
NumCSE Mock Exam, HS 2018

1

1. Estimating point locations from distances [14 pts.]

Let n ∈ N, n > 2 points be located on the real axis. The leftmost point is fixed at origin,
whereas the other points are at unknown locations:

xi ∈ R, for i = 1, 2, . . . ,n,
xi+1 > xi,

x1 = 0.

The distances di, j := |xi − x j|, ∀i, j ∈ {1, 2, . . . ,n}, i > j are measured and arranged in a vector

d := [d2,1, d3,1, . . . , dn,1, d3,2, d4,2, . . . , dn,n−1]> ∈ Rm,

where m = n(n − 1)/2. Assume that there are no measurement errors.

Some templates are provided in estimatePositions.cpp, write your code in the template
coresponding to the instructions in the tasks below.

(a) To determine the unknown point locations using the distance measurements, formulate
a linear least squares problem

z∗ = arg min
z∈Rn−1

‖Az − b‖ . (1)

[2 pts.]

Solution:

We find that

xi − x j = di j, 1 ≤ j < i ≤ n.

This can be written as 

−1 1 0 . . . 0
−1 0 1 0
...

. . .
. . .

−1 . . . 0 1
0 −1 1 0 . . . 0

0 −1 0 1 0
...

...
0 −1 1 0

0 . . . 0 −1 1




x1
x2
...

xn

 =



d2,1
d3,1
...

dn,1
d3,2
d4,2
...

d4,3
...

dn,n−1



. (2)

Setting x1 := 0 amounts to dropping the first column of the system matrix. The remaining matrix
is the matrix A from (1), which is of the form

A =

[
In−1
∗

]
∈ Rm,n−1.

Since the top (n − 1) × (n − 1) block is the identity matrix, A must have full rank.

(b) Write an EIGEN based C++ implementation

using namespace Eigen;

SparseMatrix<double> buildDistanceLSQMatrix(int n);

which initializes the system matrix A from (1) in an efficient manner for large n. [2 pts.]

Solution:

The matrix A is sparse with 2m− (n−1) = (n−1)2 < n(n−1)2

2 non-zero entries. The signature of the
function buildDistanceLSQMatrix already imposes the usage of sparse matrix data formats.
There are two alternative methods that guarantee an efficient implementation.

2

• Matrix assembly via intermediate triplet format:
i. A vector of triplets is preallocated.

This is possible, because we know that A has a total of 2m − (n − 1) = (n − 1)2 non-zero
entries. The vector is then filled with triplets.

ii. Initialization via an intermediate triplet (COO) format andEIGEN’s methodsetFromTriplets().
• Direct entry specification viaSparseMatrix<T>::insert (alsoSparseMatrix<T>::coeffRef

is accepted). To avoid unnecessary memory reallocations, SparseMatrix<T>::reserve
must be called with an appropriate estimate.

1 SparseMatrix<double> buildDistanceLSQMatrix(int n) {
2 SparseMatrix<double> A(n*(n-1)/2, n-1);
3

4 // Assembly

5 std::vector <Triplet <double>> triplets; // List of non-zeros
coefficients

6 triplets.reserve((n-1)*(n-1)); // Two non-zeros per row (at most),
first n − 1 rows only one entry

7 // --> (n − 1)2 total non-zero entries

8

9 // Loops over vertical blocks

10 int row = 0; // Current row counter

11 for(int i = 0; i < n-1; ++i) { // Block with same "-1" column
12 for(int j = i; j < n-1; ++j) { // Loop over block
13 triplets.push_back(Triplet <double>(row, j, 1));
14 i f (i > 0) { // Remove first column
15 triplets.push_back(Triplet <double>(row, i-1, -1));
16 }

17 row++; // Next row
18 }

19 }

20

21 // Build matrix

22 A.setFromTriplets(triplets.begin(), triplets.end());
23

24 A.makeCompressed();
25 return A;
26 }

(c) Give explicit formulas for the entries of the system matrix M of the normal equations
corresponding to the system (1). [2 pts.]

Solution:

The entries of matrix M = A>A can be expressed as inner products of two different columns of
A: (

A>A
)

i, j = (A)>:,i(A):, j.

Two columns of A have both non-zero entries, ±1 of opposite sign, only in a single position,
hence (M)i, j = −1 for i , j. The diagonal entries of M are the squares of the Euclidean norms
of the columns of A. Every column of A has exactly n − 1 entries with value ±1, which means
(M)i,i = n − 1.

(d) Show that the system matrix M obtained in the previous step can be written as a rank-1
perturbation of a diagonal matrix. [2 pts.]

Solution:

As

(M)i, j =

−1 , if i , j,
n − 1 , if i = j

, 1 ≤ i, j ≤ n − 1, (3)

3

we have that

M = nIn−1 − 1 · 1>, 1 = [1, . . . , 1]> ∈ Rn−1. (4)

The tensor product matrix 1 · 1> has rank 1.

(e) Write an EIGEN based C++ implementation

VectorXd estimatePointsPositions(const MatrixXd& D);

which solves the linear least squares problem (1) using normal equations method. Here
D ∈ Rn×n

(D)i, j =


di, j if i > j,
0 if i = j,
−di, j if i < j.

Use the observations from the previous step. [5 pts.]

Solution:

We apply the Sherman-Morrison-Woodbury formula to the normal equations(
nIn−1 − 1 · 1>

)
x = A>d.

This yields

x = 1
n b +

1
n 1 · 1>b
n − 1>1

= 1
n
(
b + 1 · 1>b

)
, b := A>d. (5)

Note that the entries of the vector b ∈ Rn−1 can be computed by summing the entries of the last
n − 1 rows of D (the intermediate points of the distances cancel each other out)

1 VectorXd estimatePointsPositions(const MatrixXd& D) {
2

3 VectorXd x;
4

5 // Vector of sum of columns of A

6 ArrayXd b = D.rowwise().sum(). t a i l (D. cols()-1);
7 // Vector 1

8 ArrayXd one = ArrayXd::Constant(D. cols()-1, 1);
9 // Apply SMW formula

10 x = (b + one * b.sum()) / D. cols();
11

12 return x;
13 }

(f) What is the asymptotic complexity of the function estimatePointPositions imple-
mented in subproblem (e) for n→∞? [1 pt.]

Solution:

An implementation of (5) involves SAXPY operations and inner products for vectors of length
n − 1, all of which can be carried out with asymptotic complexity O(n).

However, forming the vector b has to access all distances and involves computational costO(n2),
which dominates the total asymptotic complexity.

4

2. Solving an eigenvalue problem with Newton method [14 pts.]

Given a symmetric positive-definite matrix A ∈ Rn×n, solving

F(z) = 0, z = (x, λ)>,

for F(z) :=
(

Ax − λx
1 − 1

2 ‖x‖
2

)
,

(6)

is equivalent to finding an eigenvector x and associated eigenvalue λ for A.

Therefore, a possible numerical method for computing one eigenvalue/eigenvector of A is the
application of Newton’s method to find a zero of the vector-valued function F : Rn+1

→ Rn+1

defined in (6).

(a) Compute the Jacobian of F at
(
x
λ

)
∈ Rn+1. [2 pts.]

Solution:

DF(x) =

(
Ax − λI −x
−x> 0

)
.

(b) Devise an iteration of the Newton method to solve F(z) = 0. [4 pts.]

Solution:

(
x(k+1)

λ(k+1)

)
=

(
x(k)

λ(k)

)
−

(
A − λI −x(k)

−(x(k))> 0

)−1 Ax(k)
− λ(k)x(k)

1 − 1
2

∥∥∥x(k)
∥∥∥2

 .
(c) Write an EIGEN based C++ implementation for the Newton method devised in the

previous step:

void eigNewton(const MatrixXd &A, double atol, int
maxItr, VectorXd &z);

which, given the matrix A, tolerance tol and initial guess z, returns the solution in z. [8
pts.]

Hint: For the initial guess: choose x, then evaluate λ =
x>Ax
x>x

.

Hint: Test your code with some small matrix A.

Solution:

1 void eigNewton(const Eigen::MatrixXd &A, double tol, int maxItr,
Eigen::VectorXd &z) {

2 int m = z. size();
3 int n = m - 1;
4

5 Eigen::MatrixXd DF(m, m);
6 Eigen::VectorXd F(m);
7 Eigen::VectorXd F_old(m);
8

9 for (int i = 0; i < maxItr; ++i) {
10 Eigen::VectorXd x = z.head(n);
11 F.head(n) = A * x - z(n) * x;
12 F(n) = 1.0 - 0.5 * x.squaredNorm();

13

14 i f (F.squaredNorm() < tol) {
15 std::cout << "tol reached with i = " << i << std::endl;

5

16 return;
17 }

18

19 DF. topLeftCorner(n, n) = A - z(n) *
Eigen::MatrixXd:: Identity(n, n);

20 DF.col(n) = -z;
21 DF.row(n) = -z. transpose();
22 DF(n, n) = 0;

23

24 z += -DF.fullPivLu().solve(F);
25 }

26

27 std::cout << "maxItr reached" << std::endl;
28 }

6

3. Gauss-Legendre quadrature rule [14 pts.]

An n-point quadrature formula on [a, b] provides an approximation of the value of an integral
through a weighted sum of point values of the integrand:∫ b

a
f (x) dt ≈ Qn(f) :=

n∑
j=1

wn
j f (cn

j), (7)

where wn
j are called quadrature weights ∈ R and cn

j quadrature nodes ∈ [a, b].

The order of a quadrature rule Qn : C0([a, b]) → R is defined as the maximal degree+1 of
polynomials for which the quadrature rule is guaranteed to be exact. It can also be shown
that the maximal order of an n-point quadrature rule is 2n. So the natural question to ask
is if such a family Qn of n-point quadrature formulas exist where Qn is of order 2n. If yes,
how do we find the nodes corresponding to it?

Let us assume that there exists a family of n-point quadrature formulas on [−1, 1] of order
2n, i.e.

Qn(f) :=
n∑

j=1

wn
j f (cn

j) ≈
∫ 1

−1
f (t) dt , w j ∈ R , n ∈N , (8)

and the above approximation is exact for polynomials ∈ P2n−1.

Define the n-degree polynomial

P̄n(t) := (t − cn
1) · · · · · (t − cn

n) , t ∈ R .

If we are able to obtain P̄n(t), we can compute its roots numerically to obtain the nodes for
the quadrature formula.

(a) For every q ∈ Pn−1, verify that P̄n(t) ⊥ q in L2([−1, 1]) i.e.∫ 1

−1
q(t)P̄n(t) dt = 0. (9)

[2 pts.]

Solution:

∀ q ∈ Pn−1 : q · P̄n ∈ P2n−1

=⇒

∫ 1

−1
q(t) · P̄n(t) dt︸ ︷︷ ︸
〈q,P̄n〉L2([−1,1])

=︸︷︷︸
exact QF on P2n−1

n∑
j=1

wn
j q(cn

j) P̄n(cn
j)︸︷︷︸

=0, ∀ j=(1,...,n)

= 0.

Thus, we have proved P̄n ⊥ Pn−1 in L2([−1, 1]).

(b) Switching to a monomial representation of P̄n

P̄n = tn + αn−1tn−1 + · · · + α1t + α0 ,

derive
n−1∑
j=0

α j

∫ 1

−1
t`t j dt = −

∫ 1

−1
t`tn dt ∀ ` = 0 . . . ,n − 1. (10)

[3 pts.]

7

Hint: Use (9) with the monomials 1, t, . . . , tn−1 and with P̄n in its monomial representa-
tion.

Solution:

We know that: ∫ 1

−1
q(t)P̄n(t) dt = 0 ∀q ∈ Pn−1.

This yields n conditions: ∫ 1

−1
P̄nt` dt = 0 ∀ ` = 0 . . . ,n − 1

⇔

∫ 1

−1
t`

tn +

n−1∑
j=0

α jt j

︸ ︷︷ ︸
P̄n

dt = 0 ∀` = 0, . . . ,n − 1

=⇒

n−1∑
j=0

α j

∫ 1

−1
t`t j dt = −

∫ 1

−1
t`tn dt.

(c) Find expressions for A and b such that the coefficients of the monomial expansion can
be obtained by solving a linear system of equation A[α j]n−1

j=0 = b. [3 pts.]

Solution:

(10) can be rewritten as: A[α j]n−1
j=0 = b, where

A j,` =

∫ 1

−1
t`t j dt = 〈t`, t j

〉L2([−1,1]).

and

b` = −

∫ 1

−1
t`tn dt = 〈t`, tn

〉L2([−1,1]).

(d) Show that [α j]n−1
j=0 exists and is unique. [3 pts.]

Hint: verify that A is symmetric positive definite.

Solution:

We can see that A is symmetric. Moreover,

x>Ax =

n−1∑
`=0

x`

n−1∑
j=0

∫ 1

−1
t jt` dt x j


=

∫ 1

−1

n−1∑
`=0

x`t`

n−1∑

j=0

x jt j

 dt

=

∫ 1

−1

n−1∑
j=0

x jt j


2

dt > 0 if x , 0.

Thus, A is symmetric positive definite =⇒ [α j]n−1
j=0 exists and is unique.

(e) Use a 5-point Gauss quadrature rule to compare the exact solution and the quadrature
approximation of ∫ 3

−3
et dt.

The polynomial obtained in (d) and the Legendre-polynomial Pn differ by a constant
factor. Thus, the Gauss quadrature nodes (̂c j)5

j=1 are also the zeros of the 5-th Legendre

8

polynomial P5. Here, we provide the zeros of P5 for simplicity, but they should ideally
be obtained by a numerical method for obtaining roots (e.g Newton-Raphson method).
Thus,

(̂c j)5
j=1 = [−0.9061798459,−0.5384693101, 0, 0.5384693101, 0.9061798459]

Recall from Theorem 6.3.1 (found in Week 9 Tablet notes - pg. 9) that the corresponding
quadrature weights ŵ j are given by:

ŵ j =

∫ 1

−1
L j−1(t) dt, j = 1, . . . ,n, (11)

where L j, j = 0, . . . ,n − 1, is the j-th Lagrange polynomial associated with the ordered
node set {̂c1, . . . , ĉn}. [3 pts.]

Solution:

The j-th Lagrange polynomial can be obtained by:

L j(t) =

n−1∏
k=0,k, j

t − tk

t j − tk
.

After obtaining the Lagrange polynomials for j = 0, . . . ,n− 1 using the quadrature nodes (̂c j)5
j=1,

we can use (11) to obtain the quadrature weights. They are found to be:

(ŵ j)5
j=1 = [0.2369268851, 0.4786286705, 0.5688888889, 0.4786286705, 0.2369268851].

Note that we wish to use the quadrature formula on the interval [−3, 3]. However, our nodes
and weights have been computed for the reference interval [−1, 1]. Thus, we need to perform an
affine transformation

Φ(τ) =
1
2

(1 − τ)a +
1
2

(1 + τ)b .

This allows us to use the general quadrature formula with the transformed nodes and weights,
i.e. ∫ b

a
f (t) dt ≈

n∑
j=1

w j f (c j)

with
c j = Φ(̂c j) = 1

2 (1 − ĉ j)a + 1
2 (1 + ĉ j)b , w j =

|[a, b]|
|[−1, 1]|

ŵ j = 1
2 (b − a)ŵ j .

The solution obtained using the quadrature approximation (
n∑

j=1
w je(c j)) = 20.0355777184.

On the other hand, the exact solution is∫ 3

−3
et dt = e3

− e−3 = 20.0357498548.

9

