
NumCSE Mock Exam, HS 2018
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1. Estimating point locations from distances [14 pts.]

Let n ∈ N, n > 2 points be located on the real axis. The leftmost point is fixed at origin,
whereas the other points are at unknown locations:

xi ∈ R, for i = 1, 2, . . . ,n,
xi+1 > xi,

x1 = 0.

The distances di, j := |xi − x j|, ∀i, j ∈ {1, 2, . . . ,n}, i > j are measured and arranged in a vector

d := [d2,1, d3,1, . . . , dn,1, d3,2, d4,2, . . . , dn,n−1]> ∈ Rm,

where m = n(n − 1)/2. Assume that there are no measurement errors.

Some templates are provided in estimatePositions.cpp, write your code in the template
coresponding to the instructions in the tasks below.

(a) To determine the unknown point locations using the distance measurements, formulate
a linear least squares problem

z∗ = arg min
z∈Rn−1

‖Az − b‖ . (1)

[2 pts.]

(b) Write an EIGEN based C++ implementation

using namespace Eigen;

SparseMatrix<double> buildDistanceLSQMatrix( int n);

which initializes the system matrix A from (1) in an efficient manner for large n. [2 pts.]

(c) Give explicit formulas for the entries of the system matrix M of the normal equations
corresponding to the system (1). [2 pts.]

(d) Show that the system matrix M obtained in the previous step can be written as a rank-1
perturbation of a diagonal matrix. [2 pts.]

(e) Write an EIGEN based C++ implementation

VectorXd estimatePointsPositions(const MatrixXd& D);

which solves the linear least squares problem (1) using normal equations method. Here
D ∈ Rn×n

(D)i, j =


di, j if i > j,
0 if i = j,
−di, j if i < j.

Use the observations from the previous step. [5 pts.]

(f) What is the asymptotic complexity of the function estimatePointPositions imple-
mented in subproblem (e) for n→∞? [1 pt.]
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2. Solving an eigenvalue problem with Newton method [14 pts.]

Given a symmetric positive-definite matrix A ∈ Rn×n, solving

F(z) = 0, z = (x, λ)>,

for F(z) :=
(

Ax − λx
1 − 1

2 ‖x‖
2

)
,

(2)

is equivalent to finding an eigenvector x and associated eigenvalue λ for A.

Therefore, a possible numerical method for computing one eigenvalue/eigenvector of A is the
application of Newton’s method to find a zero of the vector-valued function F : Rn+1

→ Rn+1

defined in (6).

(a) Compute the Jacobian of F at
(
x
λ

)
∈ Rn+1. [2 pts.]

(b) Devise an iteration of the Newton method to solve F(z) = 0. [4 pts.]

(c) Write an EIGEN based C++ implementation for the Newton method devised in the
previous step:

void eigNewton(const MatrixXd &A, double atol, int
maxItr, VectorXd &z);

which, given the matrix A, tolerance tol and initial guess z, returns the solution in z. [8
pts.]

Hint: For the initial guess: choose x, then evaluate λ =
x>Ax
x>x

.

Hint: Test your code with some small matrix A.
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3. Gauss-Legendre quadrature rule [14 pts.]

An n-point quadrature formula on [a, b] provides an approximation of the value of an integral
through a weighted sum of point values of the integrand:∫ b

a
f (x) dt ≈ Qn( f ) :=

n∑
j=1

wn
j f (cn

j ), (3)

where wn
j are called quadrature weights ∈ R and cn

j quadrature nodes ∈ [a, b].

The order of a quadrature rule Qn : C0([a, b]) → R is defined as the maximal degree+1 of
polynomials for which the quadrature rule is guaranteed to be exact. It can also be shown
that the maximal order of an n-point quadrature rule is 2n. So the natural question to ask
is if such a family Qn of n-point quadrature formulas exist where Qn is of order 2n. If yes,
how do we find the nodes corresponding to it?

Let us assume that there exists a family of n-point quadrature formulas on [−1, 1] of order
2n, i.e.

Qn( f ) :=
n∑

j=1

wn
j f (cn

j ) ≈
∫ 1

−1
f (t) dt , w j ∈ R , n ∈N , (4)

and the above approximation is exact for polynomials ∈ P2n−1.

Define the n-degree polynomial

P̄n(t) := (t − cn
1) · · · · · (t − cn

n) , t ∈ R .

If we are able to obtain P̄n(t), we can compute its roots numerically to obtain the nodes for
the quadrature formula.

(a) For every q ∈ Pn−1, verify that P̄n(t) ⊥ q in L2([−1, 1]) i.e.∫ 1

−1
q(t)P̄n(t) dt = 0. (5)

[2 pts.]

(b) Switching to a monomial representation of P̄n

P̄n = tn + αn−1tn−1 + · · · + α1t + α0 ,

derive
n−1∑
j=0

α j

∫ 1

−1
t`t j dt = −

∫ 1

−1
t`tn dt ∀ ` = 0 . . . ,n − 1. (6)

[3 pts.]
Hint: Use (9) with the monomials 1, t, . . . , tn−1 and with P̄n in its monomial representation.

(c) Find expressions for A and b such that the coefficients of the monomial expansion can
be obtained by solving a linear system of equation A[α j]n−1

j=0 = b. [3 pts.]

(d) Show that [α j]n−1
j=0 exists and is unique. [3 pts.]

Hint: verify that A is symmetric positive definite.

(e) Use a 5-point Gauss quadrature rule to compare the exact solution and the quadrature
approximation of ∫ 3

−3
et dt.

4



The polynomial obtained in (d) and the Legendre-polynomial Pn differ by a constant
factor. Thus, the Gauss quadrature nodes (̂c j)5

j=1 are also the zeros of the 5-th Legendre
polynomial P5. Here, we provide the zeros of P5 for simplicity, but they should ideally
be obtained by a numerical method for obtaining roots (e.g Newton-Raphson method).
Thus,

(̂c j)5
j=1 = [−0.9061798459,−0.5384693101, 0, 0.5384693101, 0.9061798459]

Recall from Theorem 6.3.1 (found in Week 9 Tablet notes - pg. 9) that the corresponding
quadrature weights ŵ j are given by:

ŵ j =

∫ 1

−1
L j−1(t) dt, j = 1, . . . ,n, (7)

where L j, j = 0, . . . ,n − 1, is the j-th Lagrange polynomial associated with the ordered
node set {̂c1, . . . , ĉn}. [3 pts.]
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