Hilfsätze

Theorem A. Let *H* be a subgroup of *G*. A left coset of *H* is a set of the form $aH = L_a(H) = \{ah \mid h \in H\}$ for some $a \in G$.

- (a) Any two left cosets of H in G are disjoint or equal. G is the union of the left cosets of H in G.
- (b) All left cosets of H in G have the same size.
- (c) (Lagrange's theorem) If G is finite, then |H| divides |G|.

Definition A'. The number of left cosets of H in G is called the *index* of H in G, written [G:H]. If G is finite, then [G:H] = |G|/|H|.

Theorem E. Let $f : G \to H$ be a homomorphism. Then each preimage $f^{-1}(h), h \in H$, is either empty, or it is the same size as ker(f).

Theorem F (Spin-Orbit Theorem). Let $G \times X \to X$ be an action of the group G on the set X. The *orbit* of an element $x \in X$ is the set $G \cdot x = \{gx \mid g \in G\}$. The *stabilizer* of x is the subgroup $G_x = \{g \in G \mid gx = x\}$.

- (a) Any two orbits are disjoint or equal.
- (b) (Spin-orbit formula) If G is finite, then for each $x \in X$, $|G| = |G \cdot x| |G_x|$.
- (c) If x and y are in the same orbit, then their stabilizers G_x and G_y are conjugate. Conversely, every subgroup conjugate to G_x is the stabilizer of some point y in the orbit of x.

Theorem M.

(a) Every permutation σ can be written as a product of transpositions:

$$\sigma = \tau_1 \cdots \tau_k,$$

where $\tau_j = (a_j \ b_j)$ is a transposition, $a_j \neq b_j, \ j = 1, \dots, k$.

(b) A permutation cannot be both even and odd: if

$$\tau_1 \cdots \tau_k = \tau'_1 \cdots \tau'_{k'},$$

then $k = k' \pmod{2}$.

Corollary M'.

- (a) The even permutations form a subgroup A_n in S_n .
- (b) There is a parity homomorphism sgn : $S_n \to \{\pm 1\}$ with kernel A_n .

Definition N. Let $\phi(x) = Ax + b$ be an isometry of \mathbb{R}^n , where $A \in \mathbb{R}^{nxn}$ is an orthogonal matrix and $b \in \mathbb{R}^n$ be an isometry of \mathbb{R}^n . Define

- (a) ϕ is orientation-preserving $\iff \det(A) > 0 \iff \det(A) = 1$.
- (b) ϕ is orientation-reversing $\iff \det(A) < 0 \iff \det(A) = -1$.

Corollary N'.

- (a) The orientation-preserving isometries form a subgroup $\text{Isom}_+(\mathbb{R}^n)$ in $\text{Isom}(\mathbb{R}^n)$.
- (b) There is an orientation homomorphism $\text{Isom}(\mathbb{R}^n) \to \{\pm 1\}, \phi \mapsto \det(A),$ with kernel $\text{Isom}_+(\mathbb{R}^n)$.

Theorem Y. Every isometry ϕ of \mathbb{R}^n has the form

$$\phi(x) = Ax + b$$

where $A \in \mathbb{R}^{nxn}$ is an orthogonal matrix and $b \in \mathbb{R}^n$.

An *affine subspace* of \mathbb{R}^n is a set of the form

$$L = V + b$$

where V is a linear subspace of \mathbb{R}^n and $b \in \mathbb{R}^n$. If V has dimension k we call L a k-plane. A set of k points in Euclidean space is called *affine independent* if they are not contained in a common (k-2)-plane.

Theorem Z. Two isometries of \mathbb{R}^n that agree at n + 1 affine independent points agree everywhere.

Theorem X. The fixed point set of an isometry of \mathbb{R}^n is a k-plane for some $k \in \{0, \ldots, n\}$, or it is empty.

Theorem B. Every isometry of \mathbb{R}^n of order 2 is a reflection through a kplane, for some $k \in \{0, ..., n-1\}$.

Theorem C. Every isometry of \mathbb{R}^3 of finite order is either

(Rotation) Rotation by an angle $2\pi/m$ about an axis A, or

(Rotary Reflection) Rotation by an angle $2\pi/m$ about an axis A, followed by reflection in a plane E normal to A.

Theorem D. A finite group of isometries of \mathbb{R}^n has a fixed point. (This is proven in another handout.)