Referring to the cubic spline computation:
We have 2 pieces of information from the interpolating conditions:
(1) $\quad \delta_{j}\left(t_{j-1}\right)=\tilde{a}_{j}=y_{j-1}$
\rightarrow this determines \widetilde{g}_{j}
(2) We also have $s_{j}\left(t_{j}\right)=y_{j}$
and also $\delta_{j}\left(t_{j}\right)=\tilde{a}_{j}+\tilde{\delta}_{j}\left(t_{j}-t_{j-1}\right)+\tilde{c}_{j}\left(t_{j}-t_{j-1}\right)^{2}$

$$
+\tilde{d}_{j}\left(t_{j}-t_{j-1}\right)^{3} \stackrel{(*)}{=} \gamma_{j}
$$

We already have checked $\quad \tilde{c}_{j}=\frac{\sigma_{j-1}}{2}$,

$$
\begin{aligned}
& \tilde{d}_{j}=\frac{\sigma_{j}-\sigma_{j-1}}{\sigma h_{j}} \text { and } \\
& \tilde{a}_{j}=y_{j-1}
\end{aligned}
$$

Plug this into ($*$):

$$
\Rightarrow \quad y_{j-1}+\tilde{b}_{j} h_{j}+\frac{\sigma_{j-1}}{2} h_{j}^{2}+\frac{\sigma_{j}-\sigma_{j-1}}{\sigma y_{j}} h_{j}^{\beta^{2}}=y_{j}
$$

$$
\begin{gathered}
\Rightarrow \quad \tilde{b}_{j} h_{j}=y_{j}-y_{j-1}-h_{j}^{2}\left(\frac{2 \sigma_{j-1}}{6}+\frac{\sigma_{j}}{6}\right) \\
\Rightarrow \quad \tilde{b}_{j}=\frac{y_{j}-y_{j-1}}{h_{j}}-\frac{h_{j}\left(2 \sigma_{j-1}+\sigma_{j}\right)}{6}
\end{gathered}
$$

Equation for \tilde{b}_{j} verified.

Next: We use the matching of the $1^{\text {st }}$ derivatives:

$$
\tilde{b}_{j}+2 \widetilde{c}_{j} h_{j}+3 \tilde{d}_{j} h_{j}^{2}=\tilde{b}_{j+1}
$$

to formulate an LSE for the oj's.
We write

$$
\begin{aligned}
& \frac{y_{j}-y_{j-1}}{h_{j}}-\frac{h_{j}\left(2 \sigma_{j-1}+\sigma_{j}\right)}{6}+\sigma_{j-1} h_{j}+\frac{\tau_{j}-\sigma_{j-1}}{2} h_{j} \\
&=\frac{y_{j+1}-y_{j}}{h_{j+1}}-\frac{h_{j+1}\left(2 \sigma_{j}+\sigma_{j+1}\right)}{6}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \sigma_{j-1}\left(-\frac{h_{j}}{3}\right. & \left.+h_{j}-\frac{h_{j}}{2}\right)+\sigma_{j}\left(-\frac{h_{j}}{6}+\frac{h_{j}}{2}+\frac{h_{j+1}}{3}\right) \\
& +\sigma_{j+1} \frac{h_{j+1}}{6}=\underbrace{\frac{y_{j+1}-y_{j}}{h_{j+1}}-\frac{y_{j}-y_{j-1}}{6}}_{=: r_{j}}
\end{aligned}
$$

Then we obtain the LSE from the lecture.

