Assignment 9

GROUP ACTIONS

- 1. Let G be a group. Consider the set of maps $C(G) = \{f : G \longrightarrow \mathbb{C}\}$.
 - (a) Check that G acts on C(G) via $(g \cdot f)(x) := f(xg)$ for $g, x \in G$ and $f \in C(G)$.
 - (b) Is the action above faithful?
- 2. Let G be a group acting on a set T and $t_1, t_2 \in T$ be elements in the same G-orbit. Prove that the stabilizers of t_1 and t_2 in G are conjugate.
- 3. Let G be a group acting on a set T. For $H \subseteq G$, define the set of H-invariants as

$$T^H := \{ x \in T : \forall h \in H, h \cdot x = x \}.$$

Prove: if $H \leq G$, then the action of G on T induces an action of G/H on T^H .

- 4. Consider the complex upper half-plane $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}.$
 - (a) Show that $SL_2(\mathbb{R})$ acts on \mathbb{H} by

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\cdot z = \frac{az+b}{cz+d}.$$

- (b) Is the action faithful?
- (c) Show that the subgroup $H := \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a \in \mathbb{R}^{\times}, b \in \mathbb{R} \right\}$ acts transitively on \mathbb{H} .
- (d) Compute the stabilizer of i in $SL_2(\mathbb{R})$.
- (e) Deduce that any $g \in \mathrm{SL}_2(\mathbb{R})$ can be written as g = hk for $h \in H$ and $k \in \mathrm{SO}_2(\mathbb{R}) = \left\{ \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} : \theta \in \mathbb{R} \right\}.$
- (f) Compute and sketch the orbit of $i \in \mathbb{H}$ under the following subgroups:

$$H_1 := \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & a^{-1} \end{array} \right) \right\}, \ H_2 := \left\{ \left(\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right) \right\}, \ H_3 := \left\{ \left(\begin{array}{cc} 1 & 0 \\ t & 1 \end{array} \right) \right\}$$

5. Let G be a finite group and $H \subset G$ a subgroup. Suppose that the index of H in G is equal to the smallest prime number dividing |G|. Prove: $H \triangleleft G$. [Hint: Define a suitable action $\rho: G \longrightarrow \text{Sym}(G/H)$. Look at $\ker(\rho)$ and $\operatorname{Card}(\operatorname{Im}(\rho))$.]

6. Let G be a finite group and p a prime number. Let \mathcal{T}_p be the set of all p-Sylow subgroups and fix $P \in \mathcal{T}_p$. Since conjugation preserves cardinality of subsets, G acts on \mathcal{T}_p by

$$g \cdot H = gHg^{-1}.$$

- (a) Show that the induced action of P on \mathcal{T}_p has a unique fixed point.
- (b) Deduce that $Card(\mathcal{T}_p) \equiv 1 \pmod{p}$.
- (c) Prove that $\operatorname{Card}(\mathcal{T}_p) \mid m := [G : P]$. [*Hint:* Use the action of G by conjugation on the set of its subgroups]
- (d) Let $M \supset P$ be a subgroup of G containing $N_G(P)$. Prove that $N_G(M) = M$.
- 7. Let K be a field and D be the subgroup of $G := \operatorname{GL}_2(K)$ consisting of diagonal matrices. Determine $N_G(D)$ and $N_G(D)/D$.
- 8. Let S_n act on $\{1, \ldots, n\}$. Define an action of S_n on $\{1, \ldots, n\} \times \{1, \ldots, n\}$ by $g \cdot (i, j) = (g(i), g(j))$. Show that this action has exactly two orbits and determine them.