Numerical Methods for
Computational Science and Engineering

Autumn Semester 2018, Week 9
Prof. Rima Alaifari, SAM, ETH Zurich

We want \(QF \) on \([a, b]\):

Approximate
\[
\int_a^b f(t) \, dt
\]

\[\downarrow\]

\[
\int_a^b f(t) \, dt = \int_{-1}^1 f(\varphi(t)) \varphi'(t) \, dt
\]

Can be transformed to \([-1, 1]\):

Suppose we know a \(QF \): \((\hat{\xi}_1, \hat{\xi}_2, \ldots, \hat{\xi}_N)\) on \([-1, 1]\)

\[
QF(f) = \frac{2}{N-1} \sum_{i=1}^{N-1} f(\hat{\xi}_i)
\]

\[\varphi(t) = \frac{1}{2} (1-t) a + \frac{1}{2} (1+t) b\]
\[\int_{a}^{b} f(t) \, dt \approx \frac{1}{2} (b-a) \sum_{j=1}^{n} \omega_j \, f(c_j) \]

\[= \frac{1}{2} \sum_{j=1}^{n} \omega_j \, f(c_j) \quad (\hat{f} = f \circ \Phi) \]

\[c_j = \frac{1}{2} \left(1 - \hat{c}_j \right) a + \frac{1}{2} \left(1 + \hat{c}_j \right) b \]

\[\omega_j = \frac{1}{2} (b-a) \hat{\omega}_j \]

\((c_j, \omega_j)\) QF for \([a, b]\)

\((\hat{c}_j, \hat{\omega}_j)\) QF for \([-1, 1]\)

Quadrature by approximation schemes

interpolation schemes \rightarrow approximation schemes \rightarrow quadrature schemes

Suppose we have an approximation scheme

\[A : C^0([a, b]) \rightarrow V \]

space of "simple" functions

Then, we want to perform numerical integration as:

\[\int_{a}^{b} f(t) \, dt \approx \int_{a}^{b} (A \hat{f})(t) \, dt =: Q_A(f) \]
Use interpolation schemes:

\[I_f(f) \quad T = \{ t_1, \ldots, t_n \} \] node set

\[\int_a^b f(t) \, dt \quad \text{instead:} \]

\[\approx \int_a^b \left[f(t_1), \ldots, f(t_n) \right]^\top (t) \, dt \]

\[= \sum_{i=1}^n f(t_i) \omega_i \]

For this to work, the interpolation operator needs of \(I_f \) to be linear.

\[\int_a^b \left[f(t_1), \ldots, f(t_n) \right]^\top (t) \, dt \]

\[= \sum_{i=1}^n \int_a^b f(t_i) \, dt \omega_i \]

\[= \sum_{i=1}^n f(t_i) \omega_i \]
Quality of the interpolation gives a bound on the error of the QF:

\[E_n(f) = \left| \int_a^b (f(t) - \sum_{i=0}^{n-1} f(t_i) \mathcal{L}_i(t)) \, dt \right| \]

\[\leq |b-a| \cdot \| f - \sum_{i=0}^{n-1} f(t_i) \mathcal{L}_i(t) \|_{L^\infty[a,b]} \]

Interpolation error

Polynomial QFs

Idea:

\[\int_a^b f(t) \, dt \approx Q_n(f) := \int_a^b p_{n-1}(t) \, dt \]

\[p_{n-1} \text{ polynomial Lagrange interpolant of } f \text{ for a given node set } \]

\[\mathcal{J} := \{ t_0, \ldots, t_{n-1} \} \subset [a, b] \]

Recall Lagrange polynomial:

\[\mathcal{L}_i(t) = \prod_{j=0}^{n-1} \frac{t - t_j}{t_i - t_j}, \quad \text{for } j \neq i \]

\[p_{n-1}(t) = \sum_{i=0}^{n-1} f(t_i) \mathcal{L}_i(t) \]
QF: \[\int_{a}^{b} p_{n-2}(t) \, dt = \int_{a}^{b} \left(\sum_{i=0}^{n-1} f(t_i) \, L_i(t) \right) \, dt \]

\[= \sum_{i=0}^{n-1} f(t_i) \int_{a}^{b} L_i(t) \, dt \]

\[= \sum_{i=1}^{n} f(t_{i-1}) \int_{a}^{b} L_i(t) \, dt \]

Weights: \[\omega_i := \int_{a}^{b} L_i(t) \, dt \]

\[c_i := t_{i-1} \]

Examples:

- \(n = 1 \) midpoint rule

Approximation of \(f \) by a constant polynomial:

\[Q_m(f) = (b-a) \cdot f(t_0) \]

\[t_0 = \frac{1}{2} (a+b) \]

More generally: Newton–Cotes formulas

\(n \)-point Newton–Cotes formula
Equidistant nodes & Lagrange interpolation

\[b_i = a + \frac{b-a}{n-1} i \quad i = 0, \ldots, n-1 \]

\[n = 2 \] trapezoidal rule

\[\omega_i = \int_a^b L_i(t) \, dt \]

\[\omega_1 = \int_a^b L_0(t) \, dt = \int_a^b \frac{t-a}{b-a} \, dt = \frac{b-a}{2} \]

\[\omega_2 = \int_a^b L_1(t) \, dt = \int_a^b \frac{t-b}{b-a} \, dt = \frac{b-a}{2} \]

Approximation of \(f \) by a linear polynomial

\[Q_1(f) = \frac{b-a}{2} (f(a) + f(b)) \quad n = 3 \] Simpson rule

\[= \omega_1 f(a) + \omega_2 f(b) \]

\[\int_a^b f(t) \, dt \approx \frac{b-a}{6} \left(f(a) + 4 f\left(\frac{a+b}{2} \right) + f(b) \right) \]
Polynomial QF based on Lagrange interpolation is straightforward. **BUT:** Lagrange interpolation with equidistant nodes is numerically unstable.

Remedy: Use Chebyshev nodes instead → yield Clenshaw-Curtis QF.

> **Gauss Quadrature**

This requires a concept of quality for QFs.

→ **Order of a QF**

Definition 6.3.1 (Order of a quadrature rule). The order of quadrature rule \(Q_n : C^0([a, b]) \to \mathbb{R} \) is defined as

\[
\text{order}(Q_n) = \max\{m \in \mathbb{N}_0 : Q_n(p) = \int_a^b p(t) \, dt \quad \forall p \in P_m\} + 1,
\]

(6.11)

that is, as the maximal degree +1 of polynomials for which the quadrature rule is guaranteed to be exact.

\[
\int_a^b f(t) \, dt \approx \sum_{i=1}^{n} w_i f(x_i)
\]

up to which degree is this exact for polynomials.
Note: This concept of order of a QF
is invariant under affine transformations
(such as \(\delta \) from before to transform
from \([-1,1]\) to \([a,b]\)).

Example: Suppose we have a polynomial QF
with \(n \) points.
What can we say about its order?

Polynomial QF with \(n \) points:
is based on polynomial interpolation with
\(n \) nodes.

So: any \(p \in \mathbb{P}_{n-1} \) is uniquely determined by
\(n \) values \(p(t_1), \ldots, p(t_n) \)

\(\Rightarrow \) interpolation gives \(p \).
\(\Rightarrow \) quadrature is exact for any \(p \in \mathbb{P}_{n-1} \)

This means \(\text{order} (QF_{py}) \geq (n-1)+1 = n \)

[In fact, we will see that \(> n \) is possible]
Characterization of n-point QFs with order $\geq n$:

Theorem 6.3.1 (Sufficient order conditions for quadrature rules). An n-point quadrature rule on $[a,b]$ (see Definition 6.1.1)

$$Q_n(f) := \sum_{j=1}^{n} w_j f(t_j), \quad f \in C^0([a,b]),$$

with nodes $t_j \in [a,b]$ and weights $w_j \in \mathbb{R}$, $j = 1, \ldots, n$, has order $\geq n$, if and only if

$$w_j = \int_{t_{j-1}}^{b} L_{j-1}(t) \, dt, \quad j = 1, \ldots, n,$$

where L_k, $k = 0, \ldots, n-1$, is the k-th Lagrange polynomial (5.14) associated with the ordered node set $\{t_1, t_2, \ldots, t_n\}$.

Therefore: For QF Q_n to have order $\geq n$ weights w_j only depend on node set

$$T = \{t_1, \ldots, t_n\}$$

Proof of Theorem 6.3.1: Exercise

The big question: Are there n-point QFs with order $\geq n$?

Upper bound to the order of an n-point QF:

Theorem 6.3.2 (Maximal order of n-point quadrature rule). The maximal order of an n-point quadrature rule is $2n$.

Why? To see this, we construct a polynomial

$$q \in \mathbb{P}_{2n} \quad \text{s.t.} \quad Q_n(q) = \int_{a}^{b} q(t) \, dt.$$
Because then: order $< 2n + 1$

or $\leq 2n$.

How?

$$Q_n(f) := \sum_{i=1}^{n} w_i f(x_i^n)$$

with choice

$$q(t) := (t-c_1^n)^2(t-c_2^n)^2 \ldots (t-c_n^n)^2 \in \mathbb{P}_{2n}$$

$$= t^{2n} + \ldots$$

$$q(t) \geq 0 \quad \text{(by definition)}$$

$$\Rightarrow \int_{a}^{b} q(t) \, dt > 0$$

On the other hand:

$$Q_n(g) = \sum_{i=1}^{n} w_i g(x_i^n) = 0$$

$$\Rightarrow Q_n(g) = \int_{a}^{b} g(t) \, dt$$

$$\Rightarrow \text{order}(Q_n) < 2n + 1$$

$$\Rightarrow \text{order}(Q_n) \leq 2n$$

Example: 2-point QF Q_2 of order 4 $\mathbb{P}_{[-1,1]}$

$$Q_2(p) = \int_{a}^{b} p(t) \, dt \quad \forall p \in \mathbb{P}_2$$

$$\Leftrightarrow Q_2\left(\left\{ t \mapsto t^{q_i} \right\} \right) = \frac{1}{q+1} \left(b^{q+1} - a^{q+1} \right)$$

$q = 0, 1, 2, 3$
This is sufficient because monomials \((t_0^{t_9})^n\) form a basis of \(B_n\).

Simple check: \(c_1, c_2, \omega_1, \omega_2\) are all \(\neq 0\)

\(a = -1, \quad b = 1:\)

\[QF: \quad \int_{-1}^{1} f(t) \, dt = \omega_1 f(c_1) + \omega_2 f(c_2) \]

\[\Rightarrow \int_{-1}^{1} 1 \, dt = 2 = \omega_1 + \omega_2 \quad (1) \]

\[\Rightarrow \frac{c_2}{c_1} = \frac{c_3^3}{c_4^3} \quad \Rightarrow \quad \frac{c_2^2}{c_1^2} = 1 \]

\[\Rightarrow \frac{c_4^2}{c_2^2} = 1 \]

Use this in (3):

\[\int_{-1}^{1} t \, dt = \frac{t^2}{2} \bigg|_{-1}^{1} = \frac{1}{2} - \frac{1}{2} = 0 = \omega_1 c_1 + \omega_2 c_2 \quad (2) \]

\[\Rightarrow \frac{2}{3} = c_1^2 \frac{(\omega_1 + \omega_2)}{} \]

\[\Rightarrow \frac{2}{3} = c_1^2 \frac{(\omega_1 + \omega_2)}{2} \]

\[\Rightarrow c_1^2 = \frac{1}{3} \quad c_2^2 = \frac{4}{3} \]

\[\int_{-1}^{1} t^2 \, dt = \frac{t^3}{3} \bigg|_{-1}^{1} = \frac{2}{3} = \omega_1 c_1^2 + \omega_2 c_2^2 \quad (3) \]

\[\Rightarrow c_1^2 = \frac{1}{3} \quad c_2^2 = \frac{4}{3} \]

\[\int_{-1}^{1} t^3 \, dt = 0 = \omega_1 c_1^3 + \omega_2 c_2^3 \quad (4) \]
Choose \(c_1, c_2 \) s.t. \(c_1 + c_2 \Rightarrow c_1 = -c_2 \)

\[(2) : \quad \omega_1 c_1 + \omega_2 c_2 = 0 \]
\[\omega_1 = \omega_2 = 0 \]
\[\Rightarrow \quad \omega_1 = \omega_2 \]

Pick \(c_1 = -\frac{1}{13}, \quad c_2 = \frac{1}{13} \)

\[(1) : \quad \omega_1 + \omega_2 = 2 \]
\[\Rightarrow \quad \omega_1 = 1, \quad \omega_2 = 1 \]

\(\text{Q}_2: 2\text{-point QF of order 4:} \)

\[\text{Q}_2(f) = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right) \]

More generally we can ask:

For any \(n \in \mathbb{N} \), is there \(\text{Q}_n \) s.t. \(\text{Q}_n \) is \(n\)-point and of order \(2n \)?

Theorem 6.3.3 (Existence of \(n\)-point quadrature formulas of order \(2n \)). Let \(\{\text{Q}_n\}_{n \in \mathbb{N}_0} \) be a family of non-zero polynomials that satisfies

- \(\text{Q}_n \in \mathbb{P}_n \),
- \(\int_{-1}^{1} q(t) \text{P}_n(t) \, dt = 0 \) for all \(q \in \mathbb{P}_{n-1} \) (\(L^2([-1,1]) \)-orthogonality),
- The set \(\{c_j^{(n)}\}_{j=1}^{m} \), \(m \leq n \), of real zeros of \(\text{P}_n \) is contained in \([-1,1]\).

Then the quadrature rule (see Definition 6.1.1)

\[\text{Q}_n(f) := \sum_{j=1}^{m} w_j f(c_j^{(n)}) \]

with weights chosen according to **Theorem 6.3.1** provides a quadrature formula of order \(2n \) on the interval \([-1,1]\).

We will see: \(m = n \)

\[\text{P}_n(t) = (t-c_1^{(n)}) \cdots (t-c_n^{(n)}) \]

\(n\)-point QF of order \(2n \)
It turns out: Up to scaling factors, the P_n's are the Legendre polynomials.

Definition 6.3.2 (Legendre polynomials). The n-th Legendre polynomial P_n is defined by:

- $P_n \in \mathbb{P}_n$,
- $\int_{-1}^{1} P_n(t)q(t) \, dt = 0 \quad \forall q \in \mathbb{P}_{n-1}$,
- $P_n(1) = 1$.

Fact: P_n has n distinct zeros in $(-1,1)$.

Why does P_n have n distinct zeros in $(-1,1)$?

What happens if P_n has only $m < n$ zeros?

\[\xi_1, \ldots, \xi_m \in (-1,1) \]
Observe: P_n changes sign at x_1, \ldots, x_m.

Now define $g(t) = \prod_{i=1}^m (t - x_i) \in P_m \subseteq P_{n-2}$ and we know by definition of P_n:

$$\int_{-1}^1 P_n(t)g(t)\,dt = 0$$

$$\langle P_n, g \rangle_{L^2([-1,1])}$$

But: g also changes sign at x_1, \ldots, x_m!

$P_n(t) \cdot g(t)$ cannot change sign on $(-1,1)$

$\Rightarrow P_n \cdot g > 0$ on $(-1,1)$ or $P_n \cdot g < 0$ on $(-1,1)$

$$\Rightarrow \int_{-1}^1 P_n(t)g(t)\,dt < 0$$

Definition 6.3.3 (Gauss-Legendre quadrature formulas). The n-point Quadrature formulas whose nodes are given by the zeros of the n-th Legendre polynomial (see Definition 6.3.2), and whose weights are chosen according to Theorem 6.3.1, are called Gauss-Legendre quadrature formulas.

Note: The weights of the G-L QFs are positive.
Derivation of positivity:

We denote the Gauss points by \(x_j^n \), \(j = 1, \ldots, n \) for an \(n \)-point \(G-L \) QF.

Define \(q_k(t) := \frac{1}{n} \prod_{j=1,j \neq k}^{n} (t - x_j^n)^2 \)

\[\Rightarrow q_k \in P_{2n-2} \Rightarrow \text{\(n \)-point \(G-L \) QF} \]

integrates \(q_k \) exactly!

\[0 < \int_{-1}^{1} q_k(t) \, dt = \sum_{j=1}^{n} \omega_j^n \cdot q_k(x_j^n) = \omega_k^n \cdot q_k(x_k^n) \]

\[\quad \frac{\text{QF}}{\text{QF}} > 0 \]

\[\Rightarrow \omega_k^n > 0. \quad \text{This is true for all} \quad k = 1, \ldots, n \]

As for Chebyshev polynomials, we again have a 3-term recursion formula:

Recursive formula for Legendre polynomials

Legendre polynomials satisfy the 3-term recursion (similar to Chebyshev polynomials).

\[P_{n+1}(t) := \frac{2n+1}{n+1} t P_n(t) - \frac{n}{n+1} P_{n-1}(t), \quad P_0 := 1, \quad P_1(t) := t. \quad (6.14) \]
Simple bound on the quadrature error:

(Using positivity of weights)

Theorem 6.3.4 (Quadrature error estimate for quadrature rules with positive weights). For every \(n \)-point quadrature rule \(Q_n \) as in (6.1) of order \(q \in \mathbb{N} \) with weights \(w_j \geq 0, j = 1, \ldots, n \) the quadrature error satisfies

\[
E_n(f) := \left| \int_a^b f(t) \, dt - Q_n(f) \right| \leq 2|b-a| \inf_{p \in P_{q+1}} \| f - p \|_{L^\infty([a,b])} \quad \forall f \in C^q([a,b]).
\]

(6.15)

Lemma 6.3.3 (Quadrature error estimates for \(C^r \)-integrands). For every \(n \)-point quadrature rule \(Q_n \) as in (6.1) of order \(q \in \mathbb{N} \) with weights \(w_j \geq 0, j = 1, \ldots, n \) we find that the quadrature error \(E_n(f) \) for an integrand \(f \in C^q([a,b]), q \in \mathbb{N}_0 \), satisfies

in the case \(q \geq r \):

\[
E_n(f) \leq C q^{-q} |b-a|^{r+1} \left\| \frac{f^{(r)}}{r!} \right\|_{L^\infty([a,b])},
\]

(6.16)

in the case \(q < r \):

\[
E_n(f) \leq \frac{|b-a|^{r+1}}{1!} \left\| \frac{f^{(r)}}{r!} \right\|_{L^\infty([a,b])},
\]

(6.17)

with a constant \(C > 0 \) independent of \(n, f \), and \([a,b] \).

\[
\text{(Key ingredient: } \sum_{j=1}^n w_j \mid \sum_{j=1}^n w_j = 1 \text{)}
\]

Question: Asymptotic behavior of \(E_n(f) \) as \(n \to \infty \)

\[
\text{quadrature error}
\]

\[
f \in C^r([a,b]) : E_n(f) = \Theta(n^{-r}) \quad \text{alg. conv.}
\]

If \(f \in C^\infty([a,b]) : E_n(f) = \Theta(\lambda^n) \quad \text{exp. conv.}
\]

\[\lambda \in (0,1)\]
Example: 2 functions

- smooth
- only cont.

Numerical quadrature of function $f_1(t) := \frac{1}{1 + (5t)^2}$ on $[0, 1]$

Numerical quadrature of function $f_2(t) := \sqrt{t}$ on $[0, 1]$

Remark:

The integral of this particular function can be transformed.

Substitute $s = \sqrt{t}$
\[\text{What do the asymptotics actually tell us?} \]

Suppose for fixed \(f \) we have sharp asymptotics

\[E_n(f) = \Theta(n^{-r}) \Rightarrow E_n(f) \approx C \cdot n^{-r} \]

Now: We want to decrease the quadrature error by factor \(g > 1 \)

Then:

\[\frac{C \cdot n_\text{old}^{-r}}{C \cdot n_\text{new}^{-r}} = g \Rightarrow n_\text{new} = n_\text{old} \cdot g^{1/r} \]

This tells how many more points we need to take to improve quadrature error by a factor \(g \).
Suppose we had \(E_n(f) \approx C \cdot 1^n \) instead of \(E_n(f) \approx C \cdot 1^n \).

\[
C \cdot 1 \text{ old} = \int \\
C \cdot 1 \text{ new} = \int \\

V_{\text{new}} = V_{\text{old}} + \left[\frac{\log S}{\log \lambda} \right]
\]

Here: only need to add a fixed number of nodes to improve the quadrature error by a factor \(g \).

Composite Quadrature

As for interpolation: introduce a mesh

2. then apply a QF on each cell

Mesh: \(M = \{ a = x_0 < x_1 < \ldots < x_m = b \} \)

\[
\int_a^b f(t) \, dt = \sum_{j=1}^{m} \int_{x_{j-1}}^{x_j} f(t) \, dt
\]

on each interval \(I_j := [x_{j-1}, x_j] \) apply an \(n_j \)-point QF

total number of function evaluations \(f : \sum_{j=1}^{n} n_j \).
Motivation: • nodes are not freely choosable
 (then: equidistant + global polygon interp
 is a bad idea)
 • function is e.g. highly oscillatory

Examples:

Composite trapezoidal rule, cf. (7.2.5)

$$\int_a^b f(t)dt = \frac{1}{2}(x_1 - x_0)f(a) + \sum_{j=1}^{m-1} \frac{1}{2}(x_{j+1} - x_{j-1})f(x_j) + \frac{1}{2}(x_m - x_{m-1})f(b).$$ \hfill (7.4.4)

Composite Simpson rule, cf. (7.2.6)

$$\int_a^b f(t)dt = \frac{1}{3}(x_1 - x_0)f(a) + \sum_{j=1}^{m-1} \frac{1}{3}(x_{j+1} - x_{j-1})f(x_j) + \sum_{j=1}^{m} \frac{2}{3}(x_j - x_{j-1})f(\frac{1}{2}(x_j + x_{j-1})) + \frac{2}{3}(x_m - x_{m-1})f(b).$$ \hfill (7.4.5)

Error estimates for composite QP:

\[\rightarrow \text{add errors on each } I_j.\]

Suppose on each I_j: QP Q^*_p of order q has positive weights
If \(f \in C^r ([x_{i-1}, x_i]) \):

\[
\left| \int_{x_{i-1}}^{x_i} f(t) \, dt - Q_n^f (x_i, x_{i-1}) \right| \leq C \cdot h_j^{\min\{r, q\} + 1} \cdot \| f(\min\{r, q\}) \|_{L^\infty(I_j)}
\]

\[\text{(6.17)}\]

\[\Rightarrow\]

\[
\lesssim \sum_{j=1}^{m} \left| \int_{x_{i-1}}^{x_i} f(t) \, dt - Q_n^f (t) \right| \leq \sum_{j=1}^{m} \left| \int_{x_{i-1}}^{x_i} f(t) \, dt - Q_n^f (x) \right|
\]

\[\leq C \cdot \sum_{j=1}^{m} h_j^{\min\{r, q\} + 1} \| f(\min\{r, q\}) \|_{L^\infty(I_j)}
\]

\[\leq C \cdot h_{\mu}^{\min\{r, q\}} \max_{j=1, \ldots, m} \| f(\min\{r, q\}) \|_{L^\infty(I_j)} \cdot \sum_{j=1}^{m} h_j
\]

\[\text{where} \quad h_{\mu} = \max_{r=1, \ldots, m} h_r
\]

\[\Rightarrow\] algebraic convergence in mesh width \(h_j \)

\[\text{"} h^{-\text{convergence}} \text{"}
\]

For \(r > q \): algebraic convergence in \(h_j \) of rate \(q \) (=order of the QP)

Example: Composite trapezoidal: \(q = 2 \)
Simpson: \(q = 4 \)
(higher than expected)

For sufficiently many times differentiable functions (i.e. \(r > q \)): \(O(h^2) \) vs. \(O(h^4) \)

trap. Simpson
quadrature error, $f_1(t) := \frac{1}{1 + (5t)^2}$ on $[0, 1]$

$\log - \log - \text{plot}$

quadrature error, $f_2(t) := \sqrt{t}$ on $[0, 1]$

$\in \mathcal{C}^0([0, 1])$

$O(h^{3/2})$
Comparison of asymptotic rates of

\[f \in C^r([a,b]) : \text{Composite QF: } \Theta(n^{-\min(r,q)}) \]
\[\text{Gauss QF: } \Theta(n^{-r}) \]

\[\Rightarrow \text{Gauss is at least as good as composite QF} \]
\[\theta \text{ achieves best possible rate} \]

\[f \in C^\infty([a,b]) : \text{Composite QF: } \Theta(n^{-q}) \text{ alg.conv.} \]
\[\text{Gauss QF: } \Theta(1^n) \text{ exp.conv.} \]
\[\lambda \in \mathbb{Q}(a,b) \]