
Numerical Methods for CSE
Final Exam HS2018

Prof. Rima Alaifari

ETH Zürich, D-MATH

January 29, 2019

1 / 6

Exercise 1. Curve fitting (26 pts) [Template: 1.cpp]

(a) (2 pts) Let n ≥ 3 and x := (x1, . . . , xn)>,y := (y1, . . . , yn)> ∈ Rn, where the entries of x are
distinct. We want to determine the coefficients c := (c0, c1, c2)

> ∈ R3 of a parabola

pc(x) := c2x
2 + c1x+ c0

such that

E(c) :=
n∑
i=1

|pc(xi)− yi|2

is minimized (see Figure 1).

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.0

0.5

0.0

0.5

1.0

1.5

2.0 pc(x)
data points

Figure 1: The parabola pc(x) fitted to the data points {(xi, yi)}ni=1.

Formulate this as a linear least squares problem: For given x,y ∈ Rn as above, find a matrix
A ∈ Rn×3 and a vector b ∈ Rn such that for all c ∈ R3, we have

E(c) = ‖Ac− b‖22. (1)

(b) (4 pts) Implement a C++/Eigen function

Eigen::MatrixXd GetA(const Eigen::VectorXd &x);

that for given x as above returns the matrix A in (1).

(c) (4 pts) Implement a C++/Eigen function

Eigen::VectorXd LeastSquares(const Eigen::MatrixXd &A, const Eigen::VectorXd &b);

that for given A and b returns the least squares solution c of (1). You may use any Eigen solver
of your choice.

2 / 6

(d) (8 pts) Let k ∈ N and B ∈ Rm×n, where m,n ≥ k. Implement a C++/Eigen function

Eigen::MatrixXd BestApprox(const Eigen::MatrixXd &B, int k);

that returns the m × n matrix that is the best rank-k approximation of B, using the singular
value decomposition of B.

(e) (8 pts) Let n ∈ N and consider data points (x1, y1), . . . , (xn, yn) ∈ (0,∞)×(0,∞). Let B1 ∈ R2×n

denote the best rank-1 approximation of

B :=

(
x1 · · · xn
y1 · · · yn

)
. (2)

Implement a C++/Eigen function

double FitLineThroughOrigin(const Eigen::MatrixXd &B);

that takes B as in (2) and computes B1 to extract the first principal component of B. The
line through the origin along this principal component will then fit the data points in B. The
function FitLineThroughOrigin shall return the slope of this line (see Figure 2).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 fitted line through the origin
data points

Figure 2: Line through the origin with slope computed by FitLineThroughOrigin.

3 / 6

Exercise 2. Gauss-Chebyshev quadrature (24 pts) [Template: 2.cpp]

The Chebyshev polynomial of the first kind Tn(x) is a polynomial of exact degree n, defined by the
relation

Tn(x) := cos (n arccos(x)), where x ∈ [−1, 1]. (3)

(a) (4 pts) The weighted inner product of two functions f(x) and g(x), with respect to a given
continuous and non-negative weight function w(x), can be defined as:

〈f, g〉w :=

∫ b

a

w(x)f(x)g(x) dx. (4)

f and g are said to be orthogonal with respect to the weight function w(x) if

〈f, g〉w = 0. (5)

For the following interval and weight function:

[a, b] = [−1, 1] , w(x) =
1√

1− x2
,

show that the Chebyshev polynomials of the first kind satisfy

〈Ti, Tj〉w = 0 if i 6= j. (6)

Hint: Substitute x = cos θ to simplify the computation of 〈Ti, Tj〉w. The following trigonometric
identity could also be useful:

2 cosx cos y = cos (x+ y) + cos (x− y).

(b) (5 pts) Suppose that we now wish to calculate a definite integral of f(x) with a general weight
function w(x), namely

I =

∫ 1

−1
w(x)f(x) dx . (7)

I is to be approximated by an n-point quadrature formula of the form

Qn,w(f) =
n−1∑
k=0

Akf(xk), (8)

where Ak are the quadrature weights and xk are the quadrature nodes in [−1, 1].

Determine an integral expression for the quadrature weights Ak in terms of the quadrature nodes
xk and the general weight function w(x), so that Qn,w(f) is guaranteed to have order ≥ n.

Hint: In Eq.(7), substitute f(x) with its polynomial Lagrange interpolant that is formed by
interpolation through the quadrature nodes xk.

(c) (3 pts) Show that ∫ 1

−1
w(x)Tn(x)q(x) dx = 0 (9)

for any polynomial function q(x) of degree n− 1 or less, if

w(x) =
1√

1− x2
.

Hint: Use the orthogonality of Chebyshev polynomials as proved in (6).

4 / 6

(d) (5 pts) If the quadrature nodes xk, (k = 0, . . . , n− 1), are the known n zeros of the Chebyshev
polynomial Tn(x), and the quadrature weights Ak are those obtained in sub-problem (b), then
Qn,w(f) corresponds to the Gauss-Chebyshev quadrature rule.

Derive the following statement: The Gauss-Chebyshev quadrature rule is of order 2n.

Hint: Consider f(x) to be a polynomial of degree 2n − 1 and then perform long polynomial
division of f(x) by Tn(x), that is, write f(x) as:

f(x) = Tn(x)q(x) + r(x),

and use the result derived in (9).

(e) (5 pts) For the Gauss-Chebyshev quadrature rule, it can be shown that the integral expression
for the quadrature weights, as obtained in sub-problem (b), simplifies to

Ak =
π

n
, ∀ k = 0, . . . , n− 1. (10)

Implement a C++/Eigen function

double Gauss_Chebyshev(const std::function<double(double)> &f, int n);

that performs the n-point Gauss-Chebyshev quadrature to approximate the integral

I =

∫ 1

−1

f(x)√
1− x2

dx . (11)

(f) (2 pts) Use the previous implementation to compute the quadrature errorEn,k(f) := |Ik −Qn,w(f)|
for n = 5, k = {1, 2}, where

I1 =

∫ 1

−1

x8√
1− x2

dx ; I2 =

∫ 1

−1

x10√
1− x2

dx .

Justify your results.

Note: The template ‘2.cpp’ already contains the implementation for computing these errors.

5 / 6

Exercise 3. Initial value problem (26 pts) [Template: 3.cpp]

Consider the second order IVP

ÿ(t) = 2y(t)
(
1 + y2(t)

)
, y(0) = 0, ẏ(0) = 1, (12)

where t ∈ (−π
2
, π
2
). We want to solve it using the implicit Euler scheme.

(a) (3 pts) Write down (on paper) a function f : R2 → R2 such that

ż(t) = f (z(t)) , z(0) = (0, 1)>, (13)

is equivalent to (12), where z : (−π
2
, π
2
)→ R2 and t ∈ (−π

2
, π
2
). Moreover, implement a C++/Eigen

function

Eigen::Vector2d f(const Eigen::Vector2d &x);

that takes x ∈ R2 and returns the value f(x) ∈ R2.

(b) (3 pts) The implicit Euler scheme with N ∈ N time steps of size h > 0 applied to (13) reads

z(k+1) = z(k) + hf
(
z(k+1)

)
, z(0) = (0, 1)>, (14)

for all k ∈ {0, . . . , N − 1}. To find z(k+1) for given z(k), we have to solve a non-linear equation

F(x) = 0, (15)

where x ∈ R2 and
F(x) = z(k) + hf (x)− x. (16)

Write down (on paper) the Jacobian DF(x). Moreover, implement a C++/Eigen function

Eigen::Matrix2d DF(const Eigen::Vector2d &x, double h);

that takes a point x ∈ R2 and the step size h > 0 and returns the value DF(x).

(c) (6 pts) Implement a C++/Eigen function

Eigen::Vector2d Newton(Eigen::Vector2d x, double h, int n, double tol);

that returns the result of Newton’s method applied to (15). The starting value is x ∈ R2 and
h > 0 is the step size in (16). Stop after n ∈ N iterations or when the residual based stopping
criterion with tolerance tol is met.

(d) (8 pts) Implement a C++/Eigen function

Eigen::Vector2d QuasiNewton(Eigen::Vector2d x, double h, int n, double tol);

that performs the same task as Newton, but using the Quasi-Newton method via the Sherman-
Morrison-Woodbury formula.

(e) (6 pts) Implement a C++/Eigen function

Eigen::Vector2d ImplicitEuler(Eigen::Vector2d z0, double h, int N);

that performs the implicit Euler scheme (14) to solve the IVP (13) with initial value z0, applying
N ∈ N time steps of size h > 0. Equation (15) should be solved by Newton or QuasiNewton

with n = 10 iterations and tolerance tol = 1.0e-8. The return value of ImplicitEuler is the
approximate solution at time N · h.

6 / 6

