Answer sheet compilation instructions

• Use only black or blue pen.

For open answers:

- Write **clearly** only inside the provided boxes.
- Each box should contain a single integer (positive or negative).

For multiple choice questions:

- Fill the circle of the answer you consider correct (only one answer is correct).
- Remarks and computations have **no** influence on points awarded.
- Any unclear or double marks will be counted as answer not given (0 points).
- Wrong answers give **negative** points.

Exam instructions

- Turn off your devices and leave them in your bag.
- Only pens and Legi should be on the table.
- Fill last name and Legi number on the answer sheet.
- Turn this sheet only when instructed to do so.
- At the end of the exam, give the single answer sheet which you want to submit to an assistant, and take everything else with you.

Questions

NumCSE midterm, HS 2018

1. Convolution [6 points].

Let

$$x = (3, 6, 12, 24, 9, 9, 9, 9, 9, -12, 11, -12, 14).$$

Let * indicate the discrete linear convolution and $*_p$ the discrete periodic convolution with period p. Let z[i] indicate the element at position i of any vector z. For instance: x[0] = 3 and x[12] = 14.

- (a) If y = (1, 2, 3, 4, 5), what is the length of x * y? 17 [1 for correct answer,0 for answer not given,0 for wrong answer]
- (b) If y = (2, -2, 2) what is $(y *_3 y)[0]$? -4 [1,0,0]
- (c) If y = (1, -1, 1, -1, 1), what is (x * y)[3]? **15** [1,0,0]
- (d) If y = (7, 7, -7, -7, 7, 7, -7, -7) what is (x * y)[11]? **14** [1,0,0]
- (e) If y = (2, -1), what is $(x *_{16} y)[2018]$? **18** [2,0,0]

2. Singular Value Decomposition [4 points].

Let $A \in \mathbb{R}^{3,2}$ be defined as

$$A = \begin{pmatrix} 0 & 2 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

- (a) What are the non-zero singular values of A? 2,1 [1 for both correct,0,0]
- (b) Consider the full singular value decomposition $A = U\Sigma V^{\top}$ of A. Determine $a, b, \alpha, \beta \in \mathbb{N}$ such that $U \in \mathbb{R}^{a,b}$ and $V \in \mathbb{R}^{\alpha,\beta}$. $U \in \mathbb{R}^{3,3}, V \in \mathbb{R}^{2,2}$ [1 for all correct,0,0]
- (c) Consider the *reduced* singular value decomposition $A = \tilde{U}\tilde{\Sigma}\tilde{V}^{\top}$ of A. Determine $a, b, \alpha, \beta \in \mathbb{N}$ such that $\tilde{U} \in \mathbb{R}^{a,b}$ and $\tilde{V} \in \mathbb{R}^{\alpha,\beta}$. $\tilde{U} \in \mathbb{R}^{3,2}, \tilde{V} \in \mathbb{R}^{2,2}$ [1 for all correct,0,0]
- (d) Let $\tilde{A} \in \mathbb{R}^{3,2}$ be the best rank-1 approximation of A. Let $\|\cdot\|_F$ denote the Frobenius norm. What is the value of $\|A \tilde{A}\|_F$? **1** [1,0,0]

3. Complexity [4 points].

Consider the following Eigen/C++ code:

```
MatrixXd A = MatrixXd::Zero(n, n);
9
       A(0, 0) = 1.0; A(1, 0) = 1.0;
10
       for (int j = 1; j < n - 1; ++j) {
11
           for (int i = j - 1; i < j + 2; ++i) {
12
               A(i, j) = 1.0;
13
           }
14
       }
15
       A(n-2, n-1) = 1.0; A(n-1, n-1) = 1.0;
16
17
18
       MatrixXd Q = A.householderQr().householderQ();
19
       cout << Q;</pre>
20
       for (int i = 0; i < n*n; ++i) {
21
22
           VectorXd b = VectorXd::Random(n);
           VectorXd M = A.fullPivLu().solve(b);
23
           cout << M;</pre>
24
25
       }
26
27
       FullPivLU<MatrixXd> lu = A.fullPivLu();
       for (int i = 0; i < n*n; ++i) {
28
29
           VectorXd b = VectorXd::Random(n);
30
           VectorXd M = lu.solve(b);
           cout << M;</pre>
31
32
       }
```

complexity.cpp

You can assume that lines 22 and 29 run in O(n). What integer α is such that $O(n^{\alpha})$ is the lowest correct asymptotic complexity of...

```
(a) ...lines 10–16? 1 [1,0,0]
(b) ...lines 18–19? 3 [1,0,0]
(c) ...lines 21–25? 5 [1,0,0]
(d) ...lines 27–32? 4 [1,0,0]
```

4. Cancellation [4 points].

Which side of the equations below should be preferred in order to minimize the impact of cancellation? On the answer sheet, we abbreviate left-hand side (LHS) and right-hand side (RHS).

(a) For large $x \gg 1$:

$$\frac{1}{\sqrt{x^2+1}+x} = \sqrt{x^2+1} - x$$

LHS [1,0,-1]

(b) For small x > 0:

$$(1-x)^2 - 1 = x^2 - 2x$$

RHS [1,0,-1]

(c) For large $x \gg 1$:

$$\frac{(x+1)^2 - x^2}{x} = 2 + \frac{1}{x}$$

RHS [1,0,-1]

(d) For small x > 0:

$$\frac{2x^2}{(1+2x)(1+x)} = \frac{1}{1+2x} - \frac{1-x}{1+x}$$

LHS [1,0,-1]

5. Householder reflections [8 points].

The Householder matrix for a reflection about the hyper-plane with normal vector \mathbf{v} is

$$\mathbf{H}_{\mathbf{v}} := \mathbf{I}_{\mathbf{m}} - 2 \frac{\mathbf{v} \mathbf{v}^T}{\mathbf{v}^T \mathbf{v}} = \mathbf{I}_{\mathbf{m}} - 2 \tilde{\mathbf{v}} \tilde{\mathbf{v}}^T ,$$

where $\tilde{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|_2}$ is a unit vector and $\mathbf{I_m}$ is an identity matrix of size $m \times m$. Note that $\mathbf{H_v}$ is symmetric and orthogonal.

We want to reduce a matrix $\mathbf{A} \in \mathbb{R}^{3,3}$ to an upper triangular form \mathbf{R} using successive Householder transformations

$$\mathbf{H_{v^2}H_{v^1}A} = \mathbf{R} ,$$

where

$$\mathbf{A} = \begin{bmatrix} 3 & 20 & 1 \\ 4 & 20 & -1 \\ 0 & 3 & 2 \end{bmatrix}.$$

- (a) Find the **unit** vector $\tilde{\mathbf{v}}^1 \in \mathbb{R}^3$ such that the first and second element of $\tilde{\mathbf{v}}^1$ are both positive.
- (b) Find the **unit** vector $\tilde{\mathbf{v}}^2 \in \mathbb{R}^3$ such that the second element of $\tilde{\mathbf{v}}^2$ is negative and the third element is positive.

Solution:

$$\tilde{\mathbf{v}}^1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\1\\0 \end{bmatrix} \quad , \quad \tilde{\mathbf{v}}^2 = \frac{1}{\sqrt{10}} \begin{bmatrix} 0\\-3\\1 \end{bmatrix}.$$

[4 for each vector fully correct,0,0]

The reflecting vector v^1 can be obtained as:

$$\mathbf{v^1} = \mathbf{a^1} + sign(\mathbf{a^1}_1) \|\mathbf{a^1}\|_2^2 \mathbf{e^1}$$

$$= \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \\ 0 \end{bmatrix}.$$

$$\tilde{\mathbf{v}}^1 = \frac{1}{\sqrt{80}} \begin{bmatrix} 8 \\ 4 \\ 0 \end{bmatrix}.$$

The corresponding Householder matrix can be computed as:

$$\mathbf{H_{v^1}} = \mathbf{I_3} - 2\frac{\mathbf{v^1(v^1)}^T}{(\mathbf{v^1})^T \mathbf{v^1}}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - 2\begin{bmatrix} \frac{4}{5} & \frac{2}{5} & 0 \\ \frac{2}{5} & \frac{1}{5} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} & 0 \\ -\frac{4}{5} & \frac{3}{5} & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Premultiplying A by H_{v^1} gives:

$$\mathbf{H_{v^1}A} = \begin{bmatrix} -5 & -28 & \frac{1}{5} \\ 0 & -4 & -\frac{7}{5} \\ 0 & 3 & 2 \end{bmatrix}.$$

Now we can obtain v^2 as follows:

$$\mathbf{v^2} = \begin{bmatrix} 0 \\ -4 \\ 3 \end{bmatrix} - 5 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -9 \\ 3 \end{bmatrix}.$$

$$\tilde{\mathbf{v}}^2 = \frac{1}{\sqrt{90}} \begin{bmatrix} 0 \\ -9 \\ 3 \end{bmatrix}.$$