- Use only black or blue pen.

For open answers:

- Write clearly only inside the provided boxes.
- Each box should contain a single integer (positive or negative) or a single fraction (reduced to lowest form).

For multiple choice questions:

- Fill the circle of the answer you consider correct (only one answer is correct).
- Remarks and computations have no influence on points awarded.
- Any unclear or double marks will be counted as answer not given (0 points).
- Wrong answers give negative points.

Exam instructions

- Turn off your devices and leave them in your bag.
- Only pens and Legi should be on the table.
- Fill your last name and Legi number on the answer sheet.
- Turn this sheet only when instructed to do so.
- At the end of the exam, give the single answer sheet which you want to submit to an assistant, and take everything else with you.

Questions

NumCSE endterm, HS 2018

1. Fourier transform [5 points].
(a) Which of the functions in the figures

Figure 1:
Figure 2:

Figure 3:

has the following Fourier transform (absolute values of the Fourier coefficients are plotted):

Solution: Figure 2 [1,0,-1]
(b) Consider the vectors

$$
a:=(1,1,2,0) \quad \text { and } \quad b:=(2,1,3,2),
$$

their 4-periodic convolution $c:=a *_{4} b$ and the Fourier matrix

$$
\mathbf{F}_{4}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -i & -1 & i \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i
\end{array}\right)
$$

Compute the discrete Fourier transform of c.
Solution: $\operatorname{DFT}(c)=(\ldots, 32,2,4,2, \ldots)$ [2 if all correct and 0 otherwise.]
(c) Consider the C++/Eigen code

```
Eigen::VectorXcd dft_1(const Eigen::VectorXcd &y) {
    const double pi = 3.14159265359;
    const int n = y.size();
    const int n_half = n / 2;
    if (n == 1) return y;
    Eigen::VectorXcd y1(n_half);
    Eigen::VectorXcd y2(n_half);
    for (int i = 0; i < n_half; ++i) {
        y1(i) = y(2 * i);
        y2(i) = y(2 * i + 1);
    }
    const Eigen::VectorXcd c1 = dft_1(y1);
    const Eigen::VectorXcd c2 = dft_1(y2);
    const std::complex<double> omega = std::exp(-2.0 * pi / n * std::complex<
    double>(0.0, 1.0));
    std::complex<double> omega_k(1.0,0.0);
    Eigen::VectorXcd c(n);
    for (int k = 0; k < n; ++k) {
        c(k) = c1(k % n_half) + c2(k % n_half) * omega_k;
        omega_k *= omega;
    }
    return c;
}
Eigen::VectorXcd dft_2(const Eigen::VectorXcd &y) {
    const double pi = 3.14159265359;
    const int n = y.size();
    Eigen::MatrixXcd F(n, n);
    for (int j = 0; j < n; ++j) {
        for (int i = 0; i < n; ++i) {
            F(i, j) = std::exp(-2.0 * pi / n * i * j * std::complex<double>(0.0,
    1.0));
        }
    }
    return F * y;
}
```

./codes/complexityA.cpp

You may assume that the length $n \geq 2$ of the vector y is a power of 2 . The two functions dft_1 and dft_2 perform the same task, but with a different algorithm. Provide the lowest numbers $p, q, \alpha, \beta \in \mathbb{N}_{0}$ such that the asymptotic complexities for large n are given by:

- dft_1: $\mathcal{O}\left(n^{p} \log ^{q}(n)\right)$
- dft_2: $\mathcal{O}\left(n^{\alpha} \log ^{\beta}(n)\right)$

Solution: $p=q=1$ and $\alpha=2, \beta=0$. [$+\mathbf{1}$ for every correct pair.]
2. Chebyshev interpolation [3 points].

Let $\mathrm{L}_{\mathcal{T}} f$ denote the polynomial interpolant of the function $f: I \rightarrow \mathbb{R}$ for the set of Chebyshev nodes $\mathcal{T}:=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}, n \in \mathbb{N}$. What kind of convergence, with respect to n, is to be expected for the approximation error of the Chebyshev interpolant $\left(\left\|f-\mathrm{L}_{\mathcal{T}} f\right\|_{L^{\infty}(I)}\right)$ in each of the following cases?
(a) $f \in C^{\infty}(I)$

Solution: Exponential convergence

Points: $[+1,0,-1]$
(b) $f \in C^{2}(I)$, but $f \notin C^{3}(I)$

Solution: Algebraic convergence
Points: $[+1,0,-1]$
(c) $f \in C^{0}(I)$, but $f \notin C^{1}(I)$

Solution: Algebraic convergence
3. Convergence of Gauss-Legendre Quadrature Formula [3 points].

Let $Q_{n}(f)$ be the n-point Gauss-Legendre quadrature rule on $\Omega \subset \mathbb{R}$ for an integrand f. What kind of convergence, with respect to n, is to be expected for the quadrature error $E_{n}(f):=$ $\left|\int_{\Omega} f(t) \mathrm{d} t-Q_{n}(f)\right|$ in each of the following cases:
(a) $f(t)=t^{\frac{5}{2}} \quad$ and $\quad \Omega=[0,1]$

Solution: Algebraic convergence
Points: $[+1,0,-1]$
For $f \in C^{r}(\Omega)$, Gauss-Legendre quadrature formula converges algebraically with $\mathcal{O}\left(n^{-r}\right)$. Here $f \in C^{2}(\Omega)$.
(b) $f \in C^{\infty}(\Omega)$

Solution: Exponential convergence
Points: $[+1,0,-1]$
For a smooth function, Gauss-Legendre quadrature formula converges exponentially with $\mathcal{O}\left(\lambda^{n}\right), \lambda \in(0,1)$.
(c) $f(t)=|t| \quad$ and $\quad \Omega=[-1,1]$

Solution: Algebraic convergence
Points: $[+1,0,-1]$
This is because $f \in C^{0}(\Omega)$.
4. Convergence of Composite Simpson rule [3 points].

Let $Q_{n}(f)$ be the n-point Composite Simpson quadrature rule with equally spaced nodes on $\Omega \subset \mathbb{R}$ for an integrand f. What kind of convergence, with respect to n, is to be expected for the quadrature error $E_{n}(f):=\left|\int_{\Omega} f(t) \mathrm{d} t-Q_{n}(f)\right|$ in each of the following cases:
(a) $f(t)=t^{\frac{5}{2}} \quad$ and $\quad \Omega=[0,1]$

Solution: Algebraic convergence
Points: $[+1,0,-1]$
For $f \in C^{r}(\Omega)$, Composite quadrature formula (with local order q) converges algebraically with $\mathcal{O}\left(n^{-\min \{r, q\}}\right)$. Here $f \in C^{2}(\Omega)$.
(b) $f(t)=t^{\frac{3}{2}} \quad$ and $\quad \Omega=[1,2]$

Solution: Algebraic convergence
Points: [$+1,0,-1$]
Here $f \in C^{\infty}(\Omega)$. Regardless, Composite quadrature formula (with local order q) converges algebraically with $\mathcal{O}\left(n^{-q}\right)$.
(c) $f(t)=|t| \quad$ and $\quad \Omega=[-1,1]$

Solution: Algebraic convergence Points: [+1,0,-1]
This is because $f \in C^{0}(\Omega)$.
5. Runge-Kutta methods [5 points].
(a) Consider the following 2-stage Runge-Kutta method used for solving the $\operatorname{ODE} \dot{y}=f(y)$:

$$
y_{k+1}=y_{k}-\frac{h}{2}\left(k_{1}-3 k_{2}\right)
$$

where

$$
\begin{aligned}
k_{1} & =f\left(t_{k}+\frac{h}{2}, y_{k}+\frac{h}{2} k_{1}\right) \\
k_{2} & =f\left(t_{k}+\frac{3 h}{2}, y_{k}-\frac{h}{2}\left(k_{1}-4 h k_{2}\right)\right) .
\end{aligned}
$$

Complete the entries of the Butcher tableau corresponding to this method.
Solution:
(+2 if all entries are correct, no negatives)
There was a typo in this subproblem. The term marked in red should have been $-4 k_{2}$ instead of $-4 h k_{2}$.
The correct Butcher tableau is:

$\frac{1}{2}$	$\frac{1}{2}$	0
$\frac{3}{2}$	$-\frac{1}{2}$	2
	$-\frac{1}{2}$	$\frac{3}{2}$

The entry in blue is the one affected by the typo. During correction of this subproblem, the entry corresponding to this box (i.e a_{22}) has been disregarded. Therefore, 2 points have been awarded for this subproblem if all the other entries except a_{22} were correct.
(b) Consider the following Butcher tableau for a Runge-Kutta method:

$\frac{1}{2}+\frac{\sqrt{3}}{6}$	$\frac{1}{2}+\frac{\sqrt{3}}{6}$	0
$\frac{1}{2}-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{3}$	$\frac{1}{2}+\frac{\sqrt{3}}{6}$
	$\frac{1}{2}$	$\frac{1}{2}$

Does this correspond to an explicit or an implicit method?
Solution: Implicit method.
Points: $[+1,0,-1]$
This is because it does not have a strictly lower triangular matrix. In fact, this is Crouzeix's two-stage, 3rd order Diagonally Implicit Runge Kutta method.
(c) Consider the following Butcher tableau for a Runge-Kutta method:

$\frac{1}{2}$	$\frac{1}{2}$	0	0	0
$\frac{2}{3}$	γ	$\frac{1}{2}$	0	0
$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0
1	$\frac{3}{2}$	$-\frac{3}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
	δ	$-\frac{3}{2}$	$\frac{1}{2}$	$\frac{1}{2}$

What should be the values of γ and δ such that the method is consistent?
Solution:
(+1 for correct $\gamma,+1$ for correct δ, no negatives)

$$
\gamma=\frac{1}{6} \quad \text { and } \quad \delta=\frac{3}{2} .
$$

For consistency, the following conditions need to be satisfied:

$$
\sum_{i=1}^{s} b_{i}=1
$$

and

$$
c_{i}=\sum_{j=1}^{s} a_{i j} .
$$

6. Stiffness and stability [4 points].
(a) Consider the second order, scalar ODE

$$
\ddot{y}(t)=-y(t)
$$

and its equivalent system of first order ODEs

$$
\begin{equation*}
\dot{\mathbf{z}}(t)=\mathbf{A} \mathbf{z}(t) \tag{1}
\end{equation*}
$$

where $t \geq 0, \mathbf{z}(0)=(y(0), \dot{y}(0))^{\top}$ and $\mathbf{A} \in \mathbb{R}^{2 \times 2}$. Compute explicitly the entries of \mathbf{A}.
Solution: [1 if all correct, $\mathbf{0}$ otherwise]

$$
\mathbf{A}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

(b) Is the ODE (1) stiff (where \mathbf{A} is the solution from Part (a))?

Solution: no $[1,0,-1]$
(c) Is the following ODE stiff for $c \gg 1$?

$$
\dot{\mathbf{y}}(t)=\left(\begin{array}{cc}
-c & 1 \\
-1 & -c
\end{array}\right) \mathbf{y}(t)
$$

Solution: yes $[1,0,-1]$
(d) Which of the methods
(i) explicit midpoint
(ii) explicit Euler
(iii) implicit Euler
has the following stability region (shaded grey area):

Solution: (iii) $[1,0,-1]$

