Answer sheet compilation instructions

- Use only black or blue pen.

For open answers:

- Write clearly only inside boxes, away from the borders.
- Write a single character per box.
- Start writing from the left, leaving empty boxes on the right.

For multiple choice and true/false questions:

- Fill the circle for the answer you consider correct (only one answer is correct).
- Remarks and computations have no influence on points awarded.
- Any unclear or double marking will be considered as an answer not given (0 points).
- Wrong answers give negative points.

Exam instructions

- Turn off your devices and leave them in your bag.
- Only pens and Legi should be on the table.
- Fill last name and Legi number on the answer sheet.
- Turn this sheet only when instructed to do so.
- At the end of the exam, take everything except the single answer sheet which you want to submit.

Questions
 NumCSE endterm, HS 2017

1. Convolution [5 P.]

Let

$$
x=(1,2,3,4,5,6,4,2,0,4,8,12) .
$$

For an arbitrary vector y, let $x * y$ be the discrete convolution between x and y. Let $z[i]$ indicate the element at position i of any vector z, indexing starts from 0 . For instance: $x[0]=1$ and $x[3]=4$.
(a) If $y=(1,-1)$, what is $(x * y)[0]$?
(b) If $y=(-1,1)$, what is $(x * y)[7]$?
(c) If $y=(-1,2,-1)$, what is $(x * y)[12]$?
(d) If $y=(1,0,-1,0,1,0,-1)$, what is $(x * y)[5]$?
(e) If z is the discrete Fourier transform of x, what is $z[0]$?
[1/0/0]

2. Interpolation [5 P.]

Consider the following code:

```
using namespace Eigen;
```

VectorXd f (const VectorXd \&T, const VectorXd \&Y) \{
int $\mathrm{n}=\mathrm{T} . \operatorname{size}()$;
VectorXd tmp = VectorXd::Ones(n);
MatrixXd V = MatrixXd::Zero(n, n);
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{n}$; $\mathrm{j}++$) $\{$
V.col(j) = tmp;
tmp $=$ tmp.array()*T.array();
\}
return V.fullPivLu().solve(Y);
\}
(a) Choose the best asymptotic complexity of the function f for arbitrary inputs: [2/0/-1]
i) $O(\mathrm{n})$
ii) $O\left(\mathrm{n}^{2}\right)$
iii) $O\left(\mathrm{n}^{3}\right)$
iv) $O\left(\mathrm{n}^{4}\right)$
(b) (True/False) The function f returns a vector containing the coefficients of the polynomial obtained with Lagrange interpolation at nodes T with values Y. [1/0/-1]
(c) (True/False) Neglecting numerical instability, Lagrange and Newton interpolation are equivalent. [1/0/-1]
(d) (True/False) In case of numerical stability concerns, Lagrange interpolation is more robust than Newton interpolation. [1/0/-1]
3. Bernstein polynomials [7 P.]

Let $B_{j}^{n}(t)$ denote the j-th Bernstein polynomial of order n, where n is an arbitrary positive integer.
(a) Choose the correct definition of $B_{j}^{n}(t)$: [2/0/-1]
(i) $\binom{n}{j} t^{j}(t-1)^{n-j}$
(ii) $\binom{n}{j} t^{j}(1-t)^{n-j}$
(iii) $\binom{j}{n}^{j}(t-1)^{n-j}$
(iv) $\binom{j}{n} t^{j}(1-t)^{n-j}$
(b) (True/False) The Bernstein polynomials $B_{0}^{n}, \ldots, B_{n}^{n}$ constitute a basis of the space of polynomials of degree $n+1$. [1/0/-1]
(c) (True/False) Exactly one polynomial among $B_{0}^{n}, \ldots, B_{n}^{n}$ attains value 1 in 0. $[1 / 0 /-1]$
(d) (True/False) It holds $\sum_{j=0}^{n} B_{j}^{n}(t)=1$ for any $t \in \mathbb{R}$. [1/0/-1]
(e) (True/False) It holds $B_{j}^{n}(t) \geq 0$ for any $t \in \mathbb{R}$. [1/0/-1]
(f) (True/False) For any continuous function f, the Bernstein approximant of f converges exponentially in L^{∞}-norm to f. [1/0/-1]

4. Function approximation [9 P.]

The following functions, defined for $x \in[-1,1]$:

- $f_{1}(x)=1 /\left(1+16 x^{2}\right)$
- $f_{2}(x)=\arcsin (x)$
are approximated using:
- $\mathcal{A}:$ piecewise linear interpolation on an equidistant node set $\mathcal{J}_{n}=\left\{\frac{k}{n}\right.$: $k=0,1, \ldots, n\}$, for $n \in \mathbb{N}$.
- \mathcal{B} : Chebychev interpolation, i.e. $f(x) \approx \mathcal{B}(f(x))=\sum_{k=0}^{n} \alpha_{k} T_{k}(x)$, where $\alpha_{k} \in \mathbb{R}$ and T_{k} is the k-th Chebychev polynomial.

The error in L^{∞}-norm vs n plot is given below:

Assign the error curves to the corresponding approximation: [2/0/0]
error curve 1 error curve 2 error curve 3 error curve 4
(a) $\mathcal{A}\left(f_{1}\right)$
(i)
(ii)
(iii)
(iv)
(b) $\mathcal{B}\left(f_{1}\right)$
(i)
(ii)
(iii)
(iv)
(c) $\mathcal{A}\left(f_{2}\right)$
(i)
(ii)
(iii)
(iv)
(d) $\mathcal{B}\left(f_{2}\right)$
(i)
(ii)
(iii)
(iv)
(e) For $f \in C^{\infty}([-1,1])$, what type of convergence is expected for $\|f-\mathcal{A}(f)\|_{L^{\infty}([-1,1])}$ with respect to n ? [1/0/0]
(i) algebraic
(ii) exponential

5. Quadrature formula [6 P.]

(a) Consider the quadrature formula $Q(f)=\alpha_{1} f(0)+\alpha_{2} f(1)+\alpha_{3} f^{\prime}(1 / 4)$ for the approximation of $I(f)=\int_{0}^{1} f(x) d x$, where $f \in C^{1}([0,1])$. If Q is of order 3, determine the coefficients α_{k}, for $k=1,2,3$: [1/0/0]
(i) Value of $12 \alpha_{1}$?
(ii) Value of $12 \alpha_{2}$?
(iii) Value of $12 \alpha_{3}$?
(b) Let

$$
I_{4}(f)=\frac{1}{3}\{f(-1)+2 f(-1 / 2)+2 f(1 / 2)+f(1)\}
$$

be a quadrature approximation of $I(f)=\int_{-1}^{1} f(x) d x$, where $f \in C^{0}([-1,1])$.
(i) What is the order of $I_{4}(f)$? [2/0/0]
(ii) (True / False) $I_{4}(f)$ is a Lagrange quadrature formula. [1/0/-1]

