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Instructions:

• Fill in this cover sheet first.

• Always keep your Legi visible on the table.

• Keep your phones, tablets and computers turned off in your bag.

• Start each handwritten problem on a new sheet.

• Put your name on each sheet.

• Do not write with red/green/pencil.

• Write your solutions clearly and work carefully.

• Write all your solutions only in the folder questions!

• Any other location will not be backed-up and will be discarded.

• Files in resources may be overridden at any time.

• Make sure to regularly save your solutions.

• Time spent on restroom breaks is considered examination time.

• Never turn off or log off from your computer!

Instructions for coding problems:

• In the folder “~/questions” you will find the template files for the solution of the problems. You

can use these templates to write your solution.

• We provide a “CMake” file that automatically compiles all the templates. To generate a “Makefile”

for all problems, type “cmake .” in the folder “~/questions”. Compile your programs with

“make”.

• In order to compile and run the C++ code related to a single problem, like Problem 0.3, type “make

problem3”. Execute the program using “./problem3”.

• If you want to manually compile your code without CMake, use:

g++ −I . / −s td=c++11 −Wno−deprecated−dec l a ra t i ons \

−Wno−ignored−a t t r i b u t e s f i lename . cpp −Wno−misleading−i n d e n t a t i o n \

−Wno−unused−v a r i a b l e −o program_name

or

clang++ −I . / −s td=c++11 −Wno−deprecated−dec l a ra t i ons \

−Wno−ignored−a t t r i b u t e s f i lename . cpp −Wno−misleading−i n d e n t a t i o n \

−Wno−unused−v a r i a b l e −o program_name

We use the flags -Wno-deprecated-declarations, -Wno-ignored-attributes,

-Wno-misleading-indentation and -Wno-unused-variable to suppress some un-

wanted EIGEN warnings.

• For each problem requiring C++ implementation, a template file named problemX.cpp is pro-

vided (where X is the problem number). For your own convenience, there is a marker TODO in the

places where you are supposed to write your own code. All templates should compile even if left

unchanged.



Problem 0.1: Estimating point locations from distances (18 pts)

We consider a linear least squares problem from ➜Chapter 3.

[ This problem involves implementation in C++ ]

Consider n > 2 points located on the real axis, the leftmost point situated at x1 := 0, the other points

at unknown locations xi ∈ R, i = 2, . . . , n with xi < xi+1, i = 1, . . . , n − 1. We measure the m :=

(n
2
) = n(n−1)

2
distances di,j := |xi − xj|, i, j ∈ 1, . . . , n, i > j. The distances are arranged in a vector

according to

d := [d2,1, d3,1, . . . , dn,1, d3,2, d4,2, . . . , dn,n−1]
⊤ ∈ R

m . (0.0.1)

In absence of measurement errors, the point positions xi and the distances satisfy an overdetermined

linear system of equations

Ax = d , x = [x2, . . . , xn]
⊤ ∈ R

n−1 . (0.0.2)

(0.1.a) (2 pts) Show that the coefficient matrix/system matrix A ∈ R
m,n−1 from (0.0.2) has full rank.

N

(0.1.b) (4 pts) [ depends on (0.1.a) ]

Provide an implementation of a function

SparseMatrix<double> buildDistanceLSQMatrix( i n t n);

that initializes the system matrix A from (0.0.2). The function must be efficient for large n.

HINT 1 for (0.1.b): A template for the function buildDistanceLSQMatrix is provided within the

file problem1.cpp. You can compile the file with make problem1. The executable ./problem1

tests the routine buildDistanceLSQMatrix by printing the resulting matrix. y

N

(0.1.c) (2 pts) [ depends on (0.1.a) ]

Give explicit formulas for the entries of the system matrix (coefficient matrix) M of the normal equations

corresponding to the overdetermined linear system (0.0.2).

N

(0.1.d) (3 pts) [ depends on (0.1.c) ]

Show that the system matrix M of the normal equations for the overdetermined linear system from

(0.0.2), as found in Sub-problem (0.1.c), can be written as a rank-1 perturbation of a diagonal matrix.

N

(0.1.e) (6 pts) [ depends on (0.1.d) ]

Implement an efficient C++ function

VectorXd estimatePointsPositions(const MatrixXd& D);

that computes a least squares estimate for x2, . . . , xn by solving the normal equations for (0.0.2) and

returns the column vector x := [x2, . . . , xn]
⊤

.



The distances di,j are passed as entries of an n × n-matrix D according to

(D)i,j =











di,j , if i > j ,

0 , if i = j ,

−dj,i , if i < j .

Use the observation made in Sub-problem (0.1.d).

HINT 1 for (0.1.e): A template for the function estimatePointsPositions is provided in the

file problem1.cpp. You can compile the file with make problem1. The generated executable

./problem1 tests the routine estimatePointsPositions. The program prints a test matrix D.

Then, the program prints the vector x obtained using the function estimatePointsPositions on

the measured distances given by D.

Example output:

The matrix D is:
0 -2.1 -3 -4.2 -5

2.1 0 -0.9 -2.2 -3.3

3 0.9 0 -1.3 -1.1

4.2 2.2 1.3 0 -1.1

5 3.3 1.1 1.1 0

The positions [x_2, ..., x_n] obtained from the LSQ system are:

2

3.16

4.18

4.96 y

N

(0.1.f) (1 pts) [ depends on (0.1.e) ]

What is the asymptotic complexity of the function estimatePointsPositions implemented in

Sub-problem (0.1.e) for n → ∞?

N

End Problem 0.1

Problem 0.2: Zero finding in two dimensions (14 pts)

This problem studies Newton’s method for a 2 × 2 non-linear system of equations.

[ This problem involves implementation in C++ ]

Let f be a strictly increasing, positive, continuously differentiable function f ∈ C1(R), f (t) > 0.

We seek two real numbers a, b ∈ R such that

∫ b

a
f (t)dt = a + b , (0.0.3a)

∫ b

a
e f (t) dt = 1 + a2 + b2 . (0.0.3b)



(0.2.a) (2 pts) Eq. (0.0.3) is a nonlinear system of equations which can be rewritten as

F(x) = 0

Give an explicit formula for F(x) still involving the generic function f : R → R. What are the compo-

nents of x?

N

(0.2.b) (4 pts) [ depends on Sub-problem (0.2.a) ]

State the Newton’s iteration for solving Eq. (0.0.3) as explicitly as possible.

HINT 1 for (0.2.b): The explicit formula for the inverse of a 2 × 2 matrix is

A =

[

a b
c d

]

=⇒ A−1 =
1

ad − bc

[

d −b
−c a

]

, if ad − bc 6= 0 .

y

N

(0.2.c) (8 pts) [ depends on Sub-problem (0.2.b) ]

Implement a C++ function

template <c lass Function, c lass QuadRule>

std::pair<double, double> getIntv(const Function& f,

const QuadRule& qr,

double atol, double rtol,

unsigned maxit = 10);

that solves Eq. (0.0.3) by means of Newton’s method with initial guess a(0) = 0, b(0) = 1.

The argument qr provides a quadrature rule on [0, 1] in terms of weights and nodes. Use it for the

evaluation of all occurring definite integrals.

Use a correction-based termination criterion controlled by relative tolerance rtol and absolute toler-

ance atol. The variable maxit specifies the maximum number of iterations.

HINT 1 for (0.2.c): Recall the definition of the QuadRule class

s t r u c t QuadRule {

VectorXd nodes;

VectorXd weights;

};

For numerical quadrature based on the quadrature rule QuadRule, you may implement an auxiliary

function

template <c lass Function, c lass QuadRule>

double integrate(const Function& f, const QuadRule& qr,

const Vector2d & x);

which takes the integration bounds as argument vector x. y

HINT 2 for (0.2.c): A template for the functions getIntv and integrate is provided within the file

problem2.cpp. You can compile the file with make problem2. The executable ./problem2

tests the routine getIntv by printing the approximate (a, b) (for a given function f (t) := t) and the

reference solution. y

N



End Problem 0.2

Problem 0.3: Low rank approximation (19 pts)

This problem discusses a compressed model for a filter.

[ This problem involves implementation in C++ ]

A causal, linear, time-invariant and finite (LT-FIR) channel has the impulse response

(0, . . . , 0, h0, . . . , hn−1, 0, . . . , 0) (0.0.4)

of duration (n − 1)∆t. When we feed into it a signal x := (0, . . . , 0, x0, . . . , xn−1, 0, . . . , 0) of duration

(n − 1)∆t, the filter produces an output signal y := (0, . . . , 0, y0, . . . , y2n−2, 0, . . . , 0) of duration (2n −
2)∆t. The linear mapping

l :

{

R
n → R

2n−1

(

xj

)n−1

j=0
→

(

yj

)2n−2

j=0

can be represented by the matrix-vector product

(

yj

)2n−2

j=0
= C

(

xj

)n−1

j=0
, (0.0.5)

which can be expressed as the following matrix×vector multiplication, see ➜Rem. 4.1.17:
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(0.3.a) (2 pts)

Using EIGEN, implement a C++ function with signature

MatrixXd buildLTFIRMatrix(const VectorXd &h);

that initializes the matrix C from (0.0.5). The vector h specifies the entries of C.

HINT 1 for (0.3.a): You will find a template for the function buildLTFIRMatrix within the file

problem3.cpp. You can compile the file with make problem3. The executable ./problem3

tests the routine buildLTFIRMatrix by printing the resulting matrix. The correct matrix (for n = 6)

is reported as a comment in the code (within main of problem3.cpp). y

N

Now the goal is to implement a compressed model for the channel. Consider the class



c lass LTFIR_lowrank {

pub l i c:

LTFIR_lowrank(const VectorXd& h, unsigned k);

VectorXd opera tor()(const VectorXd& x) const;

p r i v a t e:

// TODO: private members of class LTFIR_lowrank

};

whose evaluation operator realizes y = C̃x, where C̃ ∈ R
2n−1,n is the rank-k best approximation of C,

and k ∈ {1, . . . , n} is passed as the second argument of the constructor.

(0.3.b) (9 pts) [ depends on Sub-problem (0.3.a) ]

Implement both member funcions of the class LTFIR_lowrank such that a call of the evaluation

operator involves as little computational effort as possible (asymptotically, for n → ∞).

HINT 1 for (0.3.b): You may use the function buildLTFIRMatrix from Sub-problem (0.3.a). y

HINT 2 for (0.3.b): A template for the class LTFIR_lowrank is provided within the file problem3.cpp.

You can compile the file with make problem3. The executable ./problem3 tests the routine

operator() by printing the resulting vector y = C̃x for specific inputs h, c and k. The correct re-

sult is reported as a comment in the code. y

N

(0.3.c) (2 pts) [ depends on Sub-problem (0.3.b) ]

What is the asymptotic complexity of your implementation of the constructor and the evaluation operator

for n → ∞ and k → ∞ (separately, assuming k ≤ n)?

N

(0.3.d) (3 pts)

Decide which of the following properties does the new filter (realized by the evaluation operator of

LTFIR_lowrank) still enjoy for any
(

hj

)n−1

j=0
: linearity, causality, and finiteness.

N

(0.3.e) (3 pts)

Another way to build a compressed model of the channel is frequency filtering, which is implemented in

the following LTFIR_freq class.

C++11-code 0.0.6: Constructor of class LTFIR_freq.

2 LTFIR_freq ( const VectorXd& h , unsigned k ) {

3 n_ = h . size ( ) ;

4 k_ = k ;

5

6 VectorXd h_ = h ;

h_ . conservat iveRes izeL ike ( VectorXd : : Zero (2∗n_−1) ) ;

7

8 // Forward DFT

9 FFT<double> f f t ;

10 ch_ = f f t . fwd ( h_ ) ;

11 }



C++11-code 0.0.7: Function operator().

2 VectorXd operator ( ) ( const VectorXd& x ) const {

3 assert ( x . size ( ) == n_ && " x must have same l e n g t h o f h " ) ;

4

5 VectorXd x_ = x ;

x_ . conservat iveRes izeL ike ( VectorXd : : Zero (2∗n_−1) ) ;

6 // Forward DFT

7 FFT<double> f f t ;

8 VectorXcd cx = f f t . fwd ( x_ ) ;

9 VectorXcd c = ch_ . cwiseProduct ( cx ) ;

10 // Set high frequency coefficients to zero

11 VectorXcd clow = c ;

12 for ( i n t j=−k_ ; j <=+k_ ; ++ j ) clow ( n_+ j ) = 0 ;

13 // Inverse DFT

14 return f f t . i nv ( clow ) . rea l ( ) ;

15 }

C++11-code 0.0.8: Private members of class LTFIR_freq.

2 i n t n_ ;

3 i n t k_ ;

4 VectorXcd ch_ ;

What is the asymptotic complexity of the evaluation operator operator() for n → ∞?

You can find the implementation of the class LTFIR_freq in the file problem3.cpp.

N

End Problem 0.3

Problem 0.4: Single step method (23 pts)

This problem concerns numerical integration ➜Chapter 11 with single step methods.

[ This problem involves implementation in C++ ]

We consider the initial value problem for y(t) := [y1(t), y2(t)]
⊤

:

ẏ =

[

−θ(y2)
y1

]

, θ ∈ C1(R) , y(0) =

[

0

y0

]

. (0.0.9)

(0.4.a) (2 pts)

Denote by ξ ∈ C2(R) the principal of θ, that is ξ ′ = θ.

Show that I(y(t)) = const. for I(z) = 1
2
z2

1 + ξ(z2), z = [z1, z2]
⊤ and any solution t 7→ y(t) of

(0.0.9).

HINT 1 for (0.4.a): What is an equivalent condition for I(y(t)) = const.? y

N



(0.4.b) (4 pts)

Give the concrete defining equation for the discrete evolution Ψ of the implicit midpoint rule ➜Eq. (11.2.18)

for (0.0.9).

N

(0.4.c) (5 pts) [ depends on Sub-problem (0.4.b) ]

State the explicit formulas for the Newton’s iteration that can be used to approximately evaluate the

discrete evolution of the implicit midpoint rule for (0.0.9). Specify a meaningful initial value in the case

of small time steps.

HINT 1 for (0.4.c): The explicit formula for the inverse of a 2 × 2 matrix is

A =

[

a b
c d

]

=⇒ A−1 =
1

ad − bc

[

d −b
−c a

]

, if ad − bc 6= 0 .

y

N

(0.4.d) (4 pts) [ depends on Sub-problem (0.4.c) ]

Implement a function

template <c lass Function, c lass Jacobian>

Vector2d psi(const Function& theta, const Jacobian& theta_d,

double h, const Vector2d& y)

that approximately realizes the discrete evolution operator of the implicit midpoint rule for (0.0.9) using,

internally, two Newton’s steps. The parameter h specifies the step size. The variable theta resp.

theta_d represent the function θ and its derivative θ′. The vector y passes the value y at the previous

step.

HINT 1 for (0.4.d): A template for the function psi is provided within the file problem4.cpp. You

can compile the file with make problem4. The executable ./problem4 tests the routine psi by

comparing the discrete evolution for θ(ξ) = eξ with a reference solution. The test performs a single

evolution step of size h = 0.1 starting from the initial data y(0). y

N

(0.4.e) (3 pts) The following function lfevl implements an explicit Runge-Kutta single step method

for Eq. (0.0.9) and for some (unknown) smooth function θ (passed as theta). The code applies a

Runge-Kutta method on N equidistant steps of size h, starting from the initial value y0:= y(0).

C++11-code 0.0.10: Function lfevl.

2 template <typename Funct ion >

3 Vector2d l f e v l ( const Funct ion& theta , Vector2d y0 ,

4 double h , unsigned i n t N) {

5 auto f = [& the ta ] ( const Vector2d& y ) −> Vector2d {

6 Vector2d y_dot ;

7 y_dot << −t he ta ( y ( 1 ) ) , y ( 0 ) ;

8 return y_dot ;

9 } ;

10 Vector2d yk = y0 ;

11 for ( unsigned k =0; k < N; ++k ) {



12 Vector2d k1 = f ( yk ) ;

13 Vector2d k2 = f ( yk + h / 2 .∗ k1 ) ;

14 Vector2d k3 = f ( yk − h∗k1+ 2.∗h∗k2 ) ;

15

16 yk += h / 6 .∗ k1 + 2.∗h / 3 .∗ k2 + h / 6 .∗ k3 ;

17 }

18 return yk ;

19 }

Write down the Butcher scheme for this method.

N

(0.4.f) (5 pts) [ depends on Sub-problem (0.4.e) ]

Consider the C++ function lfevl of Sub-problem (0.4.e) and let θ(ξ) = eξ and y(0) = [0, 1]⊤.

Empirically determine the order of convergence of the single step method implemented by lfevl by

studying the errors of the numerical solutions at the final time T = 10 and their dependence on the

number N of equidistant steps of the single-step method.

HINT 1 for (0.4.f): Use suitable sequences of numbers of steps N ranging between 50 and 2 · 104. y

HINT 2 for (0.4.f): Implement your code in the main function of the file problem4.cpp. You can

compile the file with make problem4. The executable ./problem4 should print the error and the

estimated order of convergence of lfevl, for every value of N.

y

N

End Problem 0.4

Problem 0.5: Polar decomposition of a matrix (10 pts)

This problem addresses a special matrix factorization and its numerical realization.

[ This problem involves implementation in C++ ]

The following result is obtained in linear algebra:

Theorem 0.0.11. Polar decomposition

Given M ∈ R
n,n, there is a symmetric positive semidefinite matrix A ∈ R

n,n and an orthogonal

matrix Q ∈ R
n,n such that

M = AQ . (0.0.12)

The matrix factorization (0.0.12) is called the polar decomposition of M.

(0.5.a) (4 pts) Give a proof of Thm. 0.0.11.

HINT 1 for (0.5.a): Use the singular value decomposition of M. y

N



(0.5.b) (5 pts) [ depends on (0.5.a) ]

Using EIGEN’s numerical linear algebra facilities, write a C++ function

std::pair<MatrixXd, MatrixXd> polar(const MatrixXd& M);

that computes the polar decomposition (0.0.12) of M, returning the tuple (A, Q).

HINT 1 for (0.5.b): You may use EIGEN’s methods for numerical singular value decomposition (SVD).

y

HINT 2 for (0.5.b): A template for the function polar is provided within the file problem5.cpp. You

can compile the file with make problem5. The executable ./problem5 tests the routine polar.

In main(), for the specified matrix

M =





1 2 3

2 1 3

6 3 11



 ,

the program computes and prints the matrices A and Q.

Example output:

Matrix A is:
2.11118 0.847555 2.97062

0.847555 1.31722 3.39803

2.97062 3.39803 12.0677

Matrix Q is:
-0.352666 0.910956 0.213977

0.872437 0.402776 -0.276811

0.338348 -0.0890599 0.936797

The function testPolar is also provided. This function uses an implementation of polar and checks

whether it returns a true polar decomposition. y

N

(0.5.c) (1 pts) [ depends on (0.5.b) ]

What is the asymptotic complexity of your implementation of polar for n → ∞?

N

End Problem 0.5
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