
NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

ETH Lecture 401-0663-00L Numerical Methods for CSE

Main Examination

Prof. R. Hiptmair, SAM, ETH Zurich

January 26, 2017

Duration: 3h 20m (computer-based)

(Examination for Course at ETH Zurich in Autumn Term 2016)

Family name Grade

First name

Study program

Computer name

Legi no.

Date 26.01.2016

Points:

Task 1 2 3 4 5 Total

Max. pts. 18 14 19 23 10

1st Corr.

2nd Corr.

See next page for detailed instructions.

, 1

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Instructions:

• Fill in this cover sheet first.

• Always keep your Legi visible on the table.

• Keep your phones, tablets and computers turned off in your bag.

• Start each handwritten problem on a new sheet.

• Put your name on each sheet.

• Do not write with red/green/pencil.

• Write your solutions clearly and work carefully.

• Write all your solutions only in the folder questions!

• Any other location will not be backed-up and will be discarded.

• Files in resources may be overridden at any time.

• Make sure to regularly save your solutions.

• Time spent on restroom breaks is considered examination time.

• Never turn off or log off from your computer!

Instructions for coding problems:

• In the folder “~/questions” you will find the template files for the solution of the problems. You

can use these templates to write your solution.

• We provide a “CMake” file that automatically compiles all the templates. To generate a “Makefile”

for all problems, type “cmake .” in the folder “~/questions”. Compile your programs with

“make”.

• In order to compile and run the C++ code related to a single problem, like Problem 0.3, type “make

problem3”. Execute the program using “./problem3”.

• If you want to manually compile your code without CMake, use:

g++ −I . / −s td=c++11 −Wno−deprecated−dec l a ra t i ons \

−Wno−ignored−a t t r i b u t e s f i lename . cpp −Wno−misleading−i n d e n t a t i o n \

−Wno−unused−v a r i a b l e −o program_name

or

clang++ −I . / −s td=c++11 −Wno−deprecated−dec l a ra t i ons \

−Wno−ignored−a t t r i b u t e s f i lename . cpp −Wno−misleading−i n d e n t a t i o n \

−Wno−unused−v a r i a b l e −o program_name

We use the flags -Wno-deprecated-declarations, -Wno-ignored-attributes,

-Wno-misleading-indentation and -Wno-unused-variable to suppress some un-

wanted EIGEN warnings.

• For each problem requiring C++ implementation, a template file named problemX.cpp is pro-

vided (where X is the problem number). For your own convenience, there is a marker TODO in the

places where you are supposed to write your own code. All templates should compile even if left

unchanged.

, 2

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

prb:lsq-dist

Problem 0.1: Estimating point locations from distances (18 pts)

We consider a linear least squares problem from ➜Chapter 3.

[This problem involves implementation in C++]

Consider n > 2 points located on the real axis, the leftmost point situated at x1 := 0, the other points

at unknown locations xi ∈ R, i = 2, . . . , n with xi < xi+1, i = 1, . . . , n − 1. We measure the m :=

(n
2) =

n(n−1)
2 distances di,j := |xi − xj|, i, j ∈ 1, . . . , n, i > j. The distances are arranged in a vector

according to

d := [d2,1, d3,1, . . . , dn,1, d3,2, d4,2, . . . , dn,n−1]
⊤ ∈ R

m . (0.0.1) {\cpl

In absence of measurement errors, the point positions xi and the distances satisfy an overdetermined

linear system of equations

Ax = d , x = [x2, . . . , xn]
⊤ ∈ R

n−1 . (0.0.2) {\cpl

prb:lsq-dist:sp:1 (0.1.a) (2 pts) Show that the coefficient matrix/system matrix A ∈ R
m,n−1 from (

prb:lsq-dist:lsd:lseprb:lsq-dist:lsd:lse
0.0.2) has full rank.

SOLUTION of (0.1.a):

As in ➜Eq. (3.0.11), we find that

xi − xj = dij ,

1 ≤ j < i ≤ n .
↔

−1 1 0 . . . 0
−1 0 1 0

...
. . .

. . .

−1 . . . 0 1
0 −1 1 0 . . . 0

0 −1 0 1 0
...

...

0 −1 1 0

0 . . . 0 −1 1

x1

x2
...

xn

=

d2,1

d3,1
...

dn,1

d3,2

d4,2
...

d4,3
...

dn,n−1

. (0.0.3) {\cpl

[1 pts. for the correct system of eq. (at least the identity part)] Setting x1 := 0 amounts to dropping

the first column of the system matrix. The remaining matrix is the matrix A from (
prb:lsq-dist:lsd:lseprb:lsq-dist:lsd:lse
0.0.2), which is of the

form

A =

[

In−1

∗

]

∈ R
m,n−1 .

[1 pts. for argument] Since the top (n − 1)× (n − 1) block is the identity matrix, A must have full

rank.

N

, 3

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

prb:lsq-dist:sp:a (0.1.b) (4 pts) [depends on
prb:lsq-dist:sp:1prb:lsq-dist:sp:1
(0.1.a)]

Provide an implementation of a function

SparseMatrix<double> buildDistanceLSQMatrix(i n t n);

that initializes the system matrix A from (
prb:lsq-dist:lsd:lseprb:lsq-dist:lsd:lse
0.0.2). The function must be efficient for large n.

HINT 1 for (0.1.b): A template for the function buildDistanceLSQMatrix is provided within the

file problem1.cpp. You can compile the file with make problem1. The executable ./problem1

tests the routine buildDistanceLSQMatrix by printing the resulting matrix. y

SOLUTION of (0.1.b):

The matrix A is sparse with 2m − (n − 1) = (n − 1)2
<

n(n−1)2

2 non-zero entries. The signature of

the function buildDistanceLSQMatrix already imposes the usage of sparse matrix data formats.

There are two alternative methods that guarantee an efficient implementation, see ➜Section 2.7.3.

• Matrix assembly via intermediate triplet format:

1. [3 pts. for correct construction of triplet vectors] A vector of triplets is preallocated.

This is possible, because we know that A has a total of 2m − (n − 1) = (n − 1)2 non-zero

entries. The vector is then filled with triplets.

2. [1 pts. for correct construction of triplet vectors] Initialization via an intermediate triplet

(COO) format and EIGEN’s method setFromTriplets().

• [3 pts. for correct matrix construction] Direct entry specification via SparseMatrix<T>::insert

(also SparseMatrix<T>::coeffRef is accepted). [1 pts. for meaningful preallocation]

To avoid unnecessary memory reallocations, SparseMatrix<T>::reserve must be called

with an appropriate estimate.

cpp:givencode
C++11-code 0.0.4: Solution of Sub-problem (0.1.b).

2 SparseMatrix <double> bui ldDistanceLSQMatr ix (i n t n) {

3 SparseMatrix <double> A(n∗ (n−1) / 2 , n−1) ;

4

5 // Assembly

6 std : : vector <Tr ip le t <double>> t r i p l e t s ; // List of non-zeros
coefficients

7 t r i p l e t s . reserve ((n−1)∗ (n−1)) ; // Two non-zeros per row (at

most), first n − 1 rows only one entry

8 // -> (n − 1)2 total non-zero entries

9

10 // Loops over vertical blocks

11 i n t row = 0; // Current row counter

12 for (i n t i = 0 ; i < n−1; ++ i) { // Block with same "-1" column

13 for (i n t j = i ; j < n−1; ++ j) { // Loop over block

14 t r i p l e t s . push_back (Tr ip le t <double >(row , j , 1)) ;

15 i f (i > 0) { // Remove first column

16 t r i p l e t s . push_back (Tr ip le t <double >(row , i −1, −1)) ;

17 }

18 row++; // Next row

19 }

, 4

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

20 }

21

22 // Build matrix

23 A. setFromTriplets (t r i p l e t s . begin () , t r i p l e t s . end ()) ;

24

25 A. makeCompressed () ;

26 return A;

27 }

N

prb:lsq-dist:sp:b (0.1.c) (2 pts) [depends on
prb:lsq-dist:sp:1prb:lsq-dist:sp:1
(0.1.a)]

Give explicit formulas for the entries of the system matrix (coefficient matrix) M of the normal equations

corresponding to the overdetermined linear system (
prb:lsq-dist:lsd:lseprb:lsq-dist:lsd:lse
0.0.2).

SOLUTION of (0.1.c):

[1 pts. for off-diagonal entries] The entries of matrix M = A⊤A can be expressed as inner products

of two different columns of A:
(

A⊤A
)

i,j
= (A)⊤:,i(A):,j .

Two columns of A have both non-zero entries, ±1 of opposite sign, only in a single position, hence

(M)i,j = −1 for i 6= j. [1 pts. for diagonal entries] The diagonal entries of M are the squares of

the Euclidean norms of the columns of A. Every column of A has exactly n − 1 entries with value ±1,

which means (M)i,i = n − 1.

N

prb:lsq-dist:sp:2 (0.1.d) (3 pts) [depends on
prb:lsq-dist:sp:bprb:lsq-dist:sp:b
(0.1.c)]

Show that the system matrix M of the normal equations for the overdetermined linear system from

(
prb:lsq-dist:lsd:lseprb:lsq-dist:lsd:lse
0.0.2), as found in Sub-problem (0.1.c), can be written as a rank-1 perturbation of a diagonal matrix.

SOLUTION of (0.1.d):

As

(M)i,j =

{

−1 , if i 6= j ,

n − 1 , if i = j
, 1 ≤ i, j ≤ n − 1 , (0.0.5) {\cpl

we have [1 pts. for correct matrix] [1 pts. for correct vector(s) and for argument that modification

has rank 1] that

M = nIn−1 − 1 · 1⊤ , 1 = [1, . . . , 1]⊤ ∈ R
n−1 . (0.0.6) {\cpl

[1 pts. for correct form of rank-1 perturbation] The tensor product matrix 1 · 1⊤ has rank 1.

, 5

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

N

prb:lsq-dist:sp:impl (0.1.e) (6 pts) [depends on
prb:lsq-dist:sp:2prb:lsq-dist:sp:2
(0.1.d)]

Implement an efficient C++ function

VectorXd estimatePointsPositions(const MatrixXd& D);

that computes a least squares estimate for x2, . . . , xn by solving the normal equations for (
prb:lsq-dist:lsd:lseprb:lsq-dist:lsd:lse
0.0.2) and

returns the column vector x := [x2, . . . , xn]
⊤

.

The distances di,j are passed as entries of an n × n-matrix D according to

(D)i,j =

di,j , if i > j ,

0 , if i = j ,

−dj,i , if i < j .

Use the observation made in Sub-problem (0.1.d).

HINT 1 for (0.1.e): A template for the function estimatePointsPositions is provided in the

file problem1.cpp. You can compile the file with make problem1. The generated executable

./problem1 tests the routine estimatePointsPositions. The program prints a test matrix D.

Then, the program prints the vector x obtained using the function estimatePointsPositions on

the measured distances given by D.

Example output:

The matrix D is:
0 -2.1 -3 -4.2 -5

2.1 0 -0.9 -2.2 -3.3

3 0.9 0 -1.3 -1.1

4.2 2.2 1.3 0 -1.1

5 3.3 1.1 1.1 0

The positions [x_2, ..., x_n] obtained from the LSQ system are:

2

3.16

4.18

4.96 y

SOLUTION of (0.1.e):

We rely on the techniques introduced in ➜§ 2.6.13 and apply the [1 pts. for stating the correct SMW

formula and realize it can be used] Sherman-Morrison-Woodbury formula from ➜Lemma 2.6.22 to

the normal equations
(

nIn−1 − 1 · 1⊤
)

x = A⊤d .

Then ➜Eq. (2.6.23) yields

x = 1
n b +

1
n 1 · 1⊤b

n − 1⊤1
= 1

n

(

b + 1 · 1⊤b
)

, b := A⊤d . (0.0.7) {\cpl

Note that the entries of the vector b ∈ R
n−1 can be computed by summing the entries of the last n − 1

rows of D (the intermediate points of the distances cancel each other out) [2 pts. correct r.h.s., also

valid to use matrix-vector multiplication]. [3 pts. for correct application of SMW, including matrix

inversion with 1
n]

, 6

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

cpp:givencode
C++11-code 0.0.8: Solution of Sub-problem (0.1.e).

2 VectorXd es t ima tePo in t sPos i t i ons (const MatrixXd& D) {

3

4 VectorXd x ;

5

6 // Vector of sum of columns of A

7 ArrayXd b = D. rowwise () .sum () . t a i l (D. cols ()−1) ;

8 // Vector 1

9 ArrayXd one = ArrayXd : : Constant (D. cols () −1, 1) ;

10 // Apply SMW formula

11 x = (b + one ∗ b .sum ()) / D. cols () ;

12

13 return x ;

14 }

N

prb:lsq-dist:sp:6 (0.1.f) (1 pts) [depends on
prb:lsq-dist:sp:implprb:lsq-dist:sp:impl
(0.1.e)]

What is the asymptotic complexity of the function estimatePointsPositions implemented in

Sub-problem (0.1.e) for n → ∞?

SOLUTION of (0.1.f):

An implementation of (
prb:lsq-dist:lsd:minvprb:lsq-dist:lsd:minv
0.0.7) involves SAXPY operations and inner products for vectors of length n − 1,

all of which can be carried out with asymptotic complexity O(n).

[1 pts. for noticing that complexity is dominated by r.h.s. and specify it correctly] However, form-

ing the vector b has to access all distances and involves computational cost O(n2), which dominates

the total asymptotic complexity.

N

End Problem 0.1
prb:NewtonVector

Problem 0.2: Zero finding in two dimensions (14 pts)

This problem studies Newton’s method for a 2 × 2 non-linear system of equations.

[This problem involves implementation in C++]

Let f be a strictly increasing, positive, continuously differentiable function f ∈ C1(R), f (t) > 0.

We seek two real numbers a, b ∈ R such thatprb:NewtonVector:eq:system
∫ b

a
f (t)dt = a + b , (0.0.9a) {\cpl

∫ b

a
e f (t) dt = 1 + a2 + b2 . (0.0.9b) {\cpl

, 7

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

prb:NewtonVector:sp:1 (0.2.a) (2 pts) Eq. (0.0.9) is a nonlinear system of equations which can be rewritten as

F(x) = 0

Give an explicit formula for F(x) still involving the generic function f : R → R. What are the compo-

nents of x?

SOLUTION of (0.2.a):

[0.5 pts. for formula for x]]

[1.5 pts. for formula for F]]

We have x = [a, b]⊤ and

F :

R
2 → R

2

[

x1

x2

]

→

(

x2
∫

x1

f (t)dt

)

− x1 − x2

(

x2
∫

x1

e f (t) dt

)

− 1 − x2
1 − x2

2

N

prb:NewtonVector:sp:2 (0.2.b) (4 pts) [depends on Sub-problem (0.2.a)]

State the Newton’s iteration for solving Eq. (0.0.9) as explicitly as possible.

HINT 1 for (0.2.b): The explicit formula for the inverse of a 2 × 2 matrix is

A =

[

a b
c d

]

=⇒ A−1 =
1

ad − bc

[

d −b
−c a

]

, if ad − bc 6= 0 .

y

SOLUTION of (0.2.b):

[2 pts. for Jacobian of F]]

[2 pts. for inverse of Jacobian]]

Using the fundamental theorem of calculus d
dx

∫ x
a g(t)dt = g(x), we find for the Jacobian of F:

D F(x) =

[

− f (x1)− 1 f (x2)− 1

−e f (x1) − 2x1 e f (x2) − 2x2

]

.

Using this and the formula for the inverse of a regular 2 × 2-matrix, we can write the Newton iteration

, 8

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

as

x(k+1) =x(k)−

1

(− f (x1)− 1)
(

e f (x2) − 2x2

)

− (f (x2)− 1)
(

−e f (x1) − 2x1

)

[

e f (x2) − 2x2 − f (x2) + 1

e f (x1) + 2x1 − f (x1)− 1

]

·

(

x2
∫

x1

f (t)dt

)

− x1 − x2

(

x2
∫

x1

e f (t) dt

)

− 1 − x2
1 − x2

2

.

N

prb:NewtonVector:sp:3 (0.2.c) (8 pts) [depends on Sub-problem (0.2.b)]

Implement a C++ function

template <c lass Function, c lass QuadRule>

std::pair<double, double> getIntv(const Function& f,

const QuadRule& qr,

double atol, double rtol,

unsigned maxit = 10);

that solves Eq. (0.0.9) by means of Newton’s method with initial guess a(0) = 0, b(0) = 1.

The argument qr provides a quadrature rule on [0, 1] in terms of weights and nodes. Use it for the

evaluation of all occurring definite integrals.

Use a correction-based termination criterion controlled by relative tolerance rtol and absolute toler-

ance atol. The variable maxit specifies the maximum number of iterations.

HINT 1 for (0.2.c): Recall the definition of the QuadRule class

s t r u c t QuadRule {

VectorXd nodes;

VectorXd weights;

};

For numerical quadrature based on the quadrature rule QuadRule, you may implement an auxiliary

function

template <c lass Function, c lass QuadRule>

double integrate(const Function& f, const QuadRule& qr,

const Vector2d & x);

which takes the integration bounds as argument vector x. y

HINT 2 for (0.2.c): A template for the functions getIntv and integrate is provided within the file

problem2.cpp. You can compile the file with make problem2. The executable ./problem2

tests the routine getIntv by printing the approximate (a, b) (for a given function f (t) := t) and the

reference solution. y

SOLUTION of (0.2.c):

, 9

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

[2 pts. for correct function integrate or an equivalent correct integration]

[2 pts. for correct transformation of QuadRule on [0, 1]]

[4 pts. for correct function getIntv]

For the correction-based a posteriori termination criterion, look at ➜Section 8.4.1.

cpp:NewtonVector-31
C++11-code 0.0.10: Function integrate.

2 template <class Funct ion , class QuadRule>

3 double i n t e g r a t e (const Funct ion& f , const QuadRule& qr , const

Vector2d & x) {

4

5 double I = 0 ;

6

7 VectorXd nodes = qr . nodes ;

8 VectorXd weights = qr . weights ;

9 assert (nodes . size () == weights . size () &&

10 " Nodes and w e i g h t s o f QuadRule have d i f f e r e n t l e n g t h s ") ;

11 for (unsigned i =0; i <nodes . size () ; ++ i) {

12 double t = (x (1) +x (0)) / 2 . + (x (1)−x (0)) ∗ (nodes (i) −0.5) ;

13 // Adjust nodes of [0, 1]-QuadRule to domain [x1, x2].

14

15 I += f (t) ∗ weights (i) ;

16 }

17

18 I ∗= x (1)−x (0) ; // Adjust weights of [0, 1]-QuadRule to domain

[x1, x2].
19

20 return I ;

21 }

cpp:NewtonVector-32
C++11-code 0.0.11: Function getIntv.

2 template <class Funct ion , class QuadRule>

3 std : : pa i r <double , double> g e t I n t v (const Funct ion& f , const QuadRule&

qr ,

4 double a to l , double r t o l ,

5 unsigned maxit =10) {

6 std : : pa i r <double , double> x_end ;

7

8 Vector2d x ;

9 x << 0 , 1 ;

10

11 Vector2d x_new = x ;

12 auto exp_f = [&] (double t) { return std : : exp (f (t)) ; } ;

13

14 for (unsigned i =0; i <maxi t ; ++ i) {

15

16 // Compute inverse of Jacobian.

17 Matrix2d invDF ;

, 10

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

18 invDF << exp_f (x (1))−2∗x (1) , −f (x (1)) +1 ,

19 exp_f (x (0)) +2∗x (0) , −f (x (0))−1;

20 invDF /= (− f (x (0))−1)∗ (exp_f (x (1))−2∗x (1)) −
(f (x (1))−1)∗(−exp_f (x (0))−2∗x (0)) ;

21

22 // Evaluate F(x(k)).

23 Vector2d F ;

24 F << i n t e g r a t e (f , qr , x) − (x (0) +x (1)) ,

25 i n t e g r a t e (exp_f , qr , x) − (1+x (0) ∗x (0) +x (1) ∗x (1)) ;

26

27 // Newton’s iteration.

28 x_new = x − invDF∗F ;

29

30 // Correction-based termination (relative and absolute).

31 double r = (x_new − x) . norm () ;

32 i f (r < a t o l | | r < r t o l ∗ x_new . norm ()) {

33 break ;

34 }

35

36 x = x_new ;

37 }

38

39 x_end = { x_new (0) , x_new (1) } ;

40

41 return x_end ;

42 }

N

End Problem 0.2
prb:Rankk

Problem 0.3: Low rank approximation (19 pts)

This problem discusses a compressed model for a filter.

[This problem involves implementation in C++]

A causal, linear, time-invariant and finite (LT-FIR) channel has the impulse response

(0, . . . , 0, h0, . . . , hn−1, 0, . . . , 0) (0.0.12)

of duration (n − 1)∆t. When we feed into it a signal x := (0, . . . , 0, x0, . . . , xn−1, 0, . . . , 0) of duration

(n − 1)∆t, the filter produces an output signal y := (0, . . . , 0, y0, . . . , y2n−2, 0, . . . , 0) of duration (2n −
2)∆t. The linear mapping

l :

{

R
n → R

2n−1

(

xj

)n−1

j=0
→

(

yj

)2n−2

j=0

can be represented by the matrix-vector product
(

yj

)2n−2

j=0
= C

(

xj

)n−1

j=0
, (0.0.13) {\cpl

, 11

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

which can be expressed as the following matrix×vector multiplication, see ➜Rem. 4.1.17:

y0
...

...

y2n−2

=

h0 0 0 · · · 0
h1 h0 0 · · · 0
...

. . .
. . .

...

hn−1 hn−2 · · · h1 h0

0 hn−1
. . . h1

...
. . .

. . .
...

0 · · · · · · 0 hn−1

x0
...

...

xn−1

.

prb:Rankk:sp:0 (0.3.a) (2 pts)

Using EIGEN, implement a C++ function with signature

MatrixXd buildLTFIRMatrix(const VectorXd &h);

that initializes the matrix C from (
prb:Rankk:fc:1prb:Rankk:fc:1
0.0.13). The vector h specifies the entries of C.

HINT 1 for (0.3.a): You will find a template for the function buildLTFIRMatrix within the file

problem3.cpp. You can compile the file with make problem3. The executable ./problem3

tests the routine buildLTFIRMatrix by printing the resulting matrix. The correct matrix (for n = 6)

is reported as a comment in the code (within main of problem3.cpp). y

SOLUTION of (0.3.a):

[2 pts. Many ways to do this]

cpp:Rankk-10
C++11-code 0.0.14: Function buildDistanceLSQMatrix.

2 MatrixXd bui ldLTFIRMatr ix (const VectorXd & h)

3 {

4 // Initialization

5 unsigned i n t n = h . size () ;

6 MatrixXd C(2∗n−1, n) ;

7

8 C. setZero () ;

9

10 for (unsigned i =0; i <n ; ++ i) {

11 C. col (i) . segment (i , n) = h ;

12 }

13

14 return C;

15 }

N

Now the goal is to implement a compressed model for the channel. Consider the class

, 12

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

c lass LTFIR_lowrank {

pub l i c:

LTFIR_lowrank(const VectorXd& h, unsigned k);

VectorXd opera tor()(const VectorXd& x) const;

p r i v a t e:

// TODO: private members of class LTFIR_lowrank

};

whose evaluation operator realizes y = C̃x, where C̃ ∈ R
2n−1,n is the rank-k best approximation of C,

and k ∈ {1, . . . , n} is passed as the second argument of the constructor.

prb:Rankk:sp:1 (0.3.b) (9 pts) [depends on Sub-problem (0.3.a)]

Implement both member funcions of the class LTFIR_lowrank such that a call of the evaluation

operator involves as little computational effort as possible (asymptotically, for n → ∞).

HINT 1 for (0.3.b): You may use the function buildLTFIRMatrix from Sub-problem (0.3.a). y

HINT 2 for (0.3.b): A template for the class LTFIR_lowrank is provided within the file problem3.cpp.

You can compile the file with make problem3. The executable ./problem3 tests the routine

operator() by printing the resulting vector y = C̃x for specific inputs h, c and k. The correct re-

sult is reported as a comment in the code. y

SOLUTION of (0.3.b):

[6 pts. for efficient constructor and private members. Economical SVD should be used.]

[3 pts. for efficient operator()]

cpp:Rankk-11
C++11-code 0.0.15: Constructor of class LTFIR_lowrank.

2 LTFIR_lowrank (const VectorXd& h , unsigned i n t k) {

3 MatrixXd C = bui ldLTFIRMatr ix (h) ;

4

5 JacobiSVD<MatrixXd> svd (C, ComputeThinU | ComputeThinV) ;

6 // With Eigen::svd you can ask for thin U or V to be
computed.

7 // In case of a rectangular m × n matrix,

8 // with j the smaller value among m and n,

9 // there can only be at most j singular values.

10 // The remaining columns of U and V do not correspond

11 // to actual singular vectors and are not computed in thin
format.

12

13 VectorXd s = svd . s ingu la rVa lues () ;

14 s . conservat iveResize (k) ;

15 auto S = s . asDiagonal () ; // kxk

16

17 MatrixXd U = svd . matrixU () ;

18 MatrixXd V = svd . matrixV () ;

19 U_ = U. l e f tCols (k) ∗ S; // nxk

20 // Already optimised product between dense and diagonal
matrix

21 Vt_ = V. l e f tCols (k) . transpose () ; // kxn

22 }

, 13

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

cpp:Rankk-12
C++11-code 0.0.16: Function operator().

2 VectorXd operator () (const VectorXd& x) const {

3 VectorXd y ;

4

5 assert (x . size () == Vt_ . cols () &&

6 " x must have same l e n g t h o f h ") ;

7

8 VectorXd tmp = Vt_ ∗ x ;

9 y = U_ ∗ tmp ;

10 // Complexity is O(kn + nk) = O(nk).

11 // Given precomputed Ck = U · Vt_,

12 // complexity would have been O(nn).

13 return y ;

14 }

cpp:Rankk-13
C++11-code 0.0.17: Private members of class LTFIR_lowrank.

2 MatrixXd U_; // nxk

3 MatrixXd Vt_ ; // kxn

N

prb:Rankk:sp:2 (0.3.c) (2 pts) [depends on Sub-problem (0.3.b)]

What is the asymptotic complexity of your implementation of the constructor and the evaluation operator

for n → ∞ and k → ∞ (separately, assuming k ≤ n)?

SOLUTION of (0.3.c):

[1 pts. for complexity of SVD]

[1 pts. for complexity of operator()]

The rank-k approximation performed by the constructor involves a singular value decomposition. The

complexity of an SVD is O(n3).

The evaluation operator carries out two matrix-vector multiplications, by k × n matrix V⊤ and (2n −
1)× k matrix U. The complexity is therefore O(kn + nk) = O(nk). On the other hand, given the full

(2n − 1)× n approximation matrix C̃, the complexity would have been O(n2).

N

prb:Rankk:sp:3 (0.3.d) (3 pts)

Decide which of the following properties does the new filter (realized by the evaluation operator of

LTFIR_lowrank) still enjoy for any
(

hj

)n−1

j=0
: linearity, causality, and finiteness.

SOLUTION of (0.3.d):

, 14

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Linearity [1 pts.] Yes: it is ultimately a matrix-vector multiplication.

Causality [1 pts.] Yes: yj = 0 ∀j < 0.

Finiteness [1 pts.] Yes: the number of nonzero yj is up to 2n − 1.

N

prb:Rankk:sp:4 (0.3.e) (3 pts)

Another way to build a compressed model of the channel is frequency filtering, which is implemented in

the following LTFIR_freq class.

cpp:Rankk-41
C++11-code 0.0.18: Constructor of class LTFIR_freq.

2 LTFIR_freq (const VectorXd& h , unsigned k) {

3 n_ = h . size () ;

4 k_ = k ;

5

6 VectorXd h_ = h ;

h_ . conservat iveRes izeL ike (VectorXd : : Zero (2∗n_−1)) ;

7

8 // Forward DFT

9 FFT<double> f f t ;

10 ch_ = f f t . fwd (h_) ;

11 }

cpp:Rankk-42
C++11-code 0.0.19: Function operator().

2 VectorXd operator () (const VectorXd& x) const {

3 assert (x . size () == n_ && " x must have same l e n g t h o f h ") ;

4

5 VectorXd x_ = x ;

x_ . conservat iveRes izeL ike (VectorXd : : Zero (2∗n_−1)) ;

6 // Forward DFT

7 FFT<double> f f t ;

8 VectorXcd cx = f f t . fwd (x_) ;

9 VectorXcd c = ch_ . cwiseProduct (cx) ;

10 // Set high frequency coefficients to zero

11 VectorXcd clow = c ;

12 for (i n t j=−k_ ; j <=+k_ ; ++ j) clow (n_+ j) = 0 ;

13 // Inverse DFT

14 return f f t . i nv (clow) . rea l () ;

15 }

cpp:Rankk-43
C++11-code 0.0.20: Private members of class LTFIR_freq.

2 i n t n_ ;

3 i n t k_ ;

4 VectorXcd ch_ ;

, 15

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

What is the asymptotic complexity of the evaluation operator operator() for n → ∞?

You can find the implementation of the class LTFIR_freq in the file problem3.cpp.

SOLUTION of (0.3.e):

[3 pts.] The most expensive steps of the implemented low-pass filter are the Fourier transforms. For

n-dimensional input vectors x, the complexity of a fast Fourier transform is O(n log n).

N

End Problem 0.3
prb:ODE

Problem 0.4: Single step method (23 pts)

This problem concerns numerical integration ➜Chapter 11 with single step methods.

[This problem involves implementation in C++]

We consider the initial value problem for y(t) := [y1(t), y2(t)]
⊤

:

ẏ =

[

−θ(y2)
y1

]

, θ ∈ C1(R) , y(0) =

[

0
y0

]

. (0.0.21) {\cpl

prb:ODE:sp:1 (0.4.a) (2 pts)

Denote by ξ ∈ C2(R) the principal of θ, that is ξ ′ = θ.

Show that I(y(t)) = const. for I(z) = 1
2 z2

1 + ξ(z2), z = [z1, z2]
⊤ and any solution t 7→ y(t) of

(
prb:ODE:eq:IVPprb:ODE:eq:IVP
0.0.21).

HINT 1 for (0.4.a): What is an equivalent condition for I(y(t)) = const.? y

SOLUTION of (0.4.a):

[2 pts.] Consider I(y) = 1
2 y2

1 + ξ(y2). We have that I(y) = const ⇐⇒ d
dt I(y(t)) = 0. By the

scalar chain rule and the product rule we can conclude:

I′(y) = y1ẏ1 + ξ ′(y2)ẏ2 = ẏ2ẏ1 + θ(y2)ẏ2 = ẏ2ẏ1 − ẏ1ẏ2 = 0 .

N

prb:ODE:sp:2 (0.4.b) (4 pts)

Give the concrete defining equation for the discrete evolution Ψ of the implicit midpoint rule ➜Eq. (11.2.18)

for (
prb:ODE:eq:IVPprb:ODE:eq:IVP
0.0.21).

SOLUTION of (0.4.b):

, 16

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

[4 pts.] The discrete evolution operator Ψ : R × R
2 → R

2 according to ➜§ 11.3.1 is defined as

the solution operator of the following non-linear system of equations: for a generic autonomous ODE

ẏ = f(y) it reads

Ψ(h, y) := z: z = y + hf
(

1
2(y + z)

)

and, concretely, for (
prb:ODE:eq:IVPprb:ODE:eq:IVP
0.0.21),

Ψ(h, y) := z =

[

z1

z2

]

such that z = y + h

[

−θ
(

1
2(y2 + z2)

)

1
2(y1 + z1)

]

, y ∈ R
2 . (0.0.22) {\cpl

For sufficiently small h there is a unique solution z = z(h, y).

N

prb:ODE:sp:2a (0.4.c) (5 pts) [depends on Sub-problem (0.4.b)]

State the explicit formulas for the Newton’s iteration that can be used to approximately evaluate the

discrete evolution of the implicit midpoint rule for (
prb:ODE:eq:IVPprb:ODE:eq:IVP
0.0.21). Specify a meaningful initial value in the case

of small time steps.

HINT 1 for (0.4.c): The explicit formula for the inverse of a 2 × 2 matrix is

A =

[

a b
c d

]

=⇒ A−1 =
1

ad − bc

[

d −b
−c a

]

, if ad − bc 6= 0 .

y

SOLUTION of (0.4.c):

[1 pts. for functional F. Note that there are several ways to recast the implicit midpoint rule as a

non-linear equations, among them also the stage form discussed in class.]

[1 pts. for Jacobian of F]

[1 pts. for inverse of Jacobian]

[1 pts. for complete Newton’s iteration]

[1 pts. for initial guess]

The non-linear 2 × 2 system of equations (
prb:ODE:sw:2prb:ODE:sw:2
0.0.22) can be recast into the standard form

F(z) = 0 , F(z) := z − y − h

[

−θ
(

1
2(y2 + z2)

)

1
2(y1 + z1)

]

. (0.0.23) {\cpl

For the Jacobian of F we find

D F(z) =

[

1 1
2 hθ′

(

1
2(y2 + z2)

)

− 1
2 h 1

]

. (0.0.24)

Using the formula for the inverse of a 2 × 2-matrix, the Newton’s iteration reads

z(k+1) = z(k) −
1

1 + 1
4 h2θ′

(

1
2

(

y2 + z
(k)
2

))

[

1 − 1
2 hθ′

(

1
2

(

y2 + z
(k)
2

))

1
2 h 1

]

z
(k)
1 − y1 + hθ

(

1
2

(

y2 + z
(k)
2

))

z
(k)
2 − y2 −

1
2 h
(

y1 + z
(k)
1

)

 .

(0.0.25) {\cpl

, 17

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

For small h we expect Ψ(h, y) ≈ y. Hence z(0) := y is the natural initial guess for the Newton’s

iteration.

Since the implicit midpoint rule is a Runge-Kutta single step method, it can also be cast in stage form,

see ➜Rem. 12.3.21. Then one can use Newton’s method to solve for the stages gi, see ➜Rem. 12.3.24.

N

prb:ODE:sp:3 (0.4.d) (4 pts) [depends on Sub-problem (0.4.c)]

Implement a function

template <c lass Function, c lass Jacobian>

Vector2d psi(const Function& theta, const Jacobian& theta_d,

double h, const Vector2d& y)

that approximately realizes the discrete evolution operator of the implicit midpoint rule for (
prb:ODE:eq:IVPprb:ODE:eq:IVP
0.0.21) using,

internally, two Newton’s steps. The parameter h specifies the step size. The variable theta resp.

theta_d represent the function θ and its derivative θ′. The vector y passes the value y at the previous

step.

HINT 1 for (0.4.d): A template for the function psi is provided within the file problem4.cpp. You

can compile the file with make problem4. The executable ./problem4 tests the routine psi by

comparing the discrete evolution for θ(ξ) = eξ with a reference solution. The test performs a single

evolution step of size h = 0.1 starting from the initial data y(0). y

SOLUTION of (0.4.d):

[4 pts.]

cpp:SingleStep-2
C++11-code 0.0.26: Solution of

prb:ODE:sp:3prb:ODE:sp:3
(0.4.d).

2 template <typename Functor , typename Jacobian >

3 Vector2d ps i (Functor& theta , Jacobian& theta_d ,

4 double h , const Vector2d& y) {

5 Vector2d z ;

6 z = y ;

7

8 for (unsigned i =0; i <2; ++ i) {

9

10 Matrix2d invDF ;

11 invDF << 1 . , −0.5∗h∗ theta_d (0 . 5∗ (y (1) +z (1))) ,

12 0.5∗h , 1 . ;

13 invDF /= 1 + 0.25∗h∗h∗ theta_d (0 . 5∗ (y (1) +z (1))) ;

14

15 Vector2d F ;

16 F << z (0) − y (0) + h∗ t he ta (0 . 5∗ (y (1) +z (1))) ,

17 z (1) − y (1) − 0.5∗h∗ (y (0) +z (0)) ;

18

19 z = z − invDF∗F ;

, 18

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

20 }

21 return z ;

22 }

N

prb:ODE:sp:4 (0.4.e) (3 pts) The following function lfevl implements an explicit Runge-Kutta single step method

for Eq. (0.0.21) and for some (unknown) smooth function θ (passed as theta). The code applies a

Runge-Kutta method on N equidistant steps of size h, starting from the initial value y0:= y(0).

cpp:SingleStep-5
C++11-code 0.0.27: Function lfevl.

2 template <typename Funct ion >

3 Vector2d l f e v l (const Funct ion& theta , Vector2d y0 ,

4 double h , unsigned i n t N) {

5 auto f = [& the ta] (const Vector2d& y) −> Vector2d {

6 Vector2d y_dot ;

7 y_dot << −t he ta (y (1)) , y (0) ;

8 return y_dot ;

9 } ;

10 Vector2d yk = y0 ;

11 for (unsigned k =0; k < N; ++k) {

12 Vector2d k1 = f (yk) ;

13 Vector2d k2 = f (yk + h / 2 .∗ k1) ;

14 Vector2d k3 = f (yk − h∗k1+ 2.∗h∗k2) ;

15

16 yk += h / 6 .∗ k1 + 2.∗h / 3 .∗ k2 + h / 6 .∗ k3 ;

17 }

18 return yk ;

19 }

Write down the Butcher scheme for this method.

SOLUTION of (0.4.e):

[3 pts.] The code closely follows the structure of the increment eqations from ➜Def. 11.4.9 and one

can simply read off the coefficients.

0 0 0 0
1
2

1
2 0 0

1 −1 2 0
1
6

2
3

1
6

N

prb:ODE:sp:5 (0.4.f) (5 pts) [depends on Sub-problem (0.4.e)]

, 19

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Consider the C++ function lfevl of Sub-problem (0.4.e) and let θ(ξ) = eξ and y(0) = [0, 1]⊤.

Empirically determine the order of convergence of the single step method implemented by lfevl by

studying the errors of the numerical solutions at the final time T = 10 and their dependence on the

number N of equidistant steps of the single-step method.

HINT 1 for (0.4.f): Use suitable sequences of numbers of steps N ranging between 50 and 2 · 104. y

HINT 2 for (0.4.f): Implement your code in the main function of the file problem4.cpp. You can

compile the file with make problem4. The executable ./problem4 should print the error and the

estimated order of convergence of lfevl, for every value of N.

y

SOLUTION of (0.4.f):

The empiric order of the method is 3. The smartest choice of a sequence of numbers of steps is

geometric progression, doubling N in turn, e.g., N = 26, . . . , 214.

[4 pts. for correct implementation]

[1 pts. for correct order of convergence]

cpp:SingleStep-4
C++11-code 0.0.28: Solution of

prb:ODE:sp:5prb:ODE:sp:5
(0.4.f).

2 // Vector of number of steps (each entry is twice the previous
entry).

3 std : : vector <unsigned> N = {128 , 256 , 512 , 1024 , 2048 , 4096 ,

8192 , 16384};

4 std : : cout << std : : setw (15) << "N"

5 << std : : setw (15) << " e r r o r "

6 << std : : setw (15) << " r a t e "

7 << std : : endl ;

8 double e r r_o ld ;

9 for (unsigned i n t i =0; i < N. size () ; ++ i) {

10 double h = T /N[i] ;

11 auto yk = l f e v l (theta , y0 , h , N[i]) ;

12 double e r r = (yk − y_exact) . norm () ;

13 std : : cout << std : : setw (15) << N[i]

14 << std : : setw (15) << e r r ;

15 i f (i > 0) {

16 std : : cout << std : : setw (15) << std : : log2 (e r r_o ld / e r r) ;

17 }

18 e r r_o ld = e r r ;

19 std : : cout << std : : endl ;

20 }

N

End Problem 0.4
prb:Polar

, 20

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

Problem 0.5: Polar decomposition of a matrix (10 pts)

This problem addresses a special matrix factorization and its numerical realization.

[This problem involves implementation in C++]

The following result is obtained in linear algebra:

thm:polardecompTheorem 0.0.29. Polar decomposition

T:thm:polardecomp
Given M ∈ R

n,n, there is a symmetric positive semidefinite matrix A ∈ R
n,n and an orthogonal

matrix Q ∈ R
n,n such that

M = AQ . (0.0.30) {\cpl :pol:1}

The matrix factorization (
prb:Polar:pol:1prb:Polar:pol:1
0.0.30) is called the polar decomposition of M.

prb:Polar:sp:1 (0.5.a) (4 pts) Give a proof of Thm. 0.0.29.

HINT 1 for (0.5.a): Use the singular value decomposition of M. y

SOLUTION of (0.5.a):

[1 pts. for correct usage of SVD]

[1 pts. for proven symmetry of A]

[1 pts. for proven positive definiteness of A]

[1 pts. for proven orthogonality of Q]

Given M ∈ R
n,n, there always exists a singular value decomposition M = UΣV⊤, where U, V ∈ R

n,n

are orthogonal and Σ ∈ R
n,n is diagonal. Consider the property of orthogonal matrices U⊤U = I.

Hence:

M = UΣU⊤UV⊤ =
(

UΣU⊤
)(

UV⊤
)

≡ AQ ,

where we defined A := UΣU⊤ and Q := UV⊤. We just need to prove that A is symmetric positive

semidefinite and Q is orthogonal.

For the first part, we have that A⊤ =
(

UΣU⊤
)⊤

= UΣU⊤ = A, hence A is symmetric. Furthermore,

the singular values of M are the eigenvalues of A (diagonal of Σ) and singular values are always

nonnegative. Hence, the eigenvalues of A are nonnegative and A must be positive semidefinite.

For the second part, we have that Q⊤ =
(

UV⊤
)⊤

=
(

V⊤
)⊤

U⊤ =
(

V⊤
)−1

U−1 =
(

UV⊤
)−1

=

Q−1, which means that Q is also orthogonal.

N

prb:Polar:sp:2 (0.5.b) (5 pts) [depends on
prb:Polar:sp:1prb:Polar:sp:1
(0.5.a)]

Using EIGEN’s numerical linear algebra facilities, write a C++ function

, 21

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

std::pair<MatrixXd, MatrixXd> polar(const MatrixXd& M);

that computes the polar decomposition (
prb:Polar:pol:1prb:Polar:pol:1
0.0.30) of M, returning the tuple (A, Q).

HINT 1 for (0.5.b): You may use EIGEN’s methods for numerical singular value decomposition (SVD).

y

HINT 2 for (0.5.b): A template for the function polar is provided within the file problem5.cpp. You

can compile the file with make problem5. The executable ./problem5 tests the routine polar.

In main(), for the specified matrix

M =

1 2 3
2 1 3
6 3 11

 ,

the program computes and prints the matrices A and Q.

Example output:

Matrix A is:
2.11118 0.847555 2.97062

0.847555 1.31722 3.39803

2.97062 3.39803 12.0677

Matrix Q is:
-0.352666 0.910956 0.213977

0.872437 0.402776 -0.276811

0.338348 -0.0890599 0.936797

The function testPolar is also provided. This function uses an implementation of polar and checks

whether it returns a true polar decomposition. y

SOLUTION of (0.5.b):

[5 pts.]

cpp:Polar-2
C++11-code 0.0.31: Solution of Sub-problem (0.5.b).

2 std : : pa i r <MatrixXd , MatrixXd> po la r (const MatrixXd& M) {

3 assert (M. rows () == M. cols () && "M must be square ! ") ;

4 unsigned n = M. rows () ;

5 JacobiSVD<MatrixXd> svd (M, ComputeThinU | ComputeThinV) ;

6

7 VectorXd s = svd . s ingu la rVa lues () ;

8 MatrixXd S; S . setZero (s . size () , s . size ()) ;

9 S. diagonal () = s ;

10 MatrixXd U = svd . matrixU () ;

11 MatrixXd V = svd . matrixV () ;

12

13 return std : : make_pair (U ∗ S ∗ U. transpose () , U ∗ V. transpose ()) ;

14 }

N

, 22

NumCSE Examination, AT’16, Prof. Ralf Hiptmair c©SAM, ETH Zurich, 2016

prb:Polar:sp:3 (0.5.c) (1 pts) [depends on
prb:Polar:sp:2prb:Polar:sp:2
(0.5.b)]

What is the asymptotic complexity of your implementation of polar for n → ∞?

SOLUTION of (0.5.c):

[1 pts.] The most expensive step of a polar decomposition is to compute a singular value decomposi-

tion. For (n × n) square matrices, the complexity of an SVD is O(n3).

N

End Problem 0.5

, 23

	Problem 0.1: Estimating point locations from distances (prb:lsq-dist)
	Problem 0.2: Zero finding in two dimensions (prb:NewtonVector)
	Problem 0.3: Low rank approximation (prb:Rankk)
	Problem 0.4: Single step method (prb:ODE)
	Problem 0.5: Polar decomposition of a matrix (prb:Polar)

