Algebra I

Assignment 7

GROUPS, SUBGROUPS, GROUP HOMOMORPHISM

- 1. Prove that the map $f : \mathbb{R} \longrightarrow \mathbb{C}^{\times}$, defined by $f(x) := e^{ix}$ is a group homomorphism. Find its kernel and its image.
- 2. Find the order of the following elements:
 - (a) $i, e^{i\sqrt{3}\pi}$ and $e^{\frac{2\pi i}{17}}$ in the group \mathbb{C}^{\times} ; (b) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$ in the group $\operatorname{GL}_2(\mathbb{C})$; (c) 1, 2 and 3 in \mathbb{F}_{17}^{\times} .
- 3. Let p be a prime number. Show that the cardinality of $\operatorname{GL}_2(\mathbb{F}_p)$ is equal the number of ordered bases (e_1, e_2) of \mathbb{F}_p^2 as a \mathbb{F} -vector space, and that

$$Card(GL_2(\mathbb{F}_p)) = (p-1)^2 p(p+1).$$

- 4. Let \mathcal{C} be a category.
 - (a) For an object A of C let Aut_C(A) be the set of isomorphisms from A to A, i.e.

 $\operatorname{Aut}_{\mathcal{C}}(A) = \{ f \in \operatorname{Hom}_{\mathcal{C}}(A, A) : f \text{ is an isomorphism} \}.$

Let $f \circ g$ be the composition of morphisms $f, g : A \to A$ and let $id_A \in Hom_{\mathcal{C}}(A, A)$ be the identity homomorphism. Show that $(Aut_{\mathcal{C}}(A), \circ, id_A)$ is a group.

Remark: For \mathfrak{Set} the category of sets with homomorphisms being maps between sets, one has the object $A = \{1, 2, ..., n\}$, a finite set, and

$$\operatorname{Aut}_{\mathfrak{Set}}(A) = S_n$$

is the symmetric group.

- (b) Let A, B isomorphic objects of C. Show that the groups $\operatorname{Aut}_{\mathcal{C}}(A)$ and $\operatorname{Aut}_{\mathcal{C}}(B)$ are isomorphic.
- 5. Let $G = \operatorname{GL}_2(\mathbb{F}_2)$ and consider the set $X = (\mathbb{F}_2)^2 \setminus \{(0,0)\}$. Define

$$H := \operatorname{Sym}(X) := \operatorname{Aut}_{\mathfrak{Set}}(X) = \{f : X \to X : f \text{ bijective}\}\$$

HS18

(a) Prove that

$$\varphi: G \longrightarrow H$$
$$\alpha \longmapsto (P \mapsto \alpha(P))$$

is a well-defined group homomorphism.

- (b) Show that φ is an group isomorphism
- (c) Deduce that $G \cong S_3$.
- 6. Let p be a prime number. Consider the set

$$G := \left\{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \in \mathrm{GL}_2(\mathbb{F}_p) \right\} \subset \mathrm{GL}_2(\mathbb{F}_p).$$

- (a) Show that G is a subgroup of $\operatorname{GL}_2(\mathbb{F}_p)$.
- (b) Prove that the map

$$\varphi: G \longrightarrow \mathbb{F}_p^{\times} \times \mathbb{F}_p^{\times}$$
$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \longmapsto (a, c)$$

is a group homomorphism, where $\mathbb{F}_p^{\times} \times \mathbb{F}_p^{\times}$ is endowed with componentwise multiplication, and that $\ker(\varphi) \cong (\mathbb{F}_p, +)$.

7. Let $G = \operatorname{GL}_2(\mathbb{Q})$ and consider its elements $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$. Show that $A^4 = \operatorname{Id}_2 = B^6$, but that $(AB)^n \neq \operatorname{Id}_2$ for each $n \ge 1$.