
Numerical Methods for CSE
Final Exam - Summer 2019

Prof. Rima Alaifari

ETH Zürich, D-MATH

Exam Organisers:
Soumil Gurjar, Pratyuksh Bansal

August 26, 2019

1 / 6



Exercise 1. Sparsity Preservation (26 pts) [Template: 1.cpp]

Consider the following problem: Given A ∈ Rm,n, m ≥ n, rank(A) = n, b ∈ Rm, we want to obtain
the unique least squares solution of the linear system of equations Ax = b.

(a) (2 pts) Implement a C++ function

VectorXd normalEquationSolve(const MatrixXd &A, const VectorXd &b);

that returns the least squares solution of Ax = b by solving the normal equations.

(b) (2 pts) Now consider a matrix A which is sparse. While performing the computation of the
solution by normal equations, the sparsity is not necessarily preserved. Construct an example of
a sparse n× n matrix such that the system matrix of the normal equations has no zero entries.

(c) (6 pts) Through an augmented system Cy = d, sparsity can be maintained. Implement two
C++ functions,

SparseMatrix<double> computeC(SparseMatrix<double> &A, const VectorXd &b);

and

VectorXd computeRHS(SparseMatrix<double> &A, const VectorXd &b);

that respectively compute the sparse matrix C and RHS-vector d.

(d) (4 pts) Implement a C++ function

VectorXd computeSolution(SparseMatrix<double> &A, const VectorXd &b);

that solves the modified system using a standard sparse solver (SparseLU) and returns the
required solution vector x corresponding to the original system Ax = b.

(e) (6 pts) Now we consider a specific example of the 1D Poisson equation, −ü = f on Ω = [0, 1],
with Dirichlet boundary conditions u(0) = u(1) = 0. We apply a finite difference method, which
allows us to obtain the solution to this problem by solving a linear system of equations. This is
done in the following way:

The independent variable, x ∈ Ω, is discretized by choosing an equidistant grid ΩN = {xj}N+1
j=0 ∈

Ω, where the grid points are given by xj = j∆x, and where the spacing between the grid points
is referred to as the mesh width, ∆x = 1

N+1
. This means that x0 = 0 is the left endpoint, and

xN+1 = 1 is the right endpoint. In between, there are N internal points in the interval [0, 1].

The solution will be approximated numerically on this grid, by a vector u = {uj}N1 of internal
points, augmented by the boundary values, u0 = 0 and uN+1 = 0. The vector u approximates the
solution to the differential equation, according to uj ≈ u(xj). Now, the second order derivative
−ü is approximated by a symmetric finite difference scheme,

−ü(xj) = −
(
uj−1 − 2uj + uj+1

(∆x)2

)
.

Applying the finite difference method for all the interior points, obtain a linear system of equa-
tions of the form

LNu = f ,

where the vector f = (f(x1), f(x2), . . . , f(xN))>, u = (u1, u2, . . . , uN)> and LN ∈ RN,N . Explic-
itly write out the matrix LN .

2 / 6



(f) (6 pts) For the 1D Poisson problem described above, if f = π2 sin(πx) andN = 25, 50, 100, ..., 1600,
implement two functions, constructDenseA_Poisson and constructSparseA_Poisson, that
construct the matrix LN in dense and sparse format respectively for each mesh-width. Solve the
corresponding linear system LNu = f , using the normal equations from sub-problem (a), as well
as the modified system from sub-problem (d). Compare the two solutions to verify your imple-
mentation, and also compare their run-times for each value of N . Explain your observations.

Hint: A dense matrix A_dense can be converted into a sparse matrix A_sparse by using
A_sparse = A_dense.sparseView(). Moreover, the code to compare the solutions and run-
times is already implemented within the template.

3 / 6



Exercise 2. Interpolation (28 pts) [Template: 2.cpp]

Consider the function

f(x) =

{
f1(x) := 2 + 1

1+25(6x−1)2 , x ∈ [0, 1
3
),

f2(x) := 1 + cos(πx), x ∈ [1
3
, 1].

(1)

Let IpTN [f ] be a piecewise Lagrange interpolant of the function f , for a mesh TN on the interval [0, 1].
The mesh TN has N cells and the local polynomial degree p ∈ N0 of the interpolant is the same for
each cell in the mesh.
Two functions are provided, see 2.cpp, to generate equidistant and Chebyshev interpolation nodes
in the reference interval [0, 1]. Let t = {t0, t1, . . . , tp} ⊂ [0, 1] denote the set of these reference nodes.

(a) (2 pts) Is f ∈ C0([0, 1])? Explain.

(b) (5 pts) For N = 2, design the interpolant:

i) specify the mesh and

ii) specify the strategy to generate local interpolation nodes,

such that the interpolation error ‖IpTN [f ]− f‖
L∞([0,1])

is small for an arbitrarily large p. Support
your answer.

(c) (2 pts) Consider a uniform mesh TM on the interval [a, b]. Implement a function

1 Eigen::MatrixXd genNodes(const double a,

2 const double b,

3 const int M,

4 const Eigen::VectorXd &t);

5

that uses a vector of reference nodes t ∈ Rn and generates a matrix Rn×M of interpolation nodes
in the mesh TM .

Hint: Map the reference nodes to a given cell.

(d) (8 pts) Given the declaration of a class Newton, implement the member functions:

i) Interpolate : Computes the coefficients of a piecewise Lagrange interpolant in the Newton
basis.

ii) Evaluate : Uses the Horner scheme to evaluate a piecewise Lagrange interpolant in the
Newton basis.

(e) (8 pts) Use the components from sub-problems (c) and (d), and write a C++ function to compute
a piecewise Lagrange interpolant of the given function f(x) from (1) on a uniform mesh TN . This
function should also evaluate and return the interpolation error.

Hint: Use the given member function EvalError, of class Newton, to compute the interpola-
tion error.

(f) (3 pts) Implement a C++ function to study the convergence of your interpolant IpTN with respect
to p, for p = 1, 2, 3, . . . , 20. Explain the results from your convergence test.

4 / 6



Exercise 3. Singly Diagonally Implicit Runge-Kutta Methods (26 pts) [Template: 3.cpp]

For general implicit Runge-Kutta methods, the ki’s cannot be evaluated successively since they are
coupled in the system of implicit equations that is given for their determination. One way to decouple
a non-linear system is to use diagonally implicit Runge-Kutta methods. A special family of those
methods are Singly Diagonally Implicit Runge-Kutta methods (SDIRK), in which the matrix of the
method is lower triangular and all the diagonal entries are equal. Continuing in this direction, we
define the following one parameter family of SDIRK-methods:

γ γ 0
1− γ 1− 2γ γ

1
2

1
2

Table I: Singly Diagonally Implicit Runge-Kutta

(a) (3 pts) Determine the value(s) of γ for which the corresponding Runge-Kutta method is of at
least (consistency) order 3.

Hint: In addition to conditions necessary for a consistency order 2, the following conditions are
necessary for a consistency order 3:

s∑
i=1

bic
2
i =

1

3
and

s∑
i=1

s∑
j=1

biaijcj =
1

6
,

where {aij}si,j=1, {bi}si=1, {cj}sj=1 are entries of a standard Butcher tableau.

(b) (4 pts) Write down the iterations of the Runge-Kutta method defined in Table I, when applied
to the ODE

ẏ = λy, y(0) = 1, λ ∈ C

HINT: Use the stability function and the fact that the ODE is linear.

(c) (3 pts) For which value(s) of γ obtained from sub-problem (a) (the value(s) with which the
method is of order 3), can we conjecture the corresponding Runge-Kutta method to be A-stable?
Explain.

Hint: You may use the plotting script ’stabilityRegion plot.cpp’ to visualize the region of stability
for a chosen value of γ.

(d) (2 pts) We consider a scalar linear initial value problem of second order

ÿ + ẏ + y = 0, y(0) = 1, ẏ(0) = 0 (2)

that should be solved numerically using the SDIRK-method described in Table I.

Formulate (2) as an initial value problem (IVP) for a linear first order system.

(e) (6 pts) Implement a C++/Eigen function

1 template <class StateType>

2 StateType sdirkStep(const StateType & z0, double h, double gamma);

that realizes the numerical evolution of one step of the SDIRK-method for the IVP obtained in
sub-problem (d), starting from the initial value z0 and returning the value after a time step of
size h.

Hint: For an SDIRK-method, compute stage k1 first and then use it to compute stage k2.

5 / 6



(f) (8 pts) Conduct a numerical experiment to deduce the convergence order of the method by
computing the global error of the A-stable SDIRK method for the first order IVP from sub-
problem (d) at the end time. Choose T=10 as end time and N=20,40,80,...,10240 as steps.
Report the observed order of convergence.

6 / 6


