NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

ETH Lecture 401-0663-00L Numerical Methods for CSE
Main Examination

Prof. R. Hiptmair, SAM, ETH Zurich
January 26, 2017

Duration: 3h 20m (computer-based)

(Examination for Course at ETH Zurich in Autumn Term 2016)

Family name
First name
Study program
Computer name
Legi no.

Date 26.01.2016

Grade

Points:

Task 112 31] 4| 5 | Total
Max. pts. | 18 | 14 | 19 | 23 | 10
1st Corr.
2nd Corr.

See next page for detailed instructions.

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

Instructions:

e Fill in this cover sheet first.

e Always keep your Legi visible on the table.

e Keep your phones, tablets and computers turned off in your bag.
e Start each handwritten problem on a new sheet.

e Put your name on each sheet.

e Do not write with red/green/pencil.

e Write your solutions clearly and work carefully.

e Write all your solutions only in the folder questions!

e Any other location will not be backed-up and will be discarded.
e Filesin resources may be overridden at any time.

e Make sure to regularly save your solutions.

e Time spent on restroom breaks is considered examination time.

e Never turn off or log off from your computer!

Instructions for coding problems:

e In the folder “~/questions” you will find the template files for the solution of the problems. You
can use these templates to write your solution.

e We provide a “CMake” file that automatically compiles all the templates. To generate a “Makefile”
for all problems, type “cmake .” in the folder “~/questions”. Compile your programs with
‘make”.

e In order to compile and run the C++ code related to a single problem, like Problem 0.3, type “make
problem3”. Execute the program using “. /problem3”.

e If you want to manually compile your code without CMake, use:

g++ —I./ —std=c++11 —Wno—deprecated—declarations \
—Wno—-ignored—attributes filename.cpp —Wno—misleading—indentation \
—Wno—-unused—variable —o program_name

or

clang++ —I| ./ —std=c++11 —Wnho—deprecated—declarations \
—Wno—-ignored—attributes filename.cpp —Wno—misleading—indentation \
—Wno—-unused—variable —o program_name

We use the flags —-Wno-deprecated-declarations, -Wno-ignored-attributes,
-Wno-misleading—-indentation and -Wno-unused-variable to suppress some un-
wanted EIGEN warnings.

e For each problem requiring C++ implementation, a template file named problemX. cpp is pro-
vided (where X is the problem number). For your own convenience, there is a marker TODO in the
places where you are supposed to write your own code. All templates should compile even if left
unchanged.

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

Problem 0.1: Estimating point locations from distances (18 pts)

We consider a linear least squares problem from =»Chapter 3.

[This problem involves implementation in C++ |

Consider n > 2 points located on the real axis, the leftmost point situated at x; := 0, the other points
at unknown locations x; € R, i = 2,...,nwithx; < x;.1, 1 = 1,...,n —1. We measure the m :=
() = "(”;1) distances d;; := |x; — x;|, i,j € 1,...,n, i > j. The distances are arranged in a vector
according to

d:= [d2,1/d3,1/ - /dn,1/d3,2/ d4/2, e ,dn,n_l]—r e R™. (001)

In absence of measurement errors, the point positions x; and the distances satisfy an overdetermined
linear system of equations

Ax=d, x= [xz,...,xn]T e RV, (0.0.2)

(0.1.a) (2pts) Show that the coefficient matrix/system matrix A € R~ from (0.0.2) has full rank.

SOLUTION of (0.1.a):

As in =2Eq. (3.0.11), we find that

-1 1 0 ... 0 dy1
-1 0 1 0 d3,
X1
. -1 ... 0 1 dn,l
Xi = X = dij, 0 -1 1 0 .. o |2 = | dap |. (0.0.3)
1<j<i<n. 0 -1 0 1 o0] dap
.) Xn :
0 -1 1 0 dy3
0 ... 0 —1 1] 1]

[1 pts. for the correct system of eq. (at least the identity part)] Setting x; := 0 amounts to dropping
the first column of the system matrix. The remaining matrix is the matrix A from (0.0.2), which is of the
form

A = {Inl} €]Rm,nfl)
*

[1 pts. for argument] Since the top (n — 1) x (n — 1) block is the identity matrix, A must have full
rank.

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

(0.1.b) (4 pts) [depends on (0.1.a)]

Provide an implementation of a function

SparseMatrix<double> buildDistanceLSQMatrix (int n);

that initializes the system matrix A from (0.0.2). The function must be efficient for large n.

HINT 1 for (0.1.b): A template for the function buildDistanceLSQMatrix is provided within the
file probleml . cpp. You can compile the file with make probleml. The executable . /probleml
tests the routine buildDistanceLSQMat rix by printing the resulting matrix. _I

SOLUTION of (0.1.b):

_1)\2
The matrix A is sparse with 2m — (n — 1) = (n — 1)? < @ non-zero entries. The signature of
the function buildDistancelLSQMatrix already imposes the usage of sparse matrix data formats.

There are two alternative methods that guarantee an efficient implementation, see =»Section 2.7.3.
e Matrix assembly via intermediate triplet format:
1. [3 pts. for correct construction of triplet vectors] A vector of triplets is preallocated.

This is possible, because we know that A has a total of 2m — (n — 1) = (n — 1)? non-zero
entries. The vector is then filled with triplets.

2. [1 pts. for correct construction of triplet vectors] Initialization via an intermediate triplet
(COO) format and EIGEN’s method setFromTriplets ().

e [3 pts. for correct matrix construction] Direct entry specification via SparseMatrix<T>::insert
(also SparseMatrix<T>::coeffRef is accepted). [1 pts. for meaningful preallocation]
To avoid unnecessary memory reallocations, SparseMatrix<T>::reserve must be called
with an appropriate estimate.

C++11-code 0.0.4: Solution of Sub-problem (0.1.b).

» | SparseMatrix<double> buildDistanceLSQMatrix(int n) {

3 SparseMatrix<double> A(nx(n—1)/2, n—1);

4

5 // Assembly

6 std ::vector<Triplet <double>> triplets; // List of non-zeros
coefficients

7 ‘ triplets .reserve ((n—1)*(n—1)); // Two non-zeros per row (at
most), first m—1 rows only one entry

8 // => (n—1)? total non-zero entries

9

10 // Loops over vertical blocks

1 int row = 0; // Current row counter

12 for(int i = 0; i < n—1; ++i) { // Block with same "-1" column

13 for(int j = i; j <n—=1; ++j) { // Loop over block

14 triplets .push_back(Triplet<double>(row, j, 1));

15 if(i > 0) { // Remove first column

16 triplets .push_back(Triplet <double>(row, i—1, —1));

17 }

18 row++; // Next row

19

}

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

2 }

21

22 // Build matrix

2 A.setFromTriplets(triplets .begin(), triplets.end());
24

25 A.makeCompressed () ;

2 return A;

27 | }

(0.1.c) (2pts) [dependson (0.1.a)]

Give explicit formulas for the entries of the system matrix (coefficient matrix) M of the normal equations
corresponding to the overdetermined linear system (0.0.2).

SOLUTION of (0.1.c):

[1 pts. for off-diagonal entries] The entries of matrix M = A " A can be expressed as inner products
of two different columns of A:

<ATAXJ=(AﬂXA%%

Two columns of A have both non-zero entries, =1 of opposite sign, only in a single position, hence
(M)i,j = —1fori # j. [1 pts. for diagonal entries] The diagonal entries of M are the squares of
the Euclidean norms of the columns of A. Every column of A has exactly n — 1 entries with value 41,
which means (M);; = n — 1.

(0.1.d) (3pts) [depends on (0.1.c)]

Show that the system matrix M of the normal equations for the overdetermined linear system from
(0.0.2), as found in Sub-problem (0.1.c), can be written as a rank-1 perturbation of a diagonal matrix.

SOLUTION of (0.1.d):
As

1 it £], -
M),;; = , 1<ij<n—1, 0.0.5
(M);, {n—l Jifi=] b= (0.0.5)

we have [1 pts. for correct matrix] [1 pts. for correct vector(s) and for argument that modification
has rank 1] that

M=unl, ,—1-1", 1=1,...,1]" e R" . (0.0.6)

[1 pts. for correct form of rank-1 perturbation] The tensor product matrix 1 - 1" has rank 1.

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

(0.1.e) (6 pts) [dependson (0.1.d)]

Implement an efficient C++ function

VectorXd estimatePointsPositions(const MatrixXd& D) ;

that computes a least squares estimate for x5, ..., x, by solving the normal equations for (0.0.2) and
returns the column vector x := [xa, ..., x,]

The distances di,j are passed as entries of an n x n-matrix D according to

di’]' ,ifi>j,
(D)i,]‘: 0 Jifi=7,
—d]',,' ,ifi<j.

Use the observation made in Sub-problem (0.1.d).

HINT 1 for (0.1.e): A template for the function estimatePointsPositions is provided in the
file probleml.cpp. You can compile the file with make probleml. The generated executable
./probleml tests the routine estimatePointsPositions. The program prints a test matrix D.
Then, the program prints the vector x obtained using the function estimatePointsPositions on
the measured distances given by D.

Example output:
The matrix D is:

0 -2.1 -3 -4.2 -5
2.1 0O -0.9 -2.2 -3.3
3 0.9 0O -1.3 -1.1
4.2 2.2 1.3 0 -1.1
5 3.3 1.1 1.1 0
The positions [x_2, ..., x_n] obtained from the LSQ system are:
2
3.16
4.18
4.96 J

SOLUTION of (0.1.e):

We rely on the techniques introduced in =*§ 2.6.13 and apply the [1 pts. for stating the correct SMW
formula and realize it can be used] Sherman-Morrison-Woodbury formula from =*Lemma 2.6.22 to
the normal equations

(nln_l —1. 1T)x —ATd.

Then =»Eq. (2.6.23) yields

il-1' 1 T T
Note that the entries of the vector b € IR”~! can be computed by summing the entries of the last 7 — 1
rows of D (the intermediate points of the distances cancel each other out) [2 pts. correct r.h.s., also
valid to use matrix-vector multiplication]. [3 pts. for correct application of SMW, including matrix
inversion with 1]

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

C++11-code 0.0.8: Solution of Sub-problem (0.1.e).

» |VectorXd estimatePointsPositions (const MatrixXd& D) {
3

4 VectorXd x;

5

6 // Vector of sum of columns of A

7 ArrayXd b = D.rowwise () .sum() . tail (D.cols()—1);
8 // Vector 1

9 ArrayXd one = ArrayXd:: Constant(D.cols()—1, 1);
10 // Apply SMW formula

1 X = (b + one x b.sum()) / D.cols();

12

13 return x;

14 }

(0.1.f) (1 pts) [dependson (0.1.e)]

What is the asymptotic complexity of the function estimatePointsPositions implemented in
Sub-problem (0.1.e) for n — c0?

SOLUTION of (0.1.f):

An implementation of (0.0.7) involves SAXPY operations and inner products for vectors of length n — 1,
all of which can be carried out with asymptotic complexity O (n).

[1 pts. for noticing that complexity is dominated by r.h.s. and specify it correctly] However, form-
ing the vector b has to access all distances and involves computational cost ()(72%), which dominates
the total asymptotic complexity.

A

End Problem 0.1

Problem 0.2: Zero finding in two dimensions (14 pts)

This problem studies Newton’s method for a 2 x 2 non-linear system of equations.

[This problem involves implementation in C++ |

Let f be a strictly increasing, positive, continuously differentiable function f € C1(IR), f(¢) > 0.

We seek two real numbers 4,b € R such that

bf(t) dt =a+b, (0.0.9a)

a

b
/ SO dt =1+a%+02. (0.0.9b)
a

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

(0.2.a) (2 pts) Eqg. (0.0.9) is a nonlinear system of equations which can be rewritten as

F(x)=0

Give an explicit formula for F(x) still involving the generic function f : R — R. What are the compo-
nents of x?

SOLUTION of (0.2.a):
[0.5 pts. for formula for x]]
[1.5 pts. for formula for F]]

We have x = [a,b] ' and

(j?f(t) dt) — X1 — X2

F: X1
X2 - *2
[efdt) —1—x2 — 3

X1

(0.2.b) (4 pts) [depends on Sub-problem (0.2.a) |
State the Newton’s iteration for solving Eq. (0.0.9) as explicitly as possible.

HINT 1 for (0.2.b): The explicit formula for the inverse of a 2 x 2 matrix is

_la b 1 d —b| .
A—[C d} — A —ad—bc[—c a},lfﬂd—bcyéo.

SOLUTION of (0.2.b):
[2 pts. for Jacobian of F]]
[2 pts. for inverse of Jacobian]]
Using the fundamental theorem of calculus - [* ¢(t) dt = g(x), we find for the Jacobian of F:
_ [) =1 flx) -1
DE() = | i) — oy, ef o) — o, | -

Using this and the formula for the inverse of a regular 2 x 2-matrix, we can write the Newton iteration

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

as

k+1) k)

x D) =

1 ef(xZ)_zxZ _f(xZ)+1 '
(—f(xl) — 1)(ef(x2) — 2xz) — (f(xz) — 1)(—ef(x1) — 2x1) ef(xl) + 2xq —f(xl) -1

<_J;gf(t) dt) — X1 — X2

RY)
(fef(t)dt> —1—x?—x3

X1

(0.2.c) (8 pts) [depends on Sub-problem (0.2.b)]
Implement a C++ function

template <class Function, class QuadRule>

std: :pair<double, double> getIntv(const Function& f,
const QuadRule& gr,
double atol, double rtol,
unsigned maxit = 10);

that solves Eq. (0.0.9) by means of Newton’s method with initial guess a0 = 0, b0 =1,

The argument o+ provides a quadrature rule on [0, 1] in terms of weights and nodes. Use it for the
evaluation of all occurring definite integrals.

Use a correction-based termination criterion controlled by relative tolerance rtol and absolute toler-
ance atol. The variable maxit specifies the maximum number of iterations.

HINT 1 for (0.2.c): Recall the definition of the QuadRule class

struct QuadRule {
VectorXd nodes;
VectorXd weights;
i

For numerical quadrature based on the quadrature rule QuadRule, you may implement an auxiliary
function

template <class Function, class QuadRule>
double integrate(const Function& f, const QuadRules& qgr,
const Vector2d & x);

which takes the integration bounds as argument vector x. 2

HINT 2 for (0.2.c): A template for the functions get Intv and integrate is provided within the file
problem2.cpp. You can compile the file with make problem2. The executable ./problem?2
tests the routine get Intv by printing the approximate (a,b) (for a given function f(t) := t) and the
reference solution.]

SOLUTION of (0.2.c):

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

[2 pts. for correct function integrate or an equivalent correct integration]
[2 pts. for correct transformation of QuadRule on [0, 1]]
[4 pts. for correct function getintv]

For the correction-based a posteriori termination criterion, look at =»Section 8.4.1.

C++11-code 0.0.10: Function integrate.

. |template<class Function, class QuadRule>

s |double integrate (const Function& f, const QuadRule& qr, const
Vector2d & x) {

.

5 double | = 0;

6

7 VectorXd nodes = ¢r.nodes;

8 VectorXd weights = gr.weights;

9 assert(nodes.size () == weights.size () &&

10 "Nodes and weights of QuadRule have different lengths");

1 for (unsigned i=0; i<nodes.size(); ++i) {

12 double t = (x(1)+x(0))/2. + (x(1)—x(0))*(nodes(i)—0.5);

13 // Adjust nodes of [0,1]-QuadRule to domain [x1,X3].

14

15 | += f(t) * weights(i);

16 }

17

18 | x= x(1)—x(0); // Adjust weights of [0,1]-QuadRule to domain

[xl,xz].

19

20 return |;

21 }

C++11-code 0.0.11: Function getIntv.

» |template<class Function, class QuadRule>
s |std :: pair<double, double> getlntv(const Function& f, const QuadRule&

qr,
4 double atol, double rtol ,
5 unsigned maxit=10) {
6 std :: pair<double ,double> x_end;
7
8 Vector2d x;
9 X << 0, 1;

11 Vector2d x_new = x;

12 auto exp_f = [&] (double t) {return std::exp(f(t));};
13

14 for (unsigned i=0; i<maxit; ++i) {

15

16 // Compute inverse of Jacobian.

17 Matrix2d invDF ;

; 10

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

18 invDF << exp_f(x(1))—2«x (1), —f(x(1))+1,

19 exp_f(x(0))+2«x(0), —f(x(0))—

20 invDF /= (—f(x(0))—1)x(exp_f(x (1))—2*x()) —
(f(x(1))=1)x(—exp_f(x(0))—2xx(0));

2 // Evaluate F(x®)).

23 Vector2d F;

24 F << integrate (f, qgr, x) — (x(0)+x(1)),

2 integrate (exp_f, qr, x) — (1+x(0)*x(0)+x(1)*x(1));

26

27 // Newton’s iteration.

28 Xx_new = X — invDFxF;

30 // Correction—-based termination (relative and absolute).

31 double r = (x_new — x).norm() ;

a2 if(r < atol || r < rtol *x x_new.norm()) {

3 break;

34 }

35

36 X = X_new,;

a7 }

38

39 x_end = {x_new(0), x_new(1)};

40

41 return x_end;

42 }

A

End Problem 0.2

Problem 0.3: Low rank approximation (19 pts)

This problem discusses a compressed model for a filter.

[This problem involves implementation in C++ |

A causal, linear, time-invariant and finite (LT-FIR) channel has the impulse response

(0,...,0,ho,...,hy_1,0,...,0) (0.0.12)
of duration (n — 1)At. When we feed into it a signal x := (0,...,0,xg,...,%,-1,0,...,0) of duration
(n — 1)At, the filter produces an output signal y := (0,...,0,vo,...,¥2,-2,0,...,0) of duration (2n —
2)At. The linear mapping

R" — lRanl
[: n—1 2n—2
{(x]')j:o - (%')]':o

can be represented by the matrix-vector product

() =C (x5, (0.0.13)

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

which can be expressed as the following matrix x vector multiplication, see <*Rem. 4.1.17:

[Yo] ho 0 o --- 0
. hy ho o --- 0
. r xo =
= |hy—1 hy—o -+ h1 ho
0 hnfl hl :
) | Xn—14
LY2n—2] i 0 S ..o 0 hn—l_

(0.3.a) (2 pts)
Using EIGEN, implement a C++ function with signature

MatrixXd buildLTFIRMatrix (const VectorXd &h);

that initializes the matrix C from (0.0.13). The vector h specifies the entries of C.

HINT 1 for (0.3.a): You will find a template for the function buildLTFIRMatrix within the file
problem3.cpp. You can compile the file with make problem3. The executable ./problem3
tests the routine bui 1dLTFIRMat rix by printing the resulting matrix. The correct matrix (for n = 6)
is reported as a comment in the code (within main of problem3. cpp). 2

SOLUTION of (0.3.a):

[2 pts. Many ways to do this]

C++11-code 0.0.14: Function buildDistanceLSQMatrix.

2 | MatrixXd buildLTFIRMatrix (const VectorXd & h)
s | {

4 // Initialization

5 unsigned int n = h.size();
6 MatrixXd C(2xn—1, n);

7

8 C.setZero () ;

©

10 for (unsigned i=0; i<n; ++i)

{
11 C.col(i).segment(i ,n) = h;

12 }

14 return C;

Now the goal is to implement a compressed model for the channel. Consider the class

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

class LTFIR lowrank {
public:
LTFIR_ lowrank (const Vectorxd& h, unsigned k);
VectorXd operator () (const VectorXd& x) const;
private:
// TODO: private members of class LTFIR lowrank

}i
whose evaluation operator realizes y = Cx, where C € IR?"~ 1" is the rank-k best approximation of C,
and k € {1,...,n} is passed as the second argument of the constructor.
(0.3.b) (9 pts) [depends on Sub-problem (0.3.a) |

Implement both member funcions of the class LTFIR_lowrank such that a call of the evaluation
operator involves as little computational effort as possible (asymptotically, for n — o0).

HINT 1 for (0.3.b): You may use the function buildLTFIRMatrix from Sub-problem (0.3.a). 2

HINT 2 for (0.3.b): A template for the class LTFIR_lowrank is provided within the file problem3. cpp.
You can compile the file with make problem3. The executable ./problem3 tests the routine
operator () by printing the resulting vector y = Cx for specific inputs h, ¢ and k. The correct re-
sult is reported as a comment in the code. J

SOLUTION of (0.3.b):
[6 pts. for efficient constructor and private members. Economical SVD should be used.]

[3 pts. for efficient operator()]

C++11-code 0.0.15: Constructor of class LTFIR_lowrank.

2 LTFIR_lowrank (const VectorXd& h, unsigned int k) {

3 MatrixXd C = buildLTFIRMatrix (h) ;

4

5 JacobiSVD<MatrixXd> svd(C, ComputeThinU | ComputeThinV) ;

6 // With Eigen::svd you can ask for thin U or V to be
computed.

7 // In case of a rectangular m X n matrix,

8 // with j the smaller value among m and n,

9 // there can only be at most j singular values.

10 // The remaining columns of U and V do not correspond

1 // to actual singular vectors and are not computed in thin
format.

12

13 VectorXd s = svd.singularValues () ;

14 s.conservativeResize (k) ;

15 auto S = s.asDiagonal(); // kxk

16

17 MatrixXd U = svd.matrixU () ;

18 MatrixXd V = svd.matrixV () ;

19 U = U.leftCols (k) *x S; // nxk

20 // Already optimised product between dense and diagonal
matrix

21 Vt_ = V.leftCols (k).transpose(); // kxn

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

C++11-code 0.0.16: Function operator ().

2 VectorXd operator() (const VectorXd& x) const {
3 VectorXd vy;

.

5 assert(x.size() == Vi_.cols() &&

6 "X must have same length of h");
7

8 VectorXd tmp = Vi_ * Xx;

9 y = U_ x tmp;

10 // Complexity is O(kn+ nk) = O(nk).

11 // Given precomputed Ck=U-Vt_,

12 // complexity would have been O(nn).

13 return y;

14 }

C++11-code 0.0.17: Private members of class LTFIR_lowrank.

2 MatrixXd U_; // nxk
3 MatrixXd Vit _; // kxn

(0.3.c) (2pts) [depends on Sub-problem (0.3.b)]

What is the asymptotic complexity of your implementation of the constructor and the evaluation operator
for n — oo and k — oo (separately, assuming k < n)?

SOLUTION of (0.3.c):
[1 pts. for complexity of SVD]
[1 pts. for complexity of operator()]

The rank-k approximation performed by the constructor involves a singular value decomposition. The
complexity of an SVD is O (n?).

The evaluation operator carries out two matrix-vector multiplications, by k x n matrix V' and (2n —
1) x k matrix U. The complexity is therefore O (kn + nk) = O(nk). On the other hand, given the full
(2n — 1) x n approximation matrix C, the complexity would have been O (n?).

(0.3.d) (3 pts)

Decide which of the following properties does the new filter (realized by the evaluation operator of
LTFIR_lowrank) still enjoy for any (hj);.q:_ol: linearity, causality, and finiteness.

SOLUTION of (0.3.d):

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

Linearity [1 pts.] Yes: it is ultimately a matrix-vector multiplication.
Causality [1 pts.] Yes: y; =0 Vj <0.

Finiteness [1 pts.] Yes: the number of nonzero y; is up to 2n — 1.

(0.3.e) (3 pts)

Another way to build a compressed model of the channel is frequency filtering, which is implemented in
the following LTFIR_freq class.

C++11-code 0.0.18: Constructor of class LTFIR_freq.

2 LTFIR_freq(const VectorXd& h, unsigned k) {
3 n_ = h.size();

4 k_ = k;

5

6 VectorXd h = h;

h_.conservativeResizeLike (VectorXd :: Zero(2xn_—1)) ;

8 // Forward DFT
o FFT<double> fft ;
o ch_ = fft.fwd(h_);

C++11-code 0.0.19: Function operator ().

2 VectorXd operator () (const VectorXd& x) const {
3 assert(x.size() == n_ && "x must have same length of h");
.
5 VectorXd x = x;
x_.conservativeResizelLike (VectorXd :: Zero(2«n_—1)) ;

6 // Forward DFT
7 FFT<double> fft;
8 VectorXcd cx = fft.fwd(x_);
9 VectorXcd ¢ = ch_.cwiseProduct(cx);
10 // Set high frequency coefficients to zero
1 VectorXcd clow = c;
12 for(int j=k_; j<=+k_; ++j) clow(n_+j) = O;
13 // Inverse DFT
14 return fft.inv(clow).real();
15

}

C++11-code 0.0.20: Private members of class LTFIR_freq.

2 int n_;
3 int k_;
4 VectorXcd ch_;

15

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

What is the asymptotic complexity of the evaluation operator operator () for n — co?

You can find the implementation of the class LTFIR_freq in the file problem3. cpp.

SOLUTION of (0.3.e):

[3 pts. 1 The most expensive steps of the implemented low-pass filter are the Fourier transforms. For
n-dimensional input vectors x, the complexity of a fast Fourier transform is O (nlogn).

A

End Problem 0.3

Problem 0.4: Single step method (23 pts)

This problem concerns numerical integration =»Chapter 11 with single step methods.

[This problem involves implementation in C++ |

We consider the initial value problem for y(¢) := [yl(t),yz(t)]T

, —9(3/2)] 1 {0]
— , 0eCY(R), 0) =) 0.0.21
=W, secim), yo =) 0021
(0.4.a) (2 pts)

Denote by & € C2(IR) the principal of 6, that is ¢’ = 6.

Show that I(y(t)) = const. for I(z) = 3z 4+ &(z2), z = [21,22] " and any solution t — y(t) of
(0.0.21).

HINT 1 for (0.4.a): What is an equivalent condition for I(y(t)) = const.? 4

SOLUTION of (0.4.a):

[2 pts.] Consider I(y) = 32 + &(y2). We have that I(y) = const <= ZI(y(t)) = 0. By the
scalar chain rule and the product rule we can conclude:

I'(y) = yiy1 + &' (y2)v2 = v21 + 0(y2)v2 = Yoy1 — Y192 = 0.

(0.4.b) (4 pts)

Give the concrete defining equation for the discrete evolution ¥ of the implicit midpoint rule =*Eq. (11.2.18)
for (0.0.21).

SOLUTION of (0.4.b):

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

[4 pts.] The discrete evolution operator ¥ : R x R*> — IR? according to =*§ 11.3.1 is defined as
the solution operator of the following non-linear system of equations: for a generic autonomous ODE
y = f(y) it reads

Y(hy): =2z z= y—l—hf(%(}'—i-z))

and, concretely, for (0.0.21),

Y(hy):=z= [Z] suchthat z=y+h , yER?, (0.0.22)

9(% Y2tz)
3(y1+21)

For sufficiently small /z there is a unique solution z = z(h,y).

(0.4.c) (5pts) [depends on Sub-problem (0.4.b) |

State the explicit formulas for the Newton’s iteration that can be used to approximately evaluate the
discrete evolution of the implicit midpoint rule for (0.0.21). Specify a meaningful initial value in the case
of small time steps.

HINT 1 for (0.4.c): The explicit formula for the inverse of a 2 X 2 matrix is

1 d -—-b| .
_ad—bc[—c a},ﬁad—bc#o.

A:{” b] — A
c d

SOLUTION of (0.4.c):

[1 pts. for functional F. Note that there are several ways to recast the implicit midpoint rule as a
non-linear equations, among them also the stage form discussed in class.]

[1 pts. for Jacobian of F]

[1 pts. for inverse of Jacobian]

[1 pts. for complete Newton’s iteration]
[1 pts. for initial guess]

The non-linear 2 x 2 system of equations (0.0.22) can be recast into the standard form

_o(1
F(z) =0 , F(z) Izz—y—h[91<z(3/2+7~2)) (0.0.23)
3(y1+21)
For the Jacobian of F we find
170/(1
D F(z) = [11h 2 <2<yf+zz>> (0.0.24)
-2

Using the formula for the inverse of a 2 x 2-matrix, the Newton’s iteration reads

L) _ (0 _ 1 [
1+ }LhZG’ (% <y2 + zék)>) %h 1

(0.0.25)

; 17

! h9’< (y +2f)))] g)(k; ?; fe_(h (<yy12: :5%)3)

)

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

For small i we expect ¥(h,y) ~ y. Hence z(0) := y is the natural initial guess for the Newton’s
iteration.

Since the implicit midpoint rule is a Runge-Kutta single step method, it can also be cast in stage form,
see =»Rem. 12.3.21. Then one can use Newton’s method to solve for the stages g;, see =*Rem. 12.3.24.

(0.4.d) (4 pts) [depends on Sub-problem (0.4.c)]

Implement a function

template <class Function, class Jacobian>
Vector2d psi(const Functioné& theta, const Jacobiané& theta_d,
double h, const Vector2ds& y)

that approximately realizes the discrete evolution operator of the implicit midpoint rule for (0.0.21) using,
internally, two Newton’s steps. The parameter & specifies the step size. The variable theta resp.
theta_d represent the function 6 and its derivative 6’. The vector y passes the value y at the previous
step.

HINT 1 for (0.4.d): A template for the function psi is provided within the file problem4.cpp. You
can compile the file with make problem4. The executable . /problem4 tests the routine psi by
comparing the discrete evolution for 6(¢) = ef with a reference solution. The test performs a single
evolution step of size h = 0.1 starting from the initial data y(0). N

SOLUTION of (0.4.d):

[4 pts.]
C++11-code 0.0.26: Solution of (0.4.d).
» |template<typename Functor, typename Jacobian>
s | Vector2d psi(Functor& theta, Jacobian& theta_d,
4 double h, const Vector2d& y) {
5 Vector2d z;
6 zZ =Y;
8 for (unsigned i=0; i<2; ++i) {
9
10 Matrix2d invDF;
11 invDF << 1., —0.5xhxtheta_d(0.5x(y(1)+z(1))),
12 05*h, 1.;
13 invDF /= 1 + 0.25xhxhxtheta_d (0.5x(y(1)+z(1)));
14
15 Vector2d F;
16 F << z(0) — y(0) + hxtheta (0.5%x(y(1)+z(1))),
1 z(1) — y(1) = 0.5xhx(y(0)+z(0));
18
19 z = z — invDFxF;

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

21 return z;

2 |}

A

(0.4.e) (3 pts) The following function 1 fevl implements an explicit Runge-Kutta single step method
for Eq. (0.0.21) and for some (unknown) smooth function 6 (passed as theta). The code applies a

Runge-Kutta method on N equidistant steps of size h, starting from the initial value y0:= y(0).

C++11-code 0.0.27: Function 1fevl.

» |template<typename Function>
s | Vector2d Ifevl(const Function& theta, Vector2d yo0,

4 double h, unsigned int N) {

5 auto f = [&theta] (const Vector2d& y) — Vector2d ({
6 Vector2d y_dot;

7 y_dot << —theta(y(1)), y(0);

8 return y_dot;

9 };

10 Vector2d yk = y0;

1 for (unsigned k=0; k < N; ++k) {

12 Vector2d ki1 = f(yk);

13 Vector2d k2 = f(yk + h/2.xk1);

14 Vector2d k3 = f(yk — hxk1+ 2.xhxk2);
15

16 yk += h/6.xk1 + 2.%xh/3.%xk2 + h/6.%xk3;
17 }

18 return yk;

Write down the Butcher scheme for this method.

SOLUTION of (0.4.e):

[3 pts.] The code closely follows the structure of the increment eqations from =*Def. 11.4.9 and one

can simply read off the coefficients.

—_N= O

|
O\)_\NI»—\O
WINN © O
oHO © O

(0.4.f) (5pts) [depends on Sub-problem (0.4.€)]

19

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

Consider the C++ function 1fev1 of Sub-problem (0.4.e) and let (&) = e and y(0) = [0,1]".
Empirically determine the order of convergence of the single step method implemented by 1fevl by
studying the errors of the numerical solutions at the final time T = 10 and their dependence on the
number N of equidistant steps of the single-step method.

HINT 1 for (0.4.f): Use suitable sequences of numbers of steps N ranging between 50 and 2 - 10%.

HINT 2 for (0.4.f): Implement your code in the main function of the file problem4 . cpp. You can
compile the file with make problem4. The executable . /problem4 should print the error and the
estimated order of convergence of 1 fev1, for every value of N.

SOLUTION of (0.4.f):

The empiric order of the method is 3. The smartest choice of a sequence of numbers of steps is
geometric progression, doubling N in turn, e.g., N = 2°,...,214.

[4 pts. for correct implementation]

[1 pts. for correct order of convergence]

C++11-code 0.0.28: Solution of (0.4.f).

2 // Vector of number of steps (each entry is twice the previous
entry) .

3 std::vesc/:)tor<unsigned> N = {128, 256, 512, 1024, 2048, 4096,
8192, 16384};

4 std ::cout << std::setw(15) << "N"

5 << std::setw(15) << "error"

6 << std::setw(15) << "rate"

7 << std::endl;

8 double err_old;

9 for (unsigned int i=0; i < N.size(); ++i) {

10 double h = T/NJ[i];

1 auto yk = Ifevl(theta, y0O, h, N[i]);

12 double err = (yk — y_exact).norm() ;

13 std ::cout << std::setw(15) << N[i]

14 << std::setw(15) << err;

15 If(l > 0) {

16 std::cout << std::setw(15) << std::log2(err_old / err);

17 }

18 err_old = err;

19 std ::cout << std::endl;

A

End Problem 0.4

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

Problem 0.5: Polar decomposition of a matrix (10 pts)

This problem addresses a special matrix factorization and its numerical realization.

[This problem involves implementation in C++ |

The following result is obtained in linear algebra:
Theorem 0.0.29. Polar decomposition

Given M € R"", there is a symmetric positive semidefinite matrix A € IR"" and an orthogonal
matrix Q € IR™" such that

M= AQ. (0.0.30)

The matrix factorization (0.0.30) is called the polar decomposition of M.
(0.5.a) (4 pts) Give a proof of Thm. 0.0.29.

HINT 1 for (0.5.a): Use the singular value decomposition of M. _I

SOLUTION of (0.5.a):

[1 pts. for correct usage of SVD]

[1 pts. for proven symmetry of A]

[1 pts. for proven positive definiteness of A]
[1 pts. for proven orthogonality of Q]

Given M € R™", there always exists a singular value decomposition M = ULV ', where U, V € R"*"
are orthogonal and = € R™" is diagonal. Consider the property of orthogonal matrices U' U = 1.
Hence:

M=UZU' UV = (UZUT> (UVT> = AQ,

where we defined A := UZU' and Q := UV . We just need to prove that A is symmetric positive
semidefinite and Q is orthogonal.

, T , ,
For the first part, we have that AT = (UZU') = UZU' = A, hence A is symmetric. Furthermore,
the singular values of M are the eigenvalues of A (diagonal of X) and singular values are always
nonnegative. Hence, the eigenvalues of A are nonnegative and A must be positive semidefinite.

For the second part, we have that Q| = (UVT)T = (VT)TUT = (VT)_lU_1 = (UVT)_1 =

Q! which means that Q is also orthogonal.

(0.5.b) (5pts) [depends on (0.5.a)]

Using EIGEN’s numerical linear algebra facilities, write a C++ function

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

std: :pair<MatrixXd, MatrixXd> polar(const MatrixXds& M);

that computes the polar decomposition (0.0.30) of M, returning the tuple (A, Q).

HINT 1 for (0.5.b): You may use EIGEN’s methods for numerical singular value decomposition (SVD).
_I

HINT 2 for (0.5.b): A template for the function polar is provided within the file problem5. cpp. You
can compile the file with make problem5. The executable . /problem5 tests the routine polar.
Inmain (), for the specified matrix

1 2 3
M=(21 3],
6 3 11

the program computes and prints the matrices A and Q.

Example output:

Matrix A is:
2.11118 0.847555 2.97062

0.847555 1.31722 3.39803
2.97062 3.39803 12.0677

Matrix Q is:

-0.352666 0.910956 0.213977
0.872437 0.402776 -0.276811
0.338348 -0.0890599 0.936797

The function testPolar is also provided. This function uses an implementation of polar and checks
whether it returns a true polar decomposition. _

SOLUTION of (0.5.b):
[5 pts.]

C++11-code 0.0.31: Solution of Sub-problem (0.5.b).
| std :: pair<MatrixXd , MatrixXd> polar(const MatrixXd& M) {

3 assert(M.rows() == M.cols() && "M must be square!");

4 unsigned n = M.rows () ;

5 JacobiSVD<MatrixXd> svd (M, ComputeThinU | ComputeThinV) ;
6

7 VectorXd s = svd.singularValues () ;

8 MatrixXd S; S.setZero(s.size(),s.size());

9 S.diagonal() = s;

10 MatrixXd U = svd.matrixU () ;

1 MatrixXd V = svd.matrixV () ;

13 return std:: make_pair(U * S x U.transpose (), U x V.transpose());

; 22

NumCSE Examination, AT’16, Prof. Ralf Hiptmair (©SAM, ETH Zurich, 2016

(0.5.c) (1pts) [dependson (0.5.b)]

What is the asymptotic complexity of your implementation of polar for n — o0?

SOLUTION of (0.5.c):

[1 pts.] The most expensive step of a polar decomposition is to compute a singular value decomposi-
tion. For (n x n) square matrices, the complexity of an SVD is O (n?).

A

End Problem 0.5

; 23

	Problem 0.1: Estimating point locations from distances (prb:lsq-dist)
	Problem 0.2: Zero finding in two dimensions (prb:NewtonVector)
	Problem 0.3: Low rank approximation (prb:Rankk)
	Problem 0.4: Single step method (prb:ODE)
	Problem 0.5: Polar decomposition of a matrix (prb:Polar)

