D-MATH Algebra I HS18
Prof. Rahul Pandharipande

Solution 1

ARITHMETIC, ZORN’S LEMMA.

1. (a) Using the Euclidean division, determine ged(1602,399).

(b) Find mg,ng € Z such that ged(1602,399) = 1602mg + 399ng. [Hint: Write
the steps of the euclidean algorithm and compute ‘backwards’.]

(c) Similarly, determine ged (123456, 876) and find mg, ny € Z such that
gcd (123456, 876) = 123456my + 876n0.
(d) Determine ged(¢? + ¢ + 1,3¢* + 40 + 5) for each ¢ € Z.

Solution:

(a) We perform the Euclidean division of 1602 by 399. Then we divide 399 by

the remainder and so on:
1602 =4-399 4+ 6
399 = 66 - 6 + 3
6=2-34+0.
Then
ged(1602,399) = ged(399,6) = ged(6,3) = ged(3,0) = 3.
(b) By looking at the computations done in part (b), we obtain:
3 =399 —66-6 =399 — 66 - (1602 — 4 - 399) = 265 - 399 — 66 - 1602.
(c) We compute
123456 = 140 - 876 + 816

876 = 816 + 60
816 = 13- 60 + 36
60 = 36 + 24

36 = 24 + 12

24 =212,

which implies that ged(123456,876) = 12. Then we express 12 by looking at
the above equations backwards:
12 =36 —24 = 36 — (60 — 36) = —60+ 236 = —60 + 2 - (816 — 13 - 60)
=2-816—27-60=2-816 — 27 (876 — 816) = 29 - 816 — 27 - 876
=29 (123456 — 1401 - 876) — 27 - 876 = 29 - 123456 — 4087 - 876.
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(d)

We compute:

3+ 40+5=3-(P+L+1)+ (L +2)
C4l41=(—1)(0+2)+3.

This implies that
ged(302 + 40+ 5,02+ 04+ 1) =ged((® + L+ 1,0+ 2) = ged(£ + 2, 3).

Since 3 is a prime number, the greatest common divisor is either equal to 3
(if 3| ¢+2)or1 (if 310+ 2). Hence we can conclude that

1 if £=0,2 (mod 3)

2 2 —
ged(30° + 40+ 5,4 +€+1)—{ 3 if £ =1 (mod 3).

2. A Pythagorean triple is an ordered triple (a,b,c) of positive integers for which
a?® + b? = 2. Tt is called primitive if a,b and ¢ are coprime, that is, if there is no
integer d > 1 which divides a, b and c.

(a)

Let 1 < z < y be odd integers. Prove that

2 2 2 2
Yy —x° Yy +x
1

is a Pythagorean triple.

Suppose that = and y are also coprime. Prove that the Pythagorean triple
(1) is primitive.

Prove that all primitive Pythagorean triples are of the form (1) with coprime
odd integers 1 < x < y, up to switching the first two entries. [Hint: Reduce
to the case in which a is odd. Prove that %b%b = 1 and write down %b =2
and %b = ﬁ for coprime positive integers v > t. Find ¢ and g in terms of ¢
and wu.]

Solution:

(a)

First, we notice that (1) consists of positive integers. Indeed, zy € Z~( as it
is the product of two positive integers, whereas x? and y? are odd numbers
because they are powers of odd numbers (e.g., the prime number 2 cannot
divide the integer x? without dividing x), so that y?+ 2 and y? — 2% are even
numbers and the given fractions in (1) represent integers. It is also clear that

both numbers are positive as y > x > 0. Now we only need to check that the
2

identity a® + b* = ¢? is satisfied for (a,b,c) = <$y, 1’2%, #) This can be
done as follows:

Q2+ 1 = 2%+ y4+237iy2 + 2 _ yt— 233;?42 + 2! _ (32 —4372)2 — 2




(b)

This is equivalent to check that for each prime number p there is an entry in
(1) which is not divided by p.

For p = 2 this is the case because zy is odd by assumption (as z and y are
both odd). Now assume by contraddiction that an odd prime p divides all
the entries in (1). Then p divides y* + 2%, because it divides # Moreover
plry, which implies that p|x or ply. If p|z, then p|z?, so that it also divides
(y* + 2?) — 2* = y* and being p prime it must divide y. If p|ly we similarly
show that p|x. In any case, p divides both = and y, which is a contradiction
to the assumption that x and y are coprime. Hence p cannot divide all the
entries in (1) simultaneously, as we wanted to show.

Let (a,b,c) be a primitive Pythagorean triple.

Suppose that a and b are both even. Then ¢? = a?+b? is even, too. This implies
that ¢ is even, contradicting the hypothesis that (a,b, ¢) is primitive. Hence
at least one among the numbers a and b is odd and since we are allowed to
switch the first two entries in the Pythagorean triple, we can assume WLOG
that this is a.

The equality a® 4 b* = ¢? is equivalent to 1 = Z—z — Z—z which reads

b c¢c—b
ct+o ¢ 1L (2)
a a
Since ib > 0 we can erte C—b % for coprime positive integers u and ¢.
Notice that 2 =a%+b>a? 1mply1ng that c>asothat c+b>c>aand
u > t. Moreover, (2) implies that ca = u. Summing and subtracting the two
equations
c+b wu
a t
c—b t
a u
we obtain
b u? — t?
a  2ut
c u? + 12
a  2ut

Notice that primitivity of (a,b,c) implies that ged(a,c) = 1, because any
common prime factor of a and ¢ would divide b*> = ¢®* — a® and hence b.
Similarly ged(a,b) = 1. Moreover, since a is odd, 2 must divide u* — ¢* and
u?+t2. Now the same argument as in part (b) gives ged(ut, “42) = 1 because

u and t are coprime, and similarly we get ged(ut, “2;2) =1.

The only possibility is that a = ut, ¢ = # and b = “22_t2, so that we can
conclude by taking x = v and y = v.



3. In this exercise we give a famous proof by Zagier of Fermat’s theorem on sums of
two squares. For m,n,r € Z we say that m is congruent to r modulo n, and write
m =r (mod n), if m —r € nZ.

Theorem 0.1 (Fermat). Let p be an odd prime number. Then it is possible to
express p = x> + y* for some x,y € Z if and only if p = 1(mod 4).

Let X be a set. An involution of X is a map ¢ : X — X such that ¢ o p =idy.
(a) Prove: if X is finite and has odd cardinality, then every involution of X has
a fixed point.
(b) Prove: if X is finite and an involution of X has a unique fixed point, then
| X| is odd.
In parts (c)-(f), suppose that p = 1 (mod 4) is a prime number. Let

X, = {(z,y,2) € Z;O st 4 dyz = p}.

(c) Show that X, is finite and non-empty.
(d) Show that the maps f, ¢ : X, — X, sending
x4+2z,zy—rv—z) fr<y—=z

(
fi(r,y,z)— < Qu—z,yx—y+z) fy—z<az<y
(x =2y, —y+z,y) ifx>2y

g:(2,y,2) — (7,2,y)

are well defined involutions.

(e) Let A={(z,y,2) e Xp:x<y—=z}, B={(r,y,2) € X,y — 2z < x <2y}
and C = {(z,y,2) € X, : x > 2y}. Prove that f(4) C C and f(C) C A.
Deduce that f(B) C B and use this to prove that f has a unique fixed point.

(f) Deduce that |X,| is odd and conclude that the “if” statement holds.
(g) Prove that if p = 2% + 9 for x,y € Z, then p = 1(mod 4).

Solution:

(a) Let ¢ be an involution of X. Denote by X% the set of fixed points of X, i.e.
X?:={r € X :p(r) =x}. Then

X =X?U{zr e X :¢(z)#x}. (3)

The set Y := {z € X : ¢(z) # «} has even cardinality, as can be checked by
induction on its cardinality:

o If Y =&, then |Y| =0 is even and we are done.
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e Else fix yo € Y. Notice that p(Y) C Y as for y € Y one can observe
that o(p(y)) = y # ¢(y), so that ¢(y) € Y. Moreover, ¢ being an
involution, we see that {yo, ¢(yo)} is mapped to itself by ¢ and so is
Y’ =Y ~{vo, v(y0)} again because ¢ is an involution. Now consider the
involution ¢’ of X given by

1y — b oel@) @ & {yo, ¢(yo)}
¢'(z) =
z oz € {yo o)}
We have X¢ = X% U {yo, 0(yo)} so that {x € X : ¢/(x) # 2} = Y’ has
cardinality |Y'| = |Y| — 2 < |Y| which by inductive hypothesis has even
cardinality. Hence |Y”| has even cardinality as well.

Now if |X]| is even, then |X?¥| must be odd by what we have just showed
and (3), so that it cannot be empty. This means that there exists a fixed
point.

If ¢ has a unique fixed point, then | X¥| = 1is odd. Since {z € X : p(x) # x}
has even cardinality as seen in (a), equation (3) implies that | X| is odd.
First of all, notice that for (z,y,2) € X, one has x # 0, y # 0 and z # 0.

Indeed, if x+ = 0 then 4yz = p, whereas for y = 0 or z = 0 we obtain

22 = p, and both conclusions are impossible since p is prime. Then z,v, 2

are all smaller than 2% 4+ 4yz = p, so that they all lie in the set {1,...,p}.
Hence X, is finite with at most p® elements. Writing p = 1 + 4k, we see that
(1,1, k) € X, which in turn is non-empty.

Clearly, for (z,y, z) € X, one has (z,z,y) € X, and
9*(x,y,2) = g(z, 2,y) = (2,9, 2)

so that ¢ is a well defined involution.

Let’s now deal with f. First notice that the three stated cases are disjoint and
cover all the possibilities: the equalities of coordinates x =y — z and © = 2y
are both impossible for (z,y,z) € X,. The former implies p = 2? + 4yz =
(y + 2)* whereas the latter implies that p = 22 + 4yz = 4y(y + 2) and both
conclusions are a contradiction with primality of p. We use the claim from
the next point that f switches A and C and that it fixes B, which we prove
later together with the fact that ¢ actually maps elements of X, in X, so
that it is well defined. We will denote (2',¢/, 2’) := f(z,y, 2). Then

o If (x,y,2) € A, so that f(z,y,2) € C, then

fA(x,y,2) = fla+2z, 2,y —w—2) = (2’ =2, 2" — oy + 2,/
=(r+2z—-2z,24+22—24+y—x—2,2) = (z,9, 2).
o If (x,y,2) € C, so that f(x,y,z) € A, then
fAz,y,2) = fle —2y,x —y+2,y) = (2 +2,2,y —a' — )
=@ -2y+2yy.2—y+z— (-2 —y) = (2,y,2)
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o If (x,y,2) € B, so that f(x,y,z) € B, then

Py, z) = fQRy—ayr—y+2)= (2 -2y ,2" =y +2)
(e) First, for each (z,y,z) in A, B or C, we prove that the image of (z,y,2)

is in X, and precisely in the subset prescribed in the exercise. Again, for
(x,y,2) € X,, we use the notation (z/,v',2") = f(z,y, 2).

o If (x,y,2) € A, then x + 22,z and y — z — x are all non-negative and
2?4+ 4y = (v +22)2 +dz(y — v — 2) = 27 +dyz = p,
so that f(z,y,z2) € X,. Moreover,
=2y =2>0

This means that f(A) C C.
o If (z,y,2) € B, then 2y — x,y and = — y + z are all non-negative and

2?4y =y ) dyle —y+2) =2 +4yz=p
y -2 =2y—r—2<2y—z=12 <2y=2y,

so that f(x,y,z) € B.
o If (,y,2) eC,thenz—y+2>2>x—2y>0,y>0and

?? 4+ dy Y = (v -2+ A —y+2)y=a"+4yz=p
r=x-2y<(r—y+z2)—y=9y -2

since z > 0, so that f(z,y,2) € A.

Notice that assuming that f is an involution, then the fact that f switches
A and C already immediately implies that f(B) C B, because b = f(f(b))
cannot be in B if f(b) € B. However, since in part (d) we used all the three
inclusions that we have just proved in order to show that f is an involution, we
cannot skip the proof that f(B) C B, else there would be a circular argument.

Suppose that (x,y,2) € X, is a fixed point. Then it must belong to B but
what we have just proved. The map f on B extends to the Q-linear map
f: Q3 — Q3 given by the matrix

M =

_ O
L )
_ o O



In order to find fixed points, we look at the eigenvectors associated to 1, that
is, at the subspace of Q3 described by the matrix

-2 2
M—-1= 0 0
1 -1

o O O

Hence the fixed points of X, are all those of the form (z,z,2) € Z‘;O which
satisfy 2 + 422 = p and * — z < x < 2z. The inequality is always true
because x, z € Z already remarked above, whereas the equality

p=2+4rz = 2(v + 42) (4)

implies that = 1 and x4+ 4z = p, since x < x + 4z are two distinct factors of
p. This is true for x = 1 and for a unique value z = 2, for which p = 1 + 4z
(which is the case by hypothesis on p). The unique fixed point of f is then
(1,1, z9). Notice that it is in B.

(f) Parts (b), (c) and (e) together imply that |X,| is odd. Then part (a) implies
that g has a fixed point (2o, o, 20) € X,, which means yo = zo. Hence there
exist xg, 20 € Zso such that % + 422 = p. Let * = x5 and y = 2y,. Then
2% + y? = p as desired.

(g) If p = 2* +y? is odd, then exactly one out of z and y is odd. WLOG suppose
it is  and write = 2k + 1. Then 22 = 4k? + 4k + 1. On the other hand,

y? = 44 for some £ € Z since 2 | y. Then p = 4k? + 4k + 1 + 4/, which means
that p =1 (mod 4).

4. Let S be a set. A well-order on S is a total order on S such that every non-
empty subset S has a minimal element. For example, the natural order in N is a
well-order.

(a) Define a well-order on Z.
(b) Define a well-order on Q.

(c) Using Zorn’s lemma, prove that every set S admits a well-order. [Hint: Con-
sider the partially ordered set

S:={(A4,R): ACS, Risa well-order on A}
endowed with the partial order defined by

ef. C A /
(A.R)< (A, R) &% ( AC AVr,y € ARy < xRy )

and Va € A,Va' € A/, dR'a — d € A

Check that (S, <) satisfies the hypotheses of Zorn’s lemma and get a maximal
element (M, Ry). Prove that M = S|
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Solution: For every bijection ¢ : S — N, one can define a total order < on S via
def.
s <t = p(s) <p(t)

(a)

(b)

Consider the bijection ¢ : Z — N sending 0 < k + 2k — 1 and 0 > k — 2k.
This is easily seen to be a bijection and it induces the following well-order on
Z:

0TI <1223 -3<....

One can construct a bijection ¢ : Z — Q as follows:

e ¥(0) =0;
e )(—n) = —1(n) for each n;
e write, for k € Z+,

F, = {%EQ:gcd(a,b)zl, a+b:k’+1}

and denote f; := |Fg| < k + 1. Then the values of ¥(n) for n > 0 range,
in the order, on the sets Fy = {1}, F» = {2,1/2}, F3, ... starting, in each
F},, with the fraction of highest denominator. This means that ¢)(n) € Fy
if and only if Zf;ll fi<n< Zle fj, and in this case ¢ (n) is equal to
the (n — Zf;ll fj)-th element in Fj, the elements in F} being ordered
with decreasing denominators.

The map v is a bijection because the F}’s form a partition of Q. Considering
¢ as in the previous part, the bijection pot)~! : Q — N induces the following
well-order on Q:

S—53S3S 3 <—~< 55

[GCIN )

|
|

1
0<1<-1<5<—5<2<-2¢

W =
LWl

We follow the hint. We first notice that < defines a partial order on &:
reflexivity is clear, antisymmetry descends from the same property on sets
and transitivity is immediate by definition.

Now we check that (S, <) satisfies the hypothesis of Zorn’s lemma:

e S # I, as it contains (&, ).

e For every chain (A;, R;)ic; € S, consider Ay = |J,.; Ai. Define a relation
Ry on Aq as follows: for a; € A;; and ay € Ay, let j = max{iy, iz}
(the total order on ¢ being induced by (A;, R;)icr being a chain), so
that a1, a2 € Aj, and we set a; Ryas if and only if a; R;as. This relation
is well defined: if it is also the case that a; € A; and ay € Ay with
J' = max{i}], %}, let J := max{yj, j'}; then

Gleag — a1 Rjay <— ale/ag,
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because the R; is an extension of both R; and Rj; by definition of the
partial order < on S.

All the axioms for Ry being a total order are satisfied because each
R; is a well-order. For example, totality is proven by noticing that for
each ay,a; € A there exist 4,7 € [ such that ay € A;, and for
j = max{ai,az} one obtains that a;,as € A;, so that either a;R;ay
(and then ay Roas) or asR;a; (and then asRpaq), as R; is a total order.
Consider now a non-empty subset Ay of Ag. Let ¢ € I be such that
AgoNA; # &. Then the set AggNA; C A; has a minimum ag; with respect
to R;. Let agp € Agp and let j € I be such that ao0 € A;. We want to show
that ag; Roago, so that we can prove that ag; is minimal element of Agg.
In order to show that ag; Roag it is enough to check that ag;2jag. This
is clearly the case if A; C A;, so assume that (A4;, R;) < (A, R;) strictly,
so that agy € A; \ A;. Suppose that agR;ag;. Then, by definition of <
on S, we get ag0 € A;, a contradiction, so that —agR,a; and by totality
of R; we have ag;Rjag. This allows us to deduce that (Ag, Ry) € S.
Finally, (A;, R;) < (Ag, Ro) for each i € I because A; C Aj by definition
of Ro.

By Zorn’s lemma, we obtain a maximal element (M, Ry) of (S,<) and we
now prove that M = S. Suppose by contradiction that S ~ M # &. Let
s € S~ M. On the set M U {s}, define the order for which ¢; R'ts if and only
ift) = sorty, ta € M and t; Rote. Then R’ is a well-order on M U{s}. Indeed,
it is a total order because the freshly added element can be compared with all
elements in M U {s} and, moreover, every subset of M U{s} has a minimum,
because either it is a subset of the well-ordered set (M, Ry) or it contains s
which satisfies sR't for each t € M U {s}.



