

69 /* Initialize y */

70 yold[0]=y0[0];

71 yold[1]=y0[1];

72 y1[0]=y0[0];

73 y2[0]=y0[1];

74 time[0]=0.;

75 for(unsigned i=0; i<nsteps; i++)

76 {

77 Eigen::Matrix2d B=Eigen::MatrixXd::Identity(2,2)-h*A;

78 ynew=B.fullPivLu().solve(yold);

79 y1[i+1]=ynew[0];

80 y2[i+1]=ynew[1];

81 yold=ynew;

82 time[i+1]=(i+1)*h;

83 }

84

85 }

harmonic oscill.cpp

(e) In template harmonic oscill.cpp, complete the function Energy that, given in input a vector
containing velocities at different time steps, returns the kinetic energy E(t) = 1

2
v2(t), where v(t)

denotes the velocity of the particle at time t.

Solution:

91 void Energy(const std::vector<double> & v, std::vector<double> & energy)

92 {

93 assert(v.size()==energy.size());

94

95 for(unsigned i=0;i<v.size();i++)

96 energy[i]=0.5*std::pow(v[i],2);

97

98 }

harmonic oscill.cpp

(f) We consider two time steps h1 = 0.1 and h2 = 0.5. We choose T = 20, ζ = 0.2.

Using the main already implemented in template harmonic oscill.cpp, plot the positions and
the energies obtained with the explicit Euler time stepping and the implicit Euler for the two
choices of time steps. For the position, plot the exact solution from subproblem (b), too. What
do you observe?

4

0 2 4 6 8 10 12 14 16 18 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Position

t

x
(t

)

explicit

implicit

exact

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Kinetic energy

t

E
(t

)

explicit

implicit

Figure 1: Plot of position and energy versus time for h1 = 0.1.

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3
Position

t

x
(t

)

explicit

implicit

exact

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3
Kinetic energy

t

E
(t

)

explicit

implicit

Figure 2: Plot of position and energy versus time for h2 = 0.5.

Solution: See Figures 1 and 2 for the plots. As we can see, using h2 = 0.5 the energy of
the system explodes, which is not physical. For h1 = 0.1, instead, the energy remains bounded
and both schemes give an approximation to the exact solution. The reason is that for explicit
timestepping schemes to be stable, the time step cannot be arbitrarily large and must be inside
the so-called stability region. Implicit schemes, instead, are often unconditionally stable, and so
the implicit Euler scheme worked for both timestep choices.

5

Exercise 6.2. Heun’s method.

Heun’s method is the Runge-Kutta method defined by the Butcher tableau

0 0 0
1 1 0

1
2

1
2

.

(a) Is Heun’s method an implicit or explicit scheme? How can you see it?

Solution: It is an explicit scheme since the coefficient matrix (ai,j) is strictly lower triangular.

(b) Fix t0, T > 0 and y0 ∈ R and let f : [t0, T]×R→ R. Moreover, let y : [t0, T]→ R solve the ODE

y′(t) = f(t, y(t)), t ∈ [t0, T], (5)

y(t0) = y0.

Fix N ∈ N and consider the time grid t0 < t1 < . . . < tN = T . For simplicity, we assume
equidistant time steps, i.e. h := tk+1−tk is the same for all k ∈ {0, . . . , N−1}. Let y1, . . . , yN ∈ R
denote the approximations yk ≈ y(tk) according to Heun’s method. For fixed k ∈ {0, . . . , N−1},
give an expression to compute yk+1 from tk, tk+1 and yk.

Solution: Fix k ∈ {0, . . . , N − 1} and let h = tk+1 − tk denote the (constant) time step. The
Butcher tableau then yields

k1 := f(tk, yk),

k2 := f(tk + h, yk + hk1),

yk+1 = yk + h

(
1

2
k1 +

1

2
k2

)
.

(c) We keep the previous task. Implement a function

std::vector<double> Heun(const std::function<double(double, double)> &f,

const std::vector<double> &t, double y0);

that takes the quantities f and y0 in Equation (5), and a time grid t0 < t1 < . . . < tN . It shall
return a vector containing the approximations y0, . . . , yN .

Solution:

6 std::vector<double> Heun(const std::function<double(double, double)> &f, const std::

vector<double> &t, double y0) {

7 int n = t.size();

8 std::vector<double> y(n);

9 y[0] = y0;

10

11 for(int i = 0; i < n - 1; ++i) {

12 double h = t[i + 1] - t[i];

13 double k1 = f(t[i], y[i]);

14 double k2 = f(t[i] + h, y[i] + h * k1);

15 y[i + 1] = y[i] + h * 0.5 * (k1 + k2);

16 }

17

18 return y;

19 }

heun.cpp

6

(d) Show that Heun’s method is consistent.

Hint: Check that the consistency conditions for Runge-Kutta methods seen in class hold.

Solution: We have to check that
∑s

j=1 ai,j =
∑2

j=1 ai,j = ci for i = 1, 2, and
∑s

j=1 bj =∑2
j=1 bj = 1. From the Butcher tableau, it is trivial to see that these equalities hold and thus

the method is consistent.

(e) Compute the stability function S : C→ C and the stability region of Heun’s method.

Solution: According to the Butcher tableau, the stability function is given by

S(z) = 1 + z
(
1
2

1
2

)(1 0
−z 1

)−1(
1
1

)
=

1

2
z2 + z + 1

for all z ∈ C. The stability region is therefore{
z ∈ C :

∣∣∣∣12z2 + z + 1

∣∣∣∣ < 1

}
.

(f) From now on, we consider the special case of Equation (5) given by

y′(t) = e−2t − 2y(t), t ∈ [0, T], (6)

y(0) = y0.

Which is the biggest time step h > 0 for which Heun’s method is stable for the ODE (6)?

Hint: Consider the homogeneous version of (6) and use the stability region computed in the
previous subproblem.

Solution: From Equation (6), we can see that the associated homogeneous equation has the
eigenvalue λ := −2. We have stability if z := λh lies in the stability region. By the previous
task, this holds if and only if h < 1.

(g) Compute the solution of Equation (6) on [0, 1] (i.e. T = 1) using Heun’s method with step
size hj := 2−(j+2) for j = 0, 1, 2, 3. In all four cases, compute the error to the exact solution
y(t) = te−2t at time t = 1. Use this data to determine the order of convergence (e.g. by a log-log
plot).

Solution: We obtain (at least) second order convergence (see plot below).

60 std::vector<int> n = { 4, 8, 16, 32 };

61 int J = n.size();

62 std::vector<double> h(J);

63 std::vector<double> error(J);

64 for (int j = 0; j < J; ++j) {

65 h[j] = 1. / n[j];

66 std::vector<double> t = LinSpace(n[j] + 1, .0, T);

67 std::vector<double> y = Heun(f, t, .0);

68 error[j] = std::abs(Y(t.back()) - y.back());

69 }

heun.cpp

7

2−5 2−4 2−3 2−2

step size

10−4

10−3

er
ro

r

Heun's method
O(h2.3)

Figure 3: Heun’s method is of second order.

8

Exercise 6.3. Strong Stability Preserving RK3 Method for Time Stepping.

In this exercise, we consider the Strong Stability Preserving, Runge-Kutta 3 method for time stepping,
also known as SSPRK3, or the Shu-Osher method. The Butcher tableau for this scheme is:

0 0 0 0
1 1 0 0
1
2

1
4

1
4

0

1
6

1
6

2
3

(7)

(a) Is the SSPRK3 method an implicit or an explicit scheme? How can you see it?

Solution: It is an explicit scheme. We can deduce it from the Butcher tableau, noticing that
the coefficient matrix (ai,j)i,j is such that ai,j = 0 for i ≤ j; i.e., the diagonal and above are all
zeros.

(b) Consider the scalar ODE
u′(t) = f(t, u), t ∈ (0, T), (8)

for some T > 0.

Let us denote the time step by h and the time levels by tn = nh for n = 0, 1, 2, . . . , T
h

. Formulate
explicitly the SSPRK3 method, i.e. write down how to perform the time stepping from un ≈ u(tn)
to un+1 ≈ u(tn+1) for n = 0, 1, 2, . . . , T

h
− 1.

Solution:

According to the Butcher tableau, the system reads:

k1 = f(tn, un),

k2 = f(tn + h, un + hk1)

k3 = f

(
tn +

1

2
h, un +

1

4
h(k1 + k2)

)
,

un+1 = un + h

(
1

6
k1 +

1

6
k2 +

2

3
k3

)
,

for n = 0, 1, . . . , T
h
− 1.

(c) Show that SSPRK3 is consistent, and that it is at least third order accurate (i.e. its one-step
error is fourth order).

Hint: Proving second and third order accuracy of an explicit, consistent, s-stage RK method by
hand (using Taylor) is tedious; a simpler criteria is to check if the following holds:

s∑
j=1

bjcj =
1

2
(for second order);

s∑
j=1

bjc
2
j =

1

3
and

s∑
j=1

s∑
i=1

biaijcj =
1

6
(for third order).

Solution: Consistent: We have to check that
∑s

j=1 ai,j =
∑3

j=1 ai,j = ci for i = 1, 2, 3, and∑s
j=1 bj =

∑3
j=1 bj = 1. From the Butcher tableau, it is trivial to see that these equalities hold

and thus the method is consistent.

9

Third order: For an explicit, consistent, 3-stage RK method with the given Butcher tableau,
these conditions reduce to:

b2c2 + b3c3 =
1

2
(second order);

b2c
2
2 + b3c

2
3 =

1

3
and

c2a32b3 =
1

6
(third order)

These can be immediately checked to hold. In fact, this bound is sharp - i.e. RK3 is an exactly
third-order accurate method.

(d) We have seen in the lecture that the concept of convergence is necessary for a time stepping
method to give accurate results, but it’s not sufficient. Due to this, we introduced the concept
of stability. One approach to determine stability of a method is absolute stability. Recall that in
order to study the absolute stability of a method, one considers the numerical method applied
to the ODE

u′(t) = λu(t), t ∈ (0,+∞), (9)

u(0) = 0, (10)

for λ ∈ R−.

Determine the inequality that the quantity w := λh has to satisfy so that SSPRK3 is absolutely
stable.

Solution: SSPRK3 applied to equation u′(t) = λu(t), t ∈ (0,+∞) gives, for a generic step
n ∈ N:

k1 = λun

k2 = λ(1 + hλ)un

k3 = λ(1 +
hλ

2
+

(hλ)2

4
)un

un+1 = un + h

(
1

6
λun +

1

6
λ(1 + hλ)un +

2

3
λ(1 +

hλ

2
+

(hλ)2

4
)un

)
Which, using w := λh and operating, we can write as:

un+1 =

(
1 + w +

w2

2
+
w3

6

)
un

Thus, the stability region in the complex plane is described by{
w ∈ C :

∣∣∣∣1 + w +
w2

2
+
w3

6

∣∣∣∣ < 1

}
.

Restricting to real values, the polynomial p(w) = 1 + w + w2

2
+ w3

6
can be easily checked to be

strictly increasing, with value 1 at w = 0. Using a numerical solver, we can find that it takes the
value -1 at −ŵ ≈ −2.51. Thus, SSPRK3 is stable for w ∈ [−ŵ, 0].

(e) From now on, we consider a particular case of (8), with some initial conditions. Namely, we take

u′(t) = e−2t − 2u(t), t ∈ (0, T), (11)

u(0) = u0. (12)

Complete the template file template ssprk3.cpp provided in the handout, implementing the
function SSPRK3 to compute the solution to (11) up to the time T > 0. The input arguments
are:

10

• The initial condition u0.

• The step size h, in the template called dt.

• The final time T , which we assume to be a multiple of h.

In output, the function returns the vectors u and time, where the i-th entry contains, respectively,
the solution u and the time t at the i-th iteration, i = 0, . . . , T

h
. The size of the output vectors

has to be initialized inside the function according to the number of time steps.

Compute the solution to (11) at each time-step for u0 = 0, h = 0.2 and T = 10 and plot it using
the matlab or python script that has been provided.

Solution:

6 double f(double t, double u) {

7 return std::exp(-2*t) - 2*u;

8 }

22 void SSPRK3(std::vector<double> & u, std::vector<double> & time,

23 const double & u0, double dt, double T) {

24 const unsigned int nsteps = std::round(T/dt);

25 u.resize(nsteps+1);

26 time.resize(nsteps+1);

27

28 // Write your SSPRK3 code here

29 time[0] = 0.;

30 u[0] = u0;

31

32 for(unsigned int i = 0; i < nsteps; i++)

33 {

34 time[i+1] = (i+1)*dt;

35 double k1 = f(time[i], u[i]);

36 double k2 = f(time[i+1], u[i] + dt*k1);

37 double k3 = f(time[i] + 0.5*dt, u[i] + 0.25*dt*(k1 + k2));

38 u[i+1] = u[i] + dt*((1./6)*(k1 + k2) + (2./3)*k3);

39 }

40 }

ssprk3.cpp

Plot for subproblem (e)

11

(f) According to the discussion in subproblem (d), which is the biggest timestep h > 0 for which
SSPRK3 is stable for problem (11)?

Hint: Consider the homogeneous version of (11) and use the stability region computed in (d).

Solution: From equation (11), we can see that the associated homogeneous equation u′(t) =
−2u(t) has the eigenvalue λ = −2. We have to ensure that |λh| ∈ [0, ŵ], and thus the maximum
timestep for which we still have stability is h = ŵ

2
≈ 1.25.

Indeed, the figure below shows that for h = 0.5, the numerical solution is stable, and, even more,
|un| → 0 for n → ∞, or in other words, |un+1|

|un| < 1 for n big. For h = 1.25, the method is
still stable, so the solution remains bounded as t → ∞, although it is oscillatory. For bigger h,
instead, the numerical solution is unstable and grows unbounded as t → ∞, that is |un+1|

|un| > 1
for n big.

Plots for subproblem f. Left: h = 0.5, center: h = 1.25, right: h = 1.5.

(g) Create a copy of the completed file template ssprk3.cpp and name it template ssprk3conv.cpp.
Modify the main() function to perform a convergence study for the solution to (11) computed
using SSPRK3, with u0 = 0 and T = 10. More precisely, consider the sequence of timesteps
hk = 2−k, k = 1, . . . , 8, and for each of them, compute the numerical solution u T

hk

≈ u(T) and

the error |u T
hk

−u(T)|, where u denotes the exact solution to (11). Produce a double logarithmic

plot of the error versus hk, k = 1, . . . , 8 using the matlab or python script that has been provided.
What rate of convergence do you observe?

Hint: The exact solution to (11) is u(t) = (t+ u0)e
−2t, t ∈ [0, T].

Solution: See code listing and the following figure. To estimate the empirical order of con-
vergence, we perform a linear fit of the data in the double logarithmic plot. The slope of the
fitted line gives us the order of convergence. (Here, we neglect the data for the first time step,
because there we are still in pre-asymptotic regime.) This results in ≈ 3.09, as expected from
subproblem (c).

39 int main() {

40

41 double T = 10.0;

42 std::vector<double> dt(8);

43 std::vector<double> error(8);

44 const double u0 = 0.;

45 for(int i=0; i<8; i++) {

46 dt[i]=std::pow(0.5,i);

47 std::vector<double> time;

48 std::vector<double> u;

49 SSPRK3(u,time,u0,dt[i],T);

50 double uex = T*std::exp(-2.*T);

51 error[i]=std::abs(u.back()-uex);

52 }

12

53 writeToFile("dt.txt", dt);

54 writeToFile("error.txt", error);

55 return 0;

56 }

ssprk3conv.cpp

Convergence plot for subproblem (g).

13

Exercise 6.4. Newton’s method.

Consider the following system of non-linear equations

f0(x0, x1) := x20 + 2x21 − 1 = 0,

f1(x0, x1) := x1 − x20 = 0,
(13)

where x0, x1 ∈ R. As shown in Figure 4 below, this system admits exactly two real solutions. One
easily verifies that they are given by

x0 = ± 1√
2

and x1 =
1

2
.

Our goal is to find these solutions numerically using Newton’s method.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x0

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x 1

{x∈ℝ2|f1(x) = 0}
{x∈ℝ2|f0(x) = 0}

Figure 4: The real solutions are exactly the intersection points of these two curves.

(a) Write x = (x0, x1) and let f : R2 → R2 satisfy

f(x) =

(
f0(x0, x1)
f1(x0, x1)

)
for all x0, x1 ∈ R. Write a C++/Eigen function

Eigen::Matrix2d Jacobian(const Eigen::Vector2d &x);

that returns the Jacobian of f evaluated at x ∈ R2.

Solution:

18 Eigen::Matrix2d Jacobian(const Eigen::Vector2d &x) {

19 Eigen::Matrix2d J;

20 J << 2. * x(0), 4. * x(1), -2. * x(0), 1.;

21 return J;

22 }

newton.cpp

14

(b) Fix n ∈ N and x ∈ R2. Write a C++/Eigen function

Eigen::Vector2d Newton(Eigen::Vector2d x, int n);

that returns the approximate solution to (13) obtained from n iterations of Newton’s method
with starting point x.

Solution:

24 Eigen::Vector2d Newton(Eigen::Vector2d x, int n) {

25 for (int i = 0; i < n; ++i) {

26 x += Jacobian(x).fullPivLu().solve(-f(x));

27 }

28 return x;

29 }

newton.cpp

(c) Apply Newton’s method to Equation (13) with n = 100 iterations. Try the starting points
(−1, 1), (1, 1) and (−2,−2) and explain the results.

Solution: Newton’s method converges to a solution when started at (−1, 1) or (1, 1). However,
it does not converge when started at (−2,−2). We need to start sufficiently close to a solution
to ensure convergence to the latter. Compare our starting points to Figure 4 above.

15

