Algebra I

Assignment 10

GROUP ACTIONS, THE SYMMETRIC GROUP

- 1. Let p be a prime number and T the set of one-dimensional \mathbb{F}_p -subspaces in $(\mathbb{F}_p)^{n+1}$, i.e., of lines through the origin in $(\mathbb{F}_p)^{n+1}$.
 - (a) Show that $\operatorname{GL}_{n+1}(\mathbb{F}_p)$ acts transitively on T by $g \cdot L = g(L)$.
 - (b) Compute the stabilizer of the line $L_0 := \langle (1, 0, \dots, 0) \rangle \in T$.
 - (c) Compute Card(T). [*Hint:* T has the same number of elements of the set of orbits of \mathbb{F}_p^{\times} acting on $(\mathbb{F}_p)^{n+1} \smallsetminus \{0\}$]
- 2. Consider the standard action of $\operatorname{GL}_2(\mathbb{R})$ on \mathbb{R}^2 . Determine the orbits of (1,0) under each of the subgroups

$$H_1 := \left\{ \left(\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right) \right\}, \ H_2 := \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right) \right\}, \ H_3 := \left\{ \left(\begin{array}{cc} a & b \\ 0 & 1 \end{array} \right) \right\}, \ H_4 := \operatorname{SO}_2(\mathbb{R}).$$

3. Let G be a group acting on a set T. Fix $x_0 \in T$. Let $H \subset G$ be a subgroup and define X to be the H-orbit of x_0 . Show that, for $g \in G$,

$$g \cdot X = \{g \cdot x : x \in X\}$$

is the gHg^{-1} -orbit of $g \cdot x_0$.

4. Let $\sigma \in S_n$. Denote by $F(\sigma)$ the number of points fixed by σ . Prove that the following formulas hold:

$$\frac{1}{n!} \sum_{\sigma \in S_n} F(\sigma) = 1$$
$$\frac{1}{n!} \sum_{\sigma \in S_n} F(\sigma)^2 = 2$$

[*Hint*: Notice that $F(\sigma) = \sum_{x:\sigma(x)=x} 1$. Invert the order of summation.]

- 5. For each conjugacy class S_6 , write down a representative and the cardinality of the class.
- 6. Let $n \ge 3$. Prove that $[S_n, S_n] = A_n$. [Recall: for a group G, the commutator [G, G] is defined as the subgroup of G generated by $\{aba^{-1}b^{-1} : a, b \in G\}$. See Assignment 8, Exercise 6]

HS18

7. (a) Prove that S_n is generated by $\{\sigma_i := (i \ i+1), 1 \leq i \leq n-1\}$, and that those generators satisfy the relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i, \text{ if } |i - j| \ge 2$$
$$(\sigma_i \sigma_{i+1})^3 = \text{id, for } 1 \le i \le n-2.$$

- (b) Let $\tau := (1 \ 2 \ \dots n)$. Show that S_n is generated by $\{\sigma_1, \tau\}$. [*Hint:* Express σ_i in terms of σ_1 and τ]
- 8. Let $n \ge 2$ be an integer and $k_i \in \mathbb{Z}_{\ge 0}$ for $i = 1, \ldots, n$ be such that

$$k_1 \cdot 1 + k_2 \cdot 2 + \ldots + k_n \cdot n = n.$$

Let X be the conjugacy class of X determined by (k_1, \ldots, k_n) . Tautologically, S_n acts on X by conjugation and the action is transitive.

(a) Fix $\sigma_0 \in X$ and let $H = \operatorname{Stab}_{S_n}(\sigma_0)$. Prove that

$$\operatorname{Card}(H) = \prod_{i=1}^{n} i^{k_i} \cdot k_i!$$

- (b) Use the above to write down an expression for Card(X).
- (c) Show that $Card(\{n cycles in S_n\}) = (n 1)!$