- Use only black or blue pen.

For open answers:

- Write clearly only inside the provided boxes.
- Each box should contain a single integer (positive or negative).

For multiple choice questions:

- Fill the circle of the answer you consider correct (only one answer is correct).
- Remarks and computations have no influence on points awarded.
- Any unclear or double marks will be counted as answer not given (0 points).
- Wrong answers give negative points.

Exam instructions

- Turn off your devices and leave them in your bag.
- Only pens and Legi should be on the table.
- Fill last name and Legi number on the answer sheet.
- Turn this sheet only when instructed to do so.
- At the end of the exam, give the single answer sheet which you want to submit to an assistant, and take everything else with you.

Questions

NumCSE midterm, HS 2018

1. Singular Value Decomposition [4 points].

Let $A \in \mathbb{R}^{2,3}$ be defined as

$$
A=\left(\begin{array}{lll}
0 & 2 & 0 \\
3 & 0 & 0
\end{array}\right)
$$

(a) Consider the full singular value decomposition $A=U \Sigma V^{\top}$ of A. Determine $a, b, \alpha, \beta \in \mathbb{N}$ such that $U \in \mathbb{R}^{a, b}$ and $V \in \mathbb{R}^{\alpha, \beta} . \quad U \in \mathbb{R}^{2,2}, V \in \mathbb{R}^{3,3}$ [1 for all correct, $\mathbf{0}$ for answer not given, 0 for wrong answer]
(b) Consider the reduced singular value decomposition $A=\tilde{U} \tilde{\Sigma} \tilde{V}^{\top}$ of A. Determine $a, b, \alpha, \beta \in$ \mathbb{N} such that $\tilde{U} \in \mathbb{R}^{a, b}$ and $\tilde{V} \in \mathbb{R}^{\alpha, \beta} . \quad \tilde{U} \in \mathbb{R}^{2,2}, \tilde{V} \in \mathbb{R}^{3,2}$ [1 for all correct,0,0]
(c) What are the non-zero singular values of A ? 3,2 [1 for both correct, 0,0]
(d) Let $\tilde{A} \in \mathbb{R}^{2,3}$ be the best rank-1 approximation of A. Let $\|\cdot\|_{F}$ denote the Frobenius norm. What is the value of $\|A-\tilde{A}\|_{F}$? $\quad 2[\mathbf{1 , 0 , 0}]$
2. Complexity [4 points].

Consider the following Eigen/C++ code:

```
MatrixXd A = MatrixXd::Zero(n, n);
A(0, 0) = 1.0; A(1, 0) = 1.0;
for (int j = 1; j < n - 1; ++j) {
    for (int i = j - 1; i < j + 2; ++i) {
        A(i, j) = 1.0;
    }
}
A(n-2, n-1) = 1.0; A(n-1, n - 1) = 1.0;
MatrixXd Q = A.householderQr().householderQ();
cout << Q;
for (int i = 0; i < n*n; ++i) {
    VectorXd b = VectorXd::Random(n);
    VectorXd M = A.fullPivLu().solve(b);
    cout << M;
}
FullPivLU<MatrixXd> lu = A.fullPivLu();
for (int i = 0; i < n*n; ++i) {
    VectorXd b = VectorXd::Random(n);
    VectorXd M = lu.solve(b);
    cout << M;
}
```

complexity.cpp

You can assume that lines 22 and 29 run in $O(\mathrm{n})$. What integer α is such that $O\left(\mathrm{n}^{\alpha}\right)$ is the lowest correct asymptotic complexity of...
(a) ...lines 10-16? $\quad 1[\mathbf{1 , 0 , 0}]$
(b) ...lines 27-32? $4[1,0,0]$
(c) ...lines 21-25? $5[\mathbf{1 , 0 , 0}]$
(d) ...lines 18-19? $3[\mathbf{1 , 0 , 0}]$
3. Cancellation [4 points].

Which side of the equations below should be preferred in order to minimize the impact of cancellation? On the answer sheet, we abbreviate left-hand side (LHS) and right-hand side (RHS).
(a) For large $x \gg 1$:

$$
\frac{(x+1)^{2}-x^{2}}{x}=2+\frac{1}{x}
$$

RHS [1,0,-1]
(b) For large $x \gg 1$:

$$
\frac{1}{\sqrt{x^{2}+1}+x}=\sqrt{x^{2}+1}-x
$$

LHS [1,0,-1]
(c) For small $x>0$:

$$
\frac{2 x^{2}}{(1+2 x)(1+x)}=\frac{1}{1+2 x}-\frac{1-x}{1+x}
$$

LHS [1,0,-1]
(d) For small $x>0$:

$$
(1-x)^{2}-1=x^{2}-2 x
$$

RHS [1,0,-1]
4. Householder reflections [8 points].

The Householder matrix for a reflection about the hyper-plane with normal vector \mathbf{v} is

$$
\mathbf{H}_{\mathbf{v}}:=\mathbf{I}_{\mathbf{m}}-2 \frac{\mathbf{v} \mathbf{v}^{T}}{\mathbf{v}^{T} \mathbf{v}}=\mathbf{I}_{\mathbf{m}}-2 \tilde{\mathbf{v}} \tilde{\mathbf{v}}^{T}
$$

where $\tilde{\mathbf{v}}=\frac{\mathbf{v}}{\|\mathbf{v}\|_{2}}$ is a unit vector and $\mathbf{I}_{\mathbf{m}}$ is an identity matrix of size $m \times m$. Note that $\mathbf{H}_{\mathbf{v}}$ is symmetric and orthogonal.

We want to reduce a matrix $\mathbf{A} \in \mathbb{R}^{3,3}$ to an upper triangular form \mathbf{R} using successive Householder transformations

$$
\mathbf{H}_{\mathbf{v}^{2}} \mathbf{H}_{\mathbf{v}^{1}} \mathbf{A}=\mathbf{R},
$$

where

$$
\mathbf{A}=\left[\begin{array}{ccc}
-3 & 20 & 1 \\
4 & -20 & -1 \\
0 & 3 & 2
\end{array}\right]
$$

(a) Find the unit vector $\tilde{\mathbf{v}}^{\mathbf{1}} \in \mathbb{R}^{3}$ such that the first element of $\tilde{\mathbf{v}}^{1}$ is negative and the second element is positive.
(b) Find the unit vector $\tilde{\mathbf{v}}^{2} \in \mathbb{R}^{3}$ such that the second and third element of $\tilde{\mathbf{v}}^{2}$ are both positive.

Solution:

$$
\tilde{\mathbf{v}}^{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] \quad, \quad \tilde{\mathbf{v}}^{2}=\frac{1}{\sqrt{10}}\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right] .
$$

[4 for each vector fully correct, 0,0]

The reflecting vector can be obtained as:

$$
\begin{aligned}
\mathbf{v}^{\mathbf{1}} & =\mathbf{a}^{\mathbf{1}}+\operatorname{sign}\left(\mathbf{a}^{\mathbf{1}}{ }_{1}\right)\left\|\mathbf{a}^{\mathbf{1}}\right\|_{2}^{2} \mathbf{e}^{\mathbf{1}} \\
& =\left[\begin{array}{c}
-3 \\
4 \\
0
\end{array}\right]-5\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-8 \\
4 \\
0
\end{array}\right] . \\
\tilde{\mathbf{v}}^{1} & =\frac{1}{\sqrt{80}}\left[\begin{array}{c}
-8 \\
4 \\
0
\end{array}\right] .
\end{aligned}
$$

The corresponding Householder matrix can be computed as:

$$
\begin{aligned}
\mathbf{H}_{\mathbf{v}^{\mathbf{1}}} & =\mathbf{I}_{3}-2 \frac{\mathbf{v}^{\mathbf{1}}\left(\mathbf{v}^{\mathbf{1}}\right)^{T}}{\left(\mathbf{v}^{\mathbf{1}}\right)^{T} \mathbf{v}^{\mathbf{1}}} \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-2\left[\begin{array}{ccc}
\frac{4}{5} & -\frac{2}{5} & 0 \\
-\frac{2}{5} & \frac{1}{5} & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-\frac{3}{5} & \frac{4}{5} & 0 \\
\frac{4}{5} & \frac{3}{5} & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Premultiplying A by $\mathrm{H}_{\mathrm{v}^{1}}$ gives:

$$
\mathbf{H}_{\mathbf{v}^{1}} \mathbf{A}=\left[\begin{array}{ccc}
5 & -28 & -\frac{7}{5} \\
0 & 4 & \frac{1}{5} \\
0 & 3 & 2
\end{array}\right]
$$

Now we can obtain v^{2} as follows:

$$
\begin{aligned}
& \mathbf{v}^{2}=\left[\begin{array}{l}
0 \\
4 \\
3
\end{array}\right]+5\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
9 \\
3
\end{array}\right] . \\
& \tilde{\mathbf{v}}^{2}=\frac{1}{\sqrt{90}}\left[\begin{array}{l}
0 \\
9 \\
3
\end{array}\right] .
\end{aligned}
$$

5. Convolution [6 points].

Let

$$
x=(4,8,12,16,14,8,8,8,8,-11,12,-12,13) .
$$

Let $*$ indicate the discrete linear convolution and $*_{p}$ the discrete periodic convolution with period p. Let $z[i]$ indicate the element at position i of any vector z. For instance: $x[0]=4$ and $x[12]=13$.
(a) If $y=(3,-3,3)$ what is $\left(y *_{3} y\right)[0]$? $\quad \mathbf{- 9}[\mathbf{1 , 0 , 0}]$
(b) If $y=(1,2,3,4)$, what is the length of $x * y ? \quad \mathbf{1 6}[\mathbf{1}, \mathbf{0}, \mathbf{0}]$
(c) If $y=(1,-1,1,-1,1)$, what is $(x * y)[3]$? $\quad \mathbf{8}[\mathbf{1 , 0 , 0}]$
(d) If $y=(7,7,-7,-7,7,7,-7,-7)$ what is $(x * y)[11]$? $\quad \mathbf{- 2 1}[\mathbf{1}, \mathbf{0}, \mathbf{0}]$
(e) If $y=(2,-1)$, what is $\left(x *_{16} y\right)[2018] ? \mathbf{1 6}[\mathbf{2 , 0 , 0}]$

