
Answer sheet compilation instructions

• Use only black or blue pen.

For open answers:

• Write clearly only inside the provided boxes.

• Each box should contain a single integer (positive or negative) or a single
fraction (reduced to lowest form).

For multiple choice questions:

• Fill the circle of the answer you consider correct (only one answer is correct).

• Remarks and computations have no influence on points awarded.

• Any unclear or double marks will be counted as answer not given (0 points).

• Wrong answers give negative points.

Exam instructions

• Turn off your devices and leave them in your bag.

• Only pens and Legi should be on the table.

• Fill your last name and Legi number on the answer sheet.

• Turn this sheet only when instructed to do so.

• At the end of the exam, give the single answer sheet which you want to
submit to an assistant, and take everything else with you.
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Questions
NumCSE endterm, HS 2018

1. Fourier transform [5 points].

(a) Which of the functions in the figures

Figure 1:

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure 2:

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3:
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has the following Fourier transform (absolute values of the Fourier coefficients are plotted):
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Solution: Figure 2 [1,0,-1]

(b) Consider the vectors
a := (1, 1, 2, 0) and b := (2, 1, 3, 2),

their 4-periodic convolution c := a ∗4 b and the Fourier matrix

F4 =


1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

 .



Compute the discrete Fourier transform of c.

Solution: DFT(c) = (. . . , 32, 2, 4, 2, . . . ) [2 if all correct and 0 otherwise.]

(c) Consider the C++/Eigen code

7 Eigen::VectorXcd dft_1(const Eigen::VectorXcd &y) {
8 const double pi = 3.14159265359;
9 const int n = y.size();

10 const int n_half = n / 2;
11
12 if (n == 1) return y;
13
14 Eigen::VectorXcd y1(n_half);
15 Eigen::VectorXcd y2(n_half);
16
17 for (int i = 0; i < n_half; ++i) {
18 y1(i) = y(2 * i);
19 y2(i) = y(2 * i + 1);
20 }
21
22 const Eigen::VectorXcd c1 = dft_1(y1);
23 const Eigen::VectorXcd c2 = dft_1(y2);
24
25 const std::complex<double> omega = std::exp(-2.0 * pi / n * std::complex<

double>(0.0, 1.0));
26 std::complex<double> omega_k(1.0,0.0);
27 Eigen::VectorXcd c(n);
28
29 for (int k = 0; k < n; ++k) {
30 c(k) = c1(k % n_half) + c2(k % n_half) * omega_k;
31 omega_k *= omega;
32 }
33
34 return c;
35 }
36
37 Eigen::VectorXcd dft_2(const Eigen::VectorXcd &y) {
38 const double pi = 3.14159265359;
39 const int n = y.size();
40
41 Eigen::MatrixXcd F(n, n);
42
43 for (int j = 0; j < n; ++j) {
44 for (int i = 0; i < n; ++i) {
45 F(i, j) = std::exp(-2.0 * pi / n * i * j * std::complex<double>(0.0,

1.0));
46 }
47 }
48
49 return F * y;
50 }

./codes/complexityA.cpp

You may assume that the length n ≥ 2 of the vector y is a power of 2. The two functions
dft 1 and dft 2 perform the same task, but with a different algorithm. Provide the lowest
numbers p, q, α, β ∈ N0 such that the asymptotic complexities for large n are given by:

• dft 1: O(np logq(n))

• dft 2: O(nα logβ(n))

Solution: p = q = 1 and α = 2, β = 0. [+1 for every correct pair.]



2. Chebyshev interpolation [3 points].

Let LT f denote the polynomial interpolant of the function f : I → R for the set of Chebyshev
nodes T := {t0, t1, . . . , tn}, n ∈ N. What kind of convergence, with respect to n, is to be
expected for the approximation error of the Chebyshev interpolant (‖f − LT f‖L∞(I)) in each
of the following cases?

(a) f ∈ C∞(I)

Solution: Exponential convergence Points: [+1,0,-1]

(b) f ∈ C2(I), but f 6∈ C3(I)

Solution: Algebraic convergence Points: [+1,0,-1]

(c) f ∈ C0(I), but f 6∈ C1(I)

Solution: Algebraic convergence Points: [+1,0,-1]

3. Convergence of Gauss-Legendre Quadrature Formula [3 points].

Let Qn(f) be the n-point Gauss-Legendre quadrature rule on Ω ⊂ R for an integrand f .
What kind of convergence, with respect to n, is to be expected for the quadrature error En(f) :=∣∣∫

Ω
f(t) dt−Qn(f)

∣∣ in each of the following cases:

(a) f(t) = t
5
2 and Ω = [0, 1]

Solution: Algebraic convergence Points: [+1,0,-1]
For f ∈ Cr(Ω), Gauss-Legendre quadrature formula converges algebraically with O(n−r).
Here f ∈ C2(Ω).

(b) f ∈ C∞(Ω)

Solution: Exponential convergence Points: [+1,0,-1]
For a smooth function, Gauss-Legendre quadrature formula converges exponentially with
O(λn), λ ∈ (0, 1).

(c) f(t) = |t| and Ω = [−1, 1]

Solution: Algebraic convergence Points: [+1,0,-1]
This is because f ∈ C0(Ω).

4. Convergence of Composite Simpson rule [3 points].

Let Qn(f) be the n-point Composite Simpson quadrature rule with equally spaced nodes on
Ω ⊂ R for an integrand f . What kind of convergence, with respect to n, is to be expected for
the quadrature error En(f) :=

∣∣∫
Ω
f(t) dt−Qn(f)

∣∣ in each of the following cases:

(a) f(t) = t
5
2 and Ω = [0, 1]

Solution: Algebraic convergence Points: [+1,0,-1]
For f ∈ Cr(Ω), Composite quadrature formula (with local order q) converges algebraically
with O(n−min{r,q}). Here f ∈ C2(Ω).

(b) f(t) = t
3
2 and Ω = [1, 2]

Solution: Algebraic convergence Points: [+1,0,-1]
Here f ∈ C∞(Ω). Regardless, Composite quadrature formula (with local order q) converges
algebraically with O(n−q).

(c) f(t) = |t| and Ω = [−1, 1]

Solution: Algebraic convergence Points: [+1,0,-1]
This is because f ∈ C0(Ω).



5. Runge-Kutta methods [5 points].

(a) Consider the following 2-stage Runge-Kutta method used for solving the ODE ẏ = f(y):

yk+1 = yk −
h

2
(k1 − 3k2)

where

k1 = f

(
tk +

h

2
, yk +

h

2
k1

)
,

k2 = f

(
tk +

3h

2
, yk −

h

2
(k1−4hk2)

)
.

Complete the entries of the Butcher tableau corresponding to this method.

Solution: (+2 if all entries are correct, no negatives)
There was a typo in this subproblem. The term marked in red should have been −4k2

instead of −4hk2.

The correct Butcher tableau is:

1
2

1
2

0

3
2
−1

2
2

−1
2

3
2

The entry in blue is the one affected by the typo. During correction of this subproblem, the
entry corresponding to this box (i.e a22) has been disregarded. Therefore, 2 points have been
awarded for this subproblem if all the other entries except a22 were correct.

(b) Consider the following Butcher tableau for a Runge-Kutta method:

1
2

+
√

3
6

1
2

+
√

3
6
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1
2
−
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6

−
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+
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Does this correspond to an explicit or an implicit method?

Solution: Implicit method. Points: [+1,0,-1]

This is because it does not have a strictly lower triangular matrix. In fact, this is Crouzeix’s
two-stage, 3rd order Diagonally Implicit Runge Kutta method.

(c) Consider the following Butcher tableau for a Runge-Kutta method:

1
2

1
2

0 0 0

2
3

γ 1
2

0 0

1
2
−1

2
1
2

1
2

0

1 3
2
−3

2
1
2

1
2

δ −3
2

1
2

1
2



What should be the values of γ and δ such that the method is consistent?

Solution: (+1 for correct γ, +1 for correct δ, no negatives)

γ =
1

6
and δ =

3

2
.

For consistency, the following conditions need to be satisfied:

s∑
i=1

bi = 1

and

ci =
s∑
j=1

aij.



6. Stiffness and stability [4 points].

(a) Consider the second order, scalar ODE

ÿ(t) = −y(t)

and its equivalent system of first order ODEs

ż(t) = Az(t), (1)

where t ≥ 0, z(0) = (y(0), ẏ(0))> and A ∈ R2×2. Compute explicitly the entries of A.

Solution: [1 if all correct, 0 otherwise]

A =

 0 1

−1 0


(b) Is the ODE (1) stiff (where A is the solution from Part (a))?

Solution: no [1, 0, -1]

(c) Is the following ODE stiff for c� 1?

ẏ(t) =

−c 1

−1 −c

y(t)

Solution: yes [1, 0, -1]

(d) Which of the methods

(i) explicit midpoint

(ii) explicit Euler

(iii) implicit Euler

has the following stability region (shaded grey area):
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Solution: (iii) [1, 0, -1]


