Main Examination

Prof. R. Hiptmair, SAM, ETH Zurich

January 26, 2017
Duration: 3h 20m (computer-based)
(Examination for Course at ETH Zurich in Autumn Term 2016)

Family name		Grade
First name		
Study program		
Computer name		
Legi no.		
Date	26.01 .2016	

Points:

Task	1	2	3	4	5	Total
Max. pts.	18	14	19	23	10	
1st Corr.						
2nd Corr.						

Instructions:

- Fill in this cover sheet first.
- Always keep your Legi visible on the table.
- Keep your phones, tablets and computers turned off in your bag.
- Start each handwritten problem on a new sheet.
- Put your name on each sheet.
- Do not write with red/green/pencil.
- Write your solutions clearly and work carefully.
- Write all your solutions only in the folder questions!
- Any other location will not be backed-up and will be discarded.
- Files in resources may be overridden at any time.
- Make sure to regularly save your solutions.
- Time spent on restroom breaks is considered examination time.
- Never turn off or log off from your computer!

Instructions for coding problems:

- In the folder "~/ questions" you will find the template files for the solution of the problems. You can use these templates to write your solution.
- We provide a "CMake" file that automatically compiles all the templates. To generate a "Makefile" for all problems, type "cmake ." in the folder "~/questions". Compile your programs with "make".
- In order to compile and run the C++ code related to a single problem, like Problem 0.3, type "make problem3". Execute the program using ". /problem3".
- If you want to manually compile your code without CMake, use:

```
g++ -I./ -std=c++11 -Wno-deprecated-declarations \
    -Wno-ignored-attributes filename.cpp -Wno-misleading-indentation \
    -Wno-unused-variable -o program_name
```

or

$$
\begin{aligned}
\text { clang }++ & -1 . /- \text { std=c++11 -Wno-deprecated-declarations } \\
& \text {-Wno-ignored-attributes filename.cpp }- \text { Wno-misleading-indentation } \\
& \text {-Wno-unused-variable -o program_name }
\end{aligned}
$$

We use the flags -Wno-deprecated-declarations, -Wno-ignored-attributes, -Wno-misleading-indentation and -Wno-unused-variable to suppress some unwanted EIGEN warnings.

- For each problem requiring C++ implementation, a template file named problemX.cpp is provided (where X is the problem number). For your own convenience, there is a marker TODO in the places where you are supposed to write your own code. All templates should compile even if left unchanged.

We consider a linear least squares problem from \rightarrow Chapter 3.
[This problem involves implementation in $\mathrm{C}++$]

Consider $n>2$ points located on the real axis, the leftmost point situated at $x_{1}:=0$, the other points at unknown locations $x_{i} \in \mathbb{R}, i=2, \ldots, n$ with $x_{i}<x_{i+1}, i=1, \ldots, n-1$. We measure the $m:=$ $\binom{n}{2}=\frac{n(n-1)}{2}$ distances $d_{i, j}:=\left|x_{i}-x_{j}\right|, i, j \in 1, \ldots, n, i>j$. The distances are arranged in a vector according to

$$
\begin{equation*}
\mathbf{d}:=\left[d_{2,1}, d_{3,1}, \ldots, d_{n, 1}, d_{3,2}, d_{4,2}, \ldots, d_{n, n-1}\right]^{\top} \in \mathbb{R}^{m} \tag{0.0.1}
\end{equation*}
$$

In absence of measurement errors, the point positions x_{i} and the distances satisfy an overdetermined linear system of equations

$$
\begin{equation*}
\mathbf{A} \mathbf{x}=\mathbf{d}, \quad \mathbf{x}=\left[x_{2}, \ldots, x_{n}\right]^{\top} \in \mathbb{R}^{n-1} \tag{0.0.2}
\end{equation*}
$$

(0.1.a) (2 pts) Show that the coefficient matrix/system matrix $\mathbf{A} \in \mathbb{R}^{m, n-1}$ from (0.0.2) has full rank.
(0.1.b) (4 pts) [depends on (0.1.a)]

Provide an implementation of a function

```
SparseMatrix<double> buildDistanceLSQMatrix(int n);
```

that initializes the system matrix \mathbf{A} from (0.0.2). The function must be efficient for large n.
HINT 1 for (0.1.b): A template for the function buildDistanceLSQMatrix is provided within the file problem1.cpp. You can compile the file with make problem1. The executable ./problem1 tests the routine buildDistanceLSQMatrix by printing the resulting matrix.
(0.1.c) (2 pts) [depends on (0.1.a)]

Give explicit formulas for the entries of the system matrix (coefficient matrix) \mathbf{M} of the normal equations corresponding to the overdetermined linear system (0.0.2).
(0.1.d) (3 pts) [depends on (0.1.c)]

Show that the system matrix \mathbf{M} of the normal equations for the overdetermined linear system from (0.0.2), as found in Sub-problem (0.1.c), can be written as a rank-1 perturbation of a diagonal matrix.
(0.1.e) (6 pts) [depends on (0.1.d)]

Implement an efficient C++ function

```
VectorXd estimatePointsPositions(const MatrixXd& D);
```

that computes a least squares estimate for x_{2}, \ldots, x_{n} by solving the normal equations for (0.0.2) and returns the column vector $\mathbf{x}:=\left[x_{2}, \ldots, x_{n}\right]^{\top}$.

The distances $d_{i, j}$ are passed as entries of an $n \times n$-matrix \mathbf{D} according to

$$
(\mathbf{D})_{i, j}= \begin{cases}d_{i, j} & , \text { if } i>j \\ 0 & , \text { if } i=j, \\ -d_{j, i} & , \text { if } i<j\end{cases}
$$

Use the observation made in Sub-problem (0.1.d).
HINT 1 for (0.1.e): A template for the function estimatePointsPositions is provided in the file problem1.cpp. You can compile the file with make problem1. The generated executable ./problem1 tests the routine estimatePointsPositions. The program prints a test matrix D. Then, the program prints the vector \mathbf{x} obtained using the function estimatePointsPositions on the measured distances given by \mathbf{D}.

Example output:

```
The matrix D is:
    0
    2.1 0
    3 0.9 0
    4.2 2.2 1.3 0 -1.1
    5 3.3 1.1 1.1 0
The positions [x_2, ..., x_n] obtained from the LSQ system are:
2
3.16
4.18
4.96
```

(0.1.f) (1 pts) [depends on (0.1.e)]

What is the asymptotic complexity of the function estimatePointsPositions implemented in Sub-problem (0.1.e) for $n \rightarrow \infty$?

End Problem 0.1

Problem 0.2: Zero finding in two dimensions (14 pts)

This problem studies Newton's method for a 2×2 non-linear system of equations.
[This problem involves implementation in $\mathrm{C}++$]

Let f be a strictly increasing, positive, continuously differentiable function $f \in C^{1}(\mathbb{R}), f(t)>0$.
We seek two real numbers $a, b \in \mathbb{R}$ such that

$$
\begin{align*}
& \int_{a}^{b} f(t) \mathrm{d} t=a+b \tag{0.0.3a}\\
& \int_{a}^{b} \mathrm{e}^{f(t)} \mathrm{d} t=1+a^{2}+b^{2} \tag{0.0.3b}
\end{align*}
$$

(0.2.a) (2 pts) Eq. (0.0.3) is a nonlinear system of equations which can be rewritten as

$$
F(\mathbf{x})=\mathbf{0}
$$

Give an explicit formula for $F(\mathbf{x})$ still involving the generic function $f: \mathbb{R} \rightarrow \mathbb{R}$. What are the components of \mathbf{x} ?
(0.2.b) (4 pts) [depends on Sub-problem (0.2.a)]

State the Newton's iteration for solving Eq. (0.0.3) as explicitly as possible.
HINT 1 for (0.2.b): The explicit formula for the inverse of a 2×2 matrix is

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \Longrightarrow \mathbf{A}^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right], \text { if } a d-b c \neq 0 .
$$

(0.2.c) (8 pts) [depends on Sub-problem (0.2.b)]

Implement a C++ function

```
template<class Function, class QuadRule>
std::pair<double, double> getIntv(const Function& f,
                                    const QuadRule& qr,
                                    double atol, double rtol,
                                    unsigned maxit = 10);
```

that solves Eq. (0.0.3) by means of Newton's method with initial guess $a^{(0)}=0, b^{(0)}=1$.
The argument qr provides a quadrature rule on $[\mathbf{0 , 1}]$ in terms of weights and nodes. Use it for the evaluation of all occurring definite integrals.

Use a correction-based termination criterion controlled by relative tolerance rtol and absolute tolerance atol. The variable maxit specifies the maximum number of iterations.

HINT 1 for (0.2.c): Recall the definition of the QuadRule class

```
struct QuadRule {
    VectorXd nodes;
    VectorXd weights;
};
```

For numerical quadrature based on the quadrature rule QuadRule, you may implement an auxiliary function

```
template<class Function, class QuadRule>
double integrate(const Function& f, const QuadRule& qr,
    const Vector2d & x);
```

which takes the integration bounds as argument vector x .
HINT 2 for (0.2.c): A template for the functions get Intv and integrate is provided within the file problem2.cpp. You can compile the file with make problem2. The executable ./problem2 tests the routine get Intv by printing the approximate (a, b) (for a given function $f(t):=t$) and the reference solution.

End Problem 0.2

Problem 0.3: Low rank approximation (19 pts)

This problem discusses a compressed model for a filter.
[This problem involves implementation in C_{++}]

A causal, linear, time-invariant and finite (LT-FIR) channel has the impulse response

$$
\begin{equation*}
\left(0, \ldots, 0, h_{0}, \ldots, h_{n-1}, 0, \ldots, 0\right) \tag{0.0.4}
\end{equation*}
$$

of duration $(n-1) \Delta t$. When we feed into it a signal $\mathbf{x}:=\left(0, \ldots, 0, x_{0}, \ldots, x_{n-1}, 0, \ldots, 0\right)$ of duration $(n-1) \Delta t$, the filter produces an output signal $\mathbf{y}:=\left(0, \ldots, 0, y_{0}, \ldots, y_{2 n-2}, 0, \ldots, 0\right)$ of duration $(2 n-$ 2) Δt. The linear mapping

$$
l:\left\{\begin{aligned}
\mathbb{R}^{n} & \rightarrow \mathbb{R}^{2 n-1} \\
\left(x_{j}\right)_{j=0}^{n-1} & \rightarrow\left(y_{j}\right)_{j=0}^{2 n-2}
\end{aligned}\right.
$$

can be represented by the matrix-vector product

$$
\begin{equation*}
\left(y_{j}\right)_{j=0}^{2 n-2}=\mathbf{C}\left(x_{j}\right)_{j=0}^{n-1} \tag{0.0.5}
\end{equation*}
$$

which can be expressed as the following matrix \times vector multiplication, see \rightarrow Rem. 4.1.17:

$$
\left[\begin{array}{c}
y_{0} \\
\vdots \\
\\
\vdots \\
y_{2 n-2}
\end{array}\right]=\left[\begin{array}{ccccc}
h_{0} & 0 & 0 & \cdots & 0 \\
h_{1} & h_{0} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & & \vdots \\
& & & & \\
h_{n-1} & h_{n-2} & \cdots & h_{1} & h_{0} \\
0 & h_{n-1} & \ddots & & h_{1} \\
\vdots & \ddots & \ddots & & \vdots \\
0 & \cdots & \cdots & 0 & h_{n-1}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
\vdots \\
\vdots \\
x_{n-1}
\end{array}\right] .
$$

(0.3.a) (2 pts)

Using EIGEN, implement a C++ function with signature
MatrixXd buildLTFIRMatrix(const VectorXd \&h);
that initializes the matrix C from (0.0.5). The vector h specifies the entries of C.
HINT 1 for (0.3.a): You will find a template for the function buildLTFIRMatrix within the file problem3.cpp. You can compile the file with make problem3. The executable ./problem3 tests the routine buildLTFIRMatrix by printing the resulting matrix. The correct matrix (for $n=6$) is reported as a comment in the code (within main of problem3.cpp).

Now the goal is to implement a compressed model for the channel. Consider the class

```
class LTFIR_lowrank {
public:
    LTFIR_lowrank(const VectorXd& h, unsigned k);
    VectorXd operator() (const VectorXd& x) const;
private:
    // TODO: private members of class LTFIR_lowrank
};
```

whose evaluation operator realizes $\mathbf{y}=\tilde{\mathbf{C}} \mathbf{x}$, where $\tilde{\mathbf{C}} \in \mathbb{R}^{2 n-1, n}$ is the rank- k best approximation of \mathbf{C}, and $k \in\{1, \ldots, n\}$ is passed as the second argument of the constructor.
(0.3.b) (9 pts) [depends on Sub-problem (0.3.a)]

Implement both member funcions of the class LTFIR_lowrank such that a call of the evaluation operator involves as little computational effort as possible (asymptotically, for $n \rightarrow \infty$).

HINT 1 for (0.3.b): You may use the function buildLTFIRMat rix from Sub-problem (0.3.a).
HINT 2 for (0.3.b): A template for the class LTFIR_lowrank is provided within the file problem3. cpp. You can compile the file with make problem3. The executable ./problem3 tests the routine operator () by printing the resulting vector $\mathbf{y}=\tilde{\mathbf{C}} \mathbf{x}$ for specific inputs \mathbf{h}, \mathbf{c} and k. The correct result is reported as a comment in the code.
(0.3.c) (2 pts) [depends on Sub-problem (0.3.b)]

What is the asymptotic complexity of your implementation of the constructor and the evaluation operator for $n \rightarrow \infty$ and $k \rightarrow \infty$ (separately, assuming $k \leq n$)?
(0.3.d) (3 pts)

Decide which of the following properties does the new filter (realized by the evaluation operator of LTFIR_lowrank) still enjoy for any $\left(h_{j}\right)_{j=0}^{n-1}$: linearity, causality, and finiteness.
(0.3.e) (3 pts)

Another way to build a compressed model of the channel is frequency filtering, which is implemented in the following LTFIR_freq class.

C++11-code 0.0.6: Constructor of class LTFIR_freq.

```
    LTFIR_freq(const VectorXd& h, unsigned k) {
        n_ = h.size();
        k_ = k;
        VectorXd h_ = h;
            h_.conservativeResizeLike(VectorXd::Zero(2*n_-1));
        // Forward DFT
        FFT<double> fft;
        ch_ = fft.fwd(h_);
    }
```

C++11-code 0.0.7: Function operator ().

```
VectorXd operator()(const VectorXd& x) const {
    assert(x.size() == n_ && "x must have same length of h");
    VectorXd x_ = x;
        x_.conservativeResizeLike(VectorXd::Zero(2*n_-1));
        // Forward DFT
        FFT<double> fft;
        VectorXcd cx = fft.fwd(x_);
        VectorXcd c = ch_.cwiseProduct(cx);
        // Set high frequency coefficients to zero
        VectorXcd clow = c;
        for(int j=-k_; j<=+k_; ++j) clow(n_+j) = 0;
        // Inverse DFT
        return fft.inv(clow).real();
    }
```


C++11-code 0.0.8: Private members of class LTFIR_freq.

```
int n_;
```

int k_;
VectorXcd ch_;

What is the asymptotic complexity of the evaluation operator operator () for $n \rightarrow \infty$?
You can find the implementation of the class LTFIR_freq in the file problem3.cpp.

End Problem 0.3

Problem 0.4: Single step method (23 pts)

This problem concerns numerical integration \rightarrow Chapter 11 with single step methods.
[This problem involves implementation in C++]
We consider the initial value problem for $\mathbf{y}(t):=\left[y_{1}(t), y_{2}(t)\right]^{\top}$:

$$
\dot{\mathbf{y}}=\left[\begin{array}{c}
-\theta\left(y_{2}\right) \tag{0.0.9}\\
y_{1}
\end{array}\right], \quad \theta \in C^{1}(\mathbb{R}), \quad \mathbf{y}(0)=\left[\begin{array}{c}
0 \\
y_{0}
\end{array}\right]
$$

(0.4.a) (2 pts)

Denote by $\xi \in C^{2}(\mathbb{R})$ the principal of θ, that is $\xi^{\prime}=\theta$.
Show that $I(\mathbf{y}(t))=$ const. for $I(\mathbf{z})=\frac{1}{2} z_{1}^{2}+\xi\left(z_{2}\right), \mathbf{z}=\left[z_{1}, z_{2}\right]^{\top}$ and any solution $t \mapsto \mathbf{y}(t)$ of (0.0.9).

HINT 1 for (0.4.a): What is an equivalent condition for $I(\mathbf{y}(t))=$ const.?
(0.4.b) (4 pts)

Give the concrete defining equation for the discrete evolution Ψ of the implicit midpoint rule \rightarrow Eq. (11.2.18) for (0.0.9).
(0.4.c) (5 pts) [depends on Sub-problem (0.4.b)]

State the explicit formulas for the Newton's iteration that can be used to approximately evaluate the discrete evolution of the implicit midpoint rule for (0.0.9). Specify a meaningful initial value in the case of small time steps.

HINT 1 for (0.4.c): The explicit formula for the inverse of a 2×2 matrix is

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \Longrightarrow \quad \mathbf{A}^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right], \text { if } a d-b c \neq 0
$$

(0.4.d) (4 pts) [depends on Sub-problem (0.4.c)]

Implement a function

```
template <class Function, class Jacobian>
Vector2d psi(const Function& theta, const Jacobian& theta_d,
    double h, const Vector2d& y)
```

that approximately realizes the discrete evolution operator of the implicit midpoint rule for (0.0.9) using, internally, two Newton's steps. The parameter h specifies the step size. The variable theta resp. theta_d represent the function θ and its derivative θ^{\prime}. The vector y passes the value \mathbf{y} at the previous step.

HINT 1 for (0.4.d): A template for the function psi is provided within the file problem4.cpp. You can compile the file with make problem4. The executable./problem4 tests the routine psi by comparing the discrete evolution for $\theta(\xi)=e^{\xi}$ with a reference solution. The test performs a single evolution step of size $h=0.1$ starting from the initial data $\mathbf{y}(0)$.
(0.4.e) (3 pts) The following function lfevl implements an explicit Runge-Kutta single step method for Eq. (0.0.9) and for some (unknown) smooth function θ (passed as theta). The code applies a Runge-Kutta method on N equidistant steps of size h, starting from the initial value y $0:=\mathbf{y}(0)$.

C++11-code 0.0.10: Function lfevl.

```
template<typename Function>
Vector2d Ifevl(const Function& theta, Vector2d y0,
            double h, unsigned int N) {
    auto f = [&theta] (const Vector2d& y) }->\mathrm{ ( Vector2d {
        Vector2d y_dot;
        y_dot << -theta(y(1)), y(0);
        return y_dot;
    };
    Vector2d yk = y0;
    for(unsigned k=0; k < N; ++k) {
```

```
12 Vector2d k1 = f(yk);
        Vector2d k2 = f(yk + h/2.*k1);
        Vector2d k3 = f(yk - h*k1+ 2.*h*k2);
        yk += h/6.*k1 + 2.*h/3.*k2 + h/6.*k3;
    }
    return yk;
}
```

Write down the Butcher scheme for this method.
(0.4.f) (5 pts) [depends on Sub-problem (0.4.e)]

Consider the C++ function lfevl of Sub-problem (0.4.e) and let $\theta(\xi)=e^{\xi}$ and $\mathbf{y}(0)=[0,1]^{\top}$. Empirically determine the order of convergence of the single step method implemented by lfevl by studying the errors of the numerical solutions at the final time $T=10$ and their dependence on the number N of equidistant steps of the single-step method.
HINT 1 for (0.4.f): Use suitable sequences of numbers of steps N ranging between 50 and $2 \cdot 10^{4}$.
HINT 2 for (0.4.f): Implement your code in the main function of the file problem4.cpp. You can compile the file with make problem4. The executable ./problem4 should print the error and the estimated order of convergence of lfevl, for every value of N.

End Problem 0.4

Problem 0.5: Polar decomposition of a matrix (10 pts)

This problem addresses a special matrix factorization and its numerical realization.
[This problem involves implementation in C++]

The following result is obtained in linear algebra:
Theorem 0.0.11. Polar decomposition
Given $\mathbf{M} \in \mathbb{R}^{n, n}$, there is a symmetric positive semidefinite matrix $\mathbf{A} \in \mathbb{R}^{n, n}$ and an orthogonal matrix $\mathbf{Q} \in \mathbb{R}^{n, n}$ such that

$$
\begin{equation*}
\mathbf{M}=\mathbf{A} \mathbf{Q} \tag{0.0.12}
\end{equation*}
$$

The matrix factorization (0.0.12) is called the polar decomposition of \mathbf{M}.
(0.5.a) (4 pts) Give a proof of Thm. 0.0.11.

HINT 1 for (0.5.a): Use the singular value decomposition of \mathbf{M}.
(0.5.b) (5 pts) [depends on (0.5.a)]

Using EIGEN's numerical linear algebra facilities, write a C++ function

```
std::pair<MatrixXd, MatrixXd> polar(const MatrixXd& M);
```

that computes the polar decomposition (0.0.12) of \mathbf{M}, returning the tuple (\mathbf{A}, \mathbf{Q}).
HINT 1 for (0.5.b): You may use EIGEN's methods for numerical singular value decomposition (SVD). \lrcorner

HINT 2 for (0.5.b): A template for the function polar is provided within the file problem5.cpp. You can compile the file with make problem5. The executable ./problem5 tests the routine polar. In main (), for the specified matrix

$$
\mathbf{M}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & 3 \\
6 & 3 & 11
\end{array}\right]
$$

the program computes and prints the matrices \mathbf{A} and \mathbf{Q}.
Example output:

```
Matrix A is:
    2.11118 0.847555 2.97062
    0.847555 1.31722 3.39803
    2.97062 3.39803 12.0677
Matrix Q is:
    -0.352666 0.910956 0.213977
    0.872437 0.402776 -0.276811
    0.338348 -0.0890599 0.936797
```

The function testPolar is also provided. This function uses an implementation of polar and checks whether it returns a true polar decomposition.
(0.5.c) (1 pts) [depends on (0.5.b)]

What is the asymptotic complexity of your implementation of polar for $n \rightarrow \infty$?

End Problem 0.5

