NumCSE Mock Exam, HS 2018



1. Estimating point locations from distances [14 pts.]
Let n € IN, n > 2 points be located on the real axis. The leftmost point is fixed at origin,
whereas the other points are at unknown locations:
x;e€R, fori=1,2,...,n,
Xi+1 > Xi,
X1 = 0.

The distances d; j := [x; — xjl, Vi,j € {1,2,...,n}, i> jare measured and arranged in a vector
. T
d:=[dy1,d31,...,dn1,d32,d42,...,d1n1]" €R",

where m = n(n — 1)/2. Assume that there are no measurement errors.

Some templates are provided in estimatePositions.cpp, write your code in the template
coresponding to the instructions in the tasks below.

(@) To determine the unknown point locations using the distance measurements, formulate
a linear least squares problem

z' = argmin||Az - b||. (@)

zeR"-1
[2 pts.]
(b) Write an EIGEN based C++ implementation

using namespace Eigen;

SparseMatrix<double> buildDistancelLSQMatrix(int n);

which initializes the system matrix A from (1) in an efficient manner for large n. [2 pts.]

(c) Give explicit formulas for the entries of the system matrix M of the normal equations
corresponding to the system (1). [2 pts.]

(d) Show that the system matrix M obtained in the previous step can be written as a rank-1
perturbation of a diagonal matrix. [2 pts.]

(e) Write an EIGEN based C++ implementation

VectorXd estimatePointsPositions(const MatrixXd& D);

which solves the linear least squares problem (1) using normal equations method. Here

D e R™n
di,j ifi > j,
(D);j =10 ifi=j
—di,]' ifi< ]

Use the observations from the previous step. [5 pts.]

(f) What is the asymptotic complexity of the function estimatePointPositions imple-
mented in subproblem (e) for n — oo? [1 pt.]



2. Solving an eigenvalue problem with Newton method [14 pts.]

Given a symmetric positive-definite matrix A € R™", solving

F(z)=0, z=(x,A)7,
Ax — Ax ) )

for F(z):= (1 ~ LxP
2

is equivalent to finding an eigenvector x and associated eigenvalue A for A.

Therefore, a possible numerical method for computing one eigenvalue/eigenvector of A is the
application of Newton’s method to find a zero of the vector-valued function F : R"*! — R"*!
defined in (6).

(a) Compute the Jacobian of F at (j{) € R"™1. [2 pts.]

(b) Devise an iteration of the Newton method to solve F(z) = 0. [4 pts.]

(c) Write an EIGEN based C++ implementation for the Newton method devised in the
previous step:

void eigNewton(const MatrixXd &A, double atol, int
maxItr, VectorXd &z);

which, given the matrix A, tolerance tol and initial guess z, returns the solution in z. [8
pts.]
x T Ax

Hint: For the initial guess: choose x, then evaluate A = —
xTx

Hint: Test your code with some small matrix A.



3. Gauss-Legendre quadrature rule [14 pts.]

An n-point quadrature formula on [4, b] provides an approximation of the value of an integral
through a weighted sum of point values of the integrand:

b n
[ redr = Q=Y w e, ®)
a ]':1

where w]’.1 are called quadrature weights € R and c’; quadrature nodes € [a, b].

The order of a quadrature rule Q, : C°([a,b]) — R is defined as the maximal degree+1 of
polynomials for which the quadrature rule is guaranteed to be exact. It can also be shown
that the maximal order of an n-point quadrature rule is 2n. So the natural question to ask
is if such a family Q, of n-point quadrature formulas exist where Q, is of order 2n. If yes,
how do we find the nodes corresponding to it?

Let us assume that there exists a family of n-point quadrature formulas on [-1, 1] of order
2n,i.e.

n 1
OESWIGE [ rtrar, wer, nen, @
]:
and the above approximation is exact for polynomials € $5,,_1.

Define the n-degree polynomial
Pu(ty:=(t—cf)----- (t—cl), teR.

If we are able to obtain P,(t), we can compute its roots numerically to obtain the nodes for
the quadrature formula.

(a) For every g € P,_1, verify that P,,(t) L qin L>([-1,1]) i.e.

1
ﬁ OPy(Bd =0, 5)

[2 pts.]
(b) Switching to a monomial representation of P,

Pp=t"+a, 1" "+ +ut+a,

1 1
ajft"tfdt:—ftft”dt Ve=0...,n—1. (6)

1 1

derive

—_

n—

Il
[«

]
[3 pts.]
Hint: Use (9) with the monomials 1, ¢,..., "1 and with P,, in its monomial representation.
(c) Find expressions for A and b such that the coefficients of the monomial expansion can
be obtained by solving a linear system of equation A[a ]-];?:‘01 =b. [3 pts.]
(d) Show that [« ]'];7:‘01 exists and is unique. [3 pts.]
Hint: verify that A is symmetric positive definite.

(e) Use a 5-point Gauss quadrature rule to compare the exact solution and the quadrature

approximation of
f e' dt.
-3

4



The polynomial obtained in (d) and the Legendre-polynomial P, differ by a constant
factor. Thus, the Gauss quadrature nodes @)]5.:1 are also the zeros of the 5-th Legendre

polynomial Ps. Here, we provide the zeros of Ps for simplicity, but they should ideally
be obtained by a numerical method for obtaining roots (e.g Newton-Raphson method).
Thus,

@)]5.:1 = [-0.9061798459, —0.5384693101, 0, 0.5384693101, 0.9061798459]

Recall from Theorem 6.3.1 (found in Week 9 Tablet notes - pg. 9) that the corresponding
quadrature weights w; are given by:

1

where Lj,j =0,...,n — 1, is the j-th Lagrange polynomial associated with the ordered
node set {c1, ..., ¢y} [3 pts.]



