ETH Lecture 401-0663-00L Numerical Methods for CSE

Main Examination

January 26, 2017

Prof. R. Hiptmair, SAM, ETH Zurich

Duration: 3h 20m (computer-based)

(Examination for Course at ETH Zurich in Autumn Term 2016)

Family name

Grade

First name

Study program

Computer name

Legi no.

Date

26.01.2016

Points:

Task

Total

Max. pts.

18

1st Corr.

2nd Corr.

See next page for detailed instructions.

Instructions:

e Fill in this cover sheet first.

e Always keep your Legi visible on the table.

e Keep your phones, tablets and computers turned off in your bag.
e Start each handwritten problem on a new sheet.

e Put your name on each sheet.

e Do not write with red/green/pencil.

e Write your solutions clearly and work carefully.

e Write all your solutions only in the folder questions!

e Any other location will not be backed-up and will be discarded.
e Filesin resources may be overridden at any time.

e Make sure to regularly save your solutions.

e Time spent on restroom breaks is considered examination time.

e Never turn off or log off from your computer!

Instructions for coding problems:

e In the folder “~/questions” you will find the template files for the solution of the problems. You
can use these templates to write your solution.

e We provide a “CMake” file that automatically compiles all the templates. To generate a “Makefile”
for all problems, type “cmake .” in the folder “~/questions”. Compile your programs with
‘make”.

e In order to compile and run the C++ code related to a single problem, like Problem 0.3, type “make
problem3”. Execute the program using “. /problem3”.

e If you want to manually compile your code without CMake, use:

g++ —I./ —std=c++11 —Wno—deprecated—declarations \
—Wno—-ignored—attributes filename.cpp —Wno—misleading—indentation \
—Wno—-unused—variable —o program_name

or

clang++ —I| ./ —std=c++11 —Wnho—deprecated—declarations \
—Wno—-ignored—attributes filename.cpp —Wno—misleading—indentation \
—Wno—-unused—variable —o program_name

We use the flags —-Wno-deprecated-declarations, -Wno-ignored-attributes,
-Wno-misleading—-indentation and -Wno-unused-variable to suppress some un-
wanted EIGEN warnings.

e For each problem requiring C++ implementation, a template file named problemX. cpp is pro-
vided (where X is the problem number). For your own convenience, there is a marker TODO in the
places where you are supposed to write your own code. All templates should compile even if left
unchanged.

Problem 0.1: Estimating point locations from distances (18 pts)

We consider a linear least squares problem from =»Chapter 3.

[This problem involves implementation in C++ |

Consider n > 2 points located on the real axis, the leftmost point situated at x; := 0, the other points
at unknown locations x; € R, i = 2,...,nwithx; < x;.1, i = 1,...,n —1. We measure the m :=
(3) = ”("2_1) distances d; ; := |x; — x|, i,j € 1,...,n, i > j. The distances are arranged in a vector
according to

d:= [d2,1;d3,1/ - /dn,1/d3,2/d4,2/ - ,dn,nfl]—r € R™. (0.0.1)

In absence of measurement errors, the point positions x; and the distances satisfy an overdetermined
linear system of equations

Ax=d, x=[x,...,x)] €R" 1. (0.0.2)

(0.1.a) (2pts) Show that the coefficient matrix/system matrix A € R”"~! from (0.0.2) has full rank.
A
(0.1.b) (4 pts) [depends on (0.1.a) |

Provide an implementation of a function

SparseMatrix<double> buildDistanceLSQMatrix (int n);

that initializes the system matrix A from (0.0.2). The function must be efficient for large n.

HINT 1 for (0.1.b): A template for the function buildDistanceLSQMatrix is provided within the
file probleml . cpp. You can compile the file with make probleml. The executable . /probleml
tests the routine buildDistanceLSQMat rix by printing the resulting matrix. J

A
(0.1.c) (2pts) [dependson (0.1.a)]

Give explicit formulas for the entries of the system matrix (coefficient matrix) M of the normal equations
corresponding to the overdetermined linear system (0.0.2).

A
(0.1.d) (3 pts) [dependson (0.1.c) |

Show that the system matrix M of the normal equations for the overdetermined linear system from
(0.0.2), as found in Sub-problem (0.1.c), can be written as a rank-1 perturbation of a diagonal matrix.

A
(0.1.e) (6 pts) [dependson (0.1.d)]

Implement an efficient C++ function

VectorXd estimatePointsPositions (const MatrixXd& D) ;

that computes a least squares estimate for x», ..., x;, by solving the normal equations for (0.0.2) and
returns the column vector x := [xp, ..., Xy]

The distances d,-,j are passed as entries of an n x n-matrix D according to

di,j ,ifi>j,
(D);;j =10 Jifi=7,
—d]',i ,ifi<j.

Use the observation made in Sub-problem (0.1.d).

HINT 1 for (0.1.e): A template for the function estimatePointsPositions is provided in the
file probleml.cpp. You can compile the file with make probleml. The generated executable
./probleml tests the routine estimatePointsPositions. The program prints a test matrix D.
Then, the program prints the vector x obtained using the function estimatePointsPositions on
the measured distances given by D.

Example output:
The matrix D is:

0 -2.1 -3 -4.2 -5
2.1 0O -0.9 -2.2 -3.3
3 0.9 0O -1.3 -1.1
4.2 2.2 1.3 0 -1.1
5 3.3 1.1 1.1 0
The positions [x_2, ..., x_n] obtained from the LSQ system are:
2
3.16
4.18
4.96 a

(0.1.f) (1 pts) [dependson (0.1.e) |

What is the asymptotic complexity of the function estimatePointsPositions implemented in
Sub-problem (0.1.e) for n — c0?

A

End Problem 0.1

Problem 0.2: Zero finding in two dimensions (14 pts)

This problem studies Newton’s method for a 2 x 2 non-linear system of equations.

[This problem involves implementation in C++ |

Let f be a strictly increasing, positive, continuously differentiable function f € C'(IR), f(t) > 0.
We seek two real numbers a,b € IR such that
b
f(t)ydt=a+0), (0.0.3a)

a

b
/ SOdt =1+a%2+1%. (0.0.3b)

(0.2.a) (2 pts) Eq. (0.0.3) is a nonlinear system of equations which can be rewritten as
F(x)=0

Give an explicit formula for F(x) still involving the generic function f : R — IR. What are the compo-
nents of x?

A
(0.2.b) (4 pts) [depends on Sub-problem (0.2.a) |
State the Newton’s iteration for solving Eq. (0.0.3) as explicitly as possible.
HINT 1 for (0.2.b): The explicit formula for the inverse of a 2 x 2 matrix is
A= [‘CI Z] — Al = adibc[_dc _ﬂ Jifad —bc # 0.
J
A

(0.2.c) (8 pts) [depends on Sub-problem (0.2.b)]

Implement a C++ function

template<class Function, class QuadRule>

std: :pair<double, double> getIntv(const Functions& f,
const QuadRule& gr,
double atol, double rtol,
unsigned maxit = 10);

that solves Eq. (0.0.3) by means of Newton’s method with initial guess a(®) = 0, b(0) = 1.

The argument <+ provides a quadrature rule on [0, 1] in terms of weights and nodes. Use it for the
evaluation of all occurring definite integrals.

Use a correction-based termination criterion controlled by relative tolerance rtol and absolute toler-
ance atol. The variable maxit specifies the maximum number of iterations.

HINT 1 for (0.2.c): Recall the definition of the QuadRule class

struct QuadRule {
VectorXd nodes;
VectorXd weights;

}i

For numerical quadrature based on the quadrature rule QuadRule, you may implement an auxiliary
function

template <class Function, class QuadRule>
double integrate(const Function& f, const QuadRules& qgr,
const Vector2d & x);

which takes the integration bounds as argument vector x. _

HINT 2 for (0.2.c): A template for the functions get Intv and integrate is provided within the file
problem?2.cpp. You can compile the file with make problem2. The executable ./problem?2
tests the routine get Intv by printing the approximate (a,b) (for a given function f(f) := t) and the
reference solution. N

A

End Problem 0.2

Problem 0.3: Low rank approximation (19 pts)

This problem discusses a compressed model for a filter.

[This problem involves implementation in C++ |

A causal, linear, time-invariant and finite (LT-FIR) channel has the impulse response
(O,...,O,ho,...,hn,l,O,...,O) (0.0.4)

of duration (n — 1)At. When we feed into it a signal x := (0,...,0,x,...,%,_1,0,...,0) of duration
(n — 1)At, the filter produces an output signal y := (0,...,0,vo,...,¥2,-2,0,...,0) of duration (2n —

2)At. The linear mapping
R —]Ranl
[: -1 2n-2
(x;))

can be represented by the matrix-vector product

(yj)fif =C(x) ! (0.0.5)

which can be expressed as the following matrix x vector multiplication, see <*Rem. 4.1.17:

C o] hh 0 0 - 0
) hy ho o --- 0
. . . . r xo -
= hn—l hn—Z hl hO
0 hn_1 hl
) | Xn—14
LY2n—2] i 0 o - 0 hn—l_

(0.3.a) (2 pts)
Using EIGEN, implement a C++ function with signature

MatrixXd buildLTFIRMatrix (const VectorXd &h);

that initializes the matrix C from (0.0.5). The vector h specifies the entries of C.

HINT 1 for (0.3.a): You will find a template for the function buildLTFIRMatrix within the file
problem3.cpp. You can compile the file with make problem3. The executable ./problem3
tests the routine bui 1dLTFIRMat rix by printing the resulting matrix. The correct matrix (for n = 6)
is reported as a comment in the code (within main of problem3. cpp). _

A

Now the goal is to implement a compressed model for the channel. Consider the class

class LTFIR lowrank {
public:
LTFIR_ lowrank (const Vectorxd& h, unsigned k);
VectorXd operator () (const VectorXd& x) const;
private:
// TODO: private members of class LTFIR lowrank

}i
whose evaluation operator realizes y = Cx, where C € R?"~1 is the rank-k best approximation of C,
and k € {1,...,n} is passed as the second argument of the constructor.
(0.3.b) (9 pts) [depends on Sub-problem (0.3.a) |

Implement both member funcions of the class LTFIR_lowrank such that a call of the evaluation
operator involves as little computational effort as possible (asymptotically, for n — oo).

HINT 1 for (0.3.b): You may use the function buildLTFIRMatrix from Sub-problem (0.3.a). J

HINT 2 for (0.3.b): A template for the class LTFIR_lowrank is provided within the file problem3. cpp.
You can compile the file with make problem3. The executable ./problem3 tests the routine
operator () by printing the resulting vector y = Cx for specific inputs h, ¢ and k. The correct re-
sult is reported as a comment in the code. J

A
(0.3.c) (2pts) [depends on Sub-problem (0.3.b)]

What is the asymptotic complexity of your implementation of the constructor and the evaluation operator
for n — oo and k — oo (separately, assuming k < n)?

A
(0.3.d) (3 pts)

Decide which of the following properties does the new filter (realized by the evaluation operator of
LTFIR_lowrank) still enjoy for any (h]);:Ol linearity, causality, and finiteness.

(0.3.e) (3 pts)

Another way to build a compressed model of the channel is frequency filtering, which is implemented in
the following LTFIR_freq class.

C++11-code 0.0.6: Constructor of class LTFIR_freq.

2 LTFIR_freq(const VectorXd& h, unsigned k) {
3 n_ = h.size();

4 k_ = k;

5

6 VectorXd h_ = h;

h_.conservativeResizelLike (VectorXd ::Zero(2xn_—1));

3 // Forward DFT
o FFT<double> fft;
0 ch_ = fft.fwd(h_);

C++11-code 0.0.7: Function operator ().

10

11

12

13

14

15

VectorXd operator() (const VectorXd& x) const {
assert(x.size() == n_ && "x must have same length of h");

VectorXd x = x;

x_.conservativeResizelLike (VectorXd :: Zero(2xn_—1)) ;

// Forward DFT

FFT<double> fft ;

VectorXcd cx = fft.fwd(x_);

VectorXcd ¢ = ch_.cwiseProduct(cx);

// Set high frequency coefficients to zero
VectorXcd clow = c;

for(int j=—k_; j<=+k_; ++j) clow(n_+j) = O;
// Inverse DFT

return fft.inv(clow).real();

C++11-code 0.0.8: Private members of class LTFIR_freq.

int n_;
int k_;
VectorXcd ch_;

What is the asymptotic complexity of the evaluation operator operator () for n — co?

You can find the implementation of the class LTFIR_freq in the file problem3. cpp.

End Problem 0.3

Problem 0.4: Single step method (23 pts)

||

This problem concerns numerical integration =*Chapter 11 with single step methods.

[This problem involves implementation in C++ |

We consider the initial value problem for y(£) := [y1(£), y2(£)] "

(0.4.a) (2 pts)

=], eecim), yo- o).

Denote by & € C%(IR) the principal of 6, that is &' = 6.

(0.0.9)

Show that I(y(t)) = const. for I(z) = 322+ &(z2), z = [21,22] | and any solution t — y(t) of

(0.0.9).

HINT 1 for (0.4.a): What is an equivalent condition for I(y(#)) = const.?

L

>

(0.4.b) (4 pts)

Give the concrete defining equation for the discrete evolution ¥ of the implicit midpoint rule =*Eq. (11.2.18)
for (0.0.9).

A
(0.4.c) (5pts) [depends on Sub-problem (0.4.b)]

State the explicit formulas for the Newton’s iteration that can be used to approximately evaluate the
discrete evolution of the implicit midpoint rule for (0.0.9). Specify a meaningful initial value in the case
of small time steps.

HINT 1 for (0.4.c): The explicit formula for the inverse of a 2 X 2 matrix is

_|a b -1 1 d —b .
A—L d} — A _ad—bc[—c a},lfad—bc;éo.

(0.4.d) (4 pts) [depends on Sub-problem (0.4.c) |

Implement a function

template <class Function, class Jacobian>
psi(const Functioné& theta, const Jacobian& theta_d,
double h, const & vy)

that approximately realizes the discrete evolution operator of the implicit midpoint rule for (0.0.9) using,
internally, two Newton’s steps. The parameter & specifies the step size. The variable theta resp.
theta_d represent the function 6 and its derivative 6’. The vector y passes the value y at the previous
step.

HINT 1 for (0.4.d): A template for the function psi is provided within the file problem4.cpp. You
can compile the file with make problemd. The executable . /problemd tests the routine psi by
comparing the discrete evolution for 8(&) = e¢ with a reference solution. The test performs a single
evolution step of size i = 0.1 starting from the initial data y(0). N

A

(0.4.e) (3 pts) The following function 1fevl implements an explicit Runge-Kutta single step method
for Eq. (0.0.9) and for some (unknown) smooth function 6 (passed as theta). The code applies a
Runge-Kutta method on N equidistant steps of size #, starting from the initial value y0:= y(0).

C++11-code 0.0.10: Function 1fevl.

» |template<typename Function>

3 Ifevl (const Function& theta, y0,

4 double h, unsigned int N) {

5 auto f = [&theta] (const &y) — {
6 y_dot;

7 y_dot << —theta(y(1)), y(0);

8 return y_dot;

9 };

10 YK = yO;

1 for (unsigned k=0; k < N; ++k) {

12 Vector2d k1 = f(yk);

13 Vector2d k2 = f(yk + h/2.xk1);

14 Vector2d k3 = f(yk — hxk1+ 2.xhxk2);
15

16 yk += h/6.xk1 + 2.xh/3.%xk2 + h/6.%xk3;
17 }

18 return yk;

19 }

Write down the Butcher scheme for this method.

(0.4.f) (5pts) [depends on Sub-problem (0.4.e)]

Consider the C++ function 1fev1 of Sub-problem (0.4.e) and let (&) = e® and y(0) = [0,1]".
Empirically determine the order of convergence of the single step method implemented by 1fev1 by
studying the errors of the numerical solutions at the final time T' = 10 and their dependence on the
number N of equidistant steps of the single-step method.

HINT 1 for (0.4.f): Use suitable sequences of numbers of steps N ranging between 50 and 2 - 10%.

HINT 2 for (0.4.f): Implement your code in the main function of the file problem4.cpp. You can
compile the file with make problem4. The executable . /problem4 should print the error and the
estimated order of convergence of 1 fev1, for every value of N.

|

A

End Problem 0.4

Problem 0.5: Polar decomposition of a matrix (10 pts)

This problem addresses a special matrix factorization and its numerical realization.

[This problem involves implementation in C++ |

The following result is obtained in linear algebra:
Theorem 0.0.11. Polar decomposition

Given M € R™", there is a symmetric positive semidefinite matrix A € IR"" and an orthogonal
matrix Q € R™" such that

M = AQ. (0.0.12)

The matrix factorization (0.0.12) is called the polar decomposition of M.
(0.5.a) (4 pts) Give a proof of Thm. 0.0.11.

HINT 1 for (0.5.a): Use the singular value decomposition of M. J

(0.5.b) (5pts) [dependson (0.5.a) |

Using EIGEN’s numerical linear algebra facilities, write a C++ function

std::pair<MatrixXd, MatrixXd> polar(const MatrixXd& M);

that computes the polar decomposition (0.0.12) of M, returning the tuple (A, Q).

HINT 1 for (0.5.b): You may use EIGEN’s methods for numerical singular value decomposition (SVD).
|

HINT 2 for (0.5.b): A template for the function polar is provided within the file problem5. cpp. You
can compile the file with make problem5. The executable . /problem5 tests the routine polar.
Inmain (), for the specified matrix

Il
N -
W RN
—_
DWW

the program computes and prints the matrices A and Q.

Example output:

Matrix A is:
2.11118 0.847555 2.97062

0.847555 1.31722 3.39803
2.97062 3.39803 12.0677

Matrix Q is:

-0.352666 0.910956 0.213977
0.872437 0.402776 -0.276811
0.338348 -0.0890599 0.936797

The function testPolar is also provided. This function uses an implementation of polar and checks
whether it returns a true polar decomposition. _I

A
(0.5.c) (1pts) [dependson (0.5.b)]
What is the asymptotic complexity of your implementation of polar for n — c0?

A

End Problem 0.5

	Problem 0.1: Estimating point locations from distances
	Problem 0.2: Zero finding in two dimensions
	Problem 0.3: Low rank approximation
	Problem 0.4: Single step method
	Problem 0.5: Polar decomposition of a matrix

