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Prof. Rahul Pandharipande

Solution 1
Arithmetic, Zorn’s Lemma.

1. (a) Using the Euclidean division, determine gcd(1602, 399).

(b) Find m0, n0 ∈ Z such that gcd(1602, 399) = 1602m0 + 399n0. [Hint: Write
the steps of the euclidean algorithm and compute ‘backwards’.]

(c) Similarly, determine gcd(123456, 876) and find m0, n0 ∈ Z such that

gcd(123456, 876) = 123456m0 + 876n0.

(d) Determine gcd(`2 + `+ 1, 3`2 + 4`+ 5) for each ` ∈ Z.

Solution:

(a) We perform the Euclidean division of 1602 by 399. Then we divide 399 by
the remainder and so on:

1602 = 4 · 399 + 6

399 = 66 · 6 + 3

6 = 2 · 3 + 0.

Then

gcd(1602, 399) = gcd(399, 6) = gcd(6, 3) = gcd(3, 0) = 3.

(b) By looking at the computations done in part (b), we obtain:

3 = 399− 66 · 6 = 399− 66 · (1602− 4 · 399) = 265 · 399− 66 · 1602.

(c) We compute

123456 = 140 · 876 + 816

876 = 816 + 60

816 = 13 · 60 + 36

60 = 36 + 24

36 = 24 + 12

24 = 2 · 12,

which implies that gcd(123456, 876) = 12. Then we express 12 by looking at
the above equations backwards:

12 = 36− 24 = 36− (60− 36) = −60 + 2 · 36 = −60 + 2 · (816− 13 · 60)

= 2 · 816− 27 · 60 = 2 · 816− 27 · (876− 816) = 29 · 816− 27 · 876

= 29 · (123456− 1401 · 876)− 27 · 876 = 29 · 123456− 4087 · 876.
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(d) We compute:

3`2 + 4`+ 5 = 3 · (`2 + `+ 1) + (`+ 2)

`2 + `+ 1 = (`− 1)(`+ 2) + 3.

This implies that

gcd(3`2 + 4`+ 5, `2 + `+ 1) = gcd(`2 + `+ 1, `+ 2) = gcd(`+ 2, 3).

Since 3 is a prime number, the greatest common divisor is either equal to 3
(if 3 | `+ 2) or 1 (if 3 - `+ 2). Hence we can conclude that

gcd(3`2 + 4`+ 5, `2 + `+ 1) =

{
1 if ` ≡ 0, 2 (mod 3)
3 if ` ≡ 1 (mod 3).

2. A Pythagorean triple is an ordered triple (a, b, c) of positive integers for which
a2 + b2 = c2. It is called primitive if a, b and c are coprime, that is, if there is no
integer d > 1 which divides a, b and c.

(a) Let 1 6 x < y be odd integers. Prove that(
xy,

y2 − x2

2
,
y2 + x2

2

)
(1)

is a Pythagorean triple.

(b) Suppose that x and y are also coprime. Prove that the Pythagorean triple
(1) is primitive.

*(c) Prove that all primitive Pythagorean triples are of the form (1) with coprime
odd integers 1 6 x < y, up to switching the first two entries. [Hint: Reduce
to the case in which a is odd. Prove that c+b

a
c−b
a

= 1 and write down c+b
a

= u
t

and c−b
a

= t
u

for coprime positive integers u > t. Find c
a

and b
a

in terms of t
and u.]

Solution:

(a) First, we notice that (1) consists of positive integers. Indeed, xy ∈ Z>0 as it
is the product of two positive integers, whereas x2 and y2 are odd numbers
because they are powers of odd numbers (e.g., the prime number 2 cannot
divide the integer x2 without dividing x), so that y2 +x2 and y2−x2 are even
numbers and the given fractions in (1) represent integers. It is also clear that
both numbers are positive as y > x > 0. Now we only need to check that the

identity a2 + b2 = c2 is satisfied for (a, b, c) =
(
xy, y

2−x2
2

, y
2+x2

2

)
. This can be

done as follows:

a2 + b2 = x2y2 +
y4 + 2x2y2 + x4

4
=
y4 − 2x2y2 + x4

4
=

(y2 − x2)2

4
= c2.
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(b) This is equivalent to check that for each prime number p there is an entry in
(1) which is not divided by p.

For p = 2 this is the case because xy is odd by assumption (as x and y are
both odd). Now assume by contraddiction that an odd prime p divides all

the entries in (1). Then p divides y2 + x2, because it divides y2+x2

2
. Moreover

p|xy, which implies that p|x or p|y. If p|x, then p|x2, so that it also divides
(y2 + x2) − x2 = y2 and being p prime it must divide y. If p|y we similarly
show that p|x. In any case, p divides both x and y, which is a contradiction
to the assumption that x and y are coprime. Hence p cannot divide all the
entries in (1) simultaneously, as we wanted to show.

(c) Let (a, b, c) be a primitive Pythagorean triple.

Suppose that a and b are both even. Then c2 = a2+b2 is even, too. This implies
that c is even, contradicting the hypothesis that (a, b, c) is primitive. Hence
at least one among the numbers a and b is odd and since we are allowed to
switch the first two entries in the Pythagorean triple, we can assume WLOG
that this is a.

The equality a2 + b2 = c2 is equivalent to 1 = c2

a2
− b2

a2
which reads

c+ b

a
· c− b

a
= 1. (2)

Since c+b
a
> 0, we can write c+b

a
= u

t
for coprime positive integers u and t.

Notice that c2 = a2 + b2 > a2, implying that c > a so that c+ b > c > a and
u > t. Moreover, (2) implies that c−b

a
= t

u
. Summing and subtracting the two

equations

c+ b

a
=
u

t
c− b
a

=
t

u

we obtain

b

a
=
u2 − t2

2ut
c

a
=
u2 + t2

2ut

Notice that primitivity of (a, b, c) implies that gcd(a, c) = 1, because any
common prime factor of a and c would divide b2 = c2 − a2 and hence b.
Similarly gcd(a, b) = 1. Moreover, since a is odd, 2 must divide u2 − t2 and
u2+t2. Now the same argument as in part (b) gives gcd(ut, u

2+t2

2
) = 1 because

u and t are coprime, and similarly we get gcd(ut, u
2−t2
2

) = 1.

The only possibility is that a = ut, c = u2+t2

2
and b = u2−t2

2
, so that we can

conclude by taking x = u and y = v.
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3. In this exercise we give a famous proof by Zagier of Fermat’s theorem on sums of
two squares. For m,n, r ∈ Z we say that m is congruent to r modulo n, and write
m ≡ r (mod n), if m− r ∈ nZ.

Theorem 0.1 (Fermat). Let p be an odd prime number. Then it is possible to
express p = x2 + y2 for some x, y ∈ Z if and only if p ≡ 1(mod 4).

Let X be a set. An involution of X is a map ϕ : X −→ X such that ϕ ◦ ϕ = idX .

(a) Prove: if X is finite and has odd cardinality, then every involution of X has
a fixed point.

(b) Prove: if X is finite and an involution of X has a unique fixed point, then
|X| is odd.

In parts (c)-(f), suppose that p ≡ 1 (mod 4) is a prime number. Let

Xp := {(x, y, z) ∈ Z3
>0 : x2 + 4yz = p}.

(c) Show that Xp is finite and non-empty.

(d) Show that the maps f, g : Xp −→ Xp sending

f : (x, y, z) 7−→


(x+ 2z, z, y − x− z) if x < y − z
(2y − x, y, x− y + z) if y − z < x < 2y
(x− 2y, x− y + z, y) if x > 2y

g : (x, y, z) 7−→ (x, z, y)

are well defined involutions.

(e) Let A = {(x, y, z) ∈ Xp : x < y − z}, B = {(x, y, z) ∈ Xp : y − z < x < 2y}
and C = {(x, y, z) ∈ Xp : x > 2y}. Prove that f(A) ⊆ C and f(C) ⊆ A.
Deduce that f(B) ⊆ B and use this to prove that f has a unique fixed point.

(f) Deduce that |Xp| is odd and conclude that the “if” statement holds.

(g) Prove that if p = x2 + y2 for x, y ∈ Z, then p ≡ 1(mod 4).

Solution:

(a) Let ϕ be an involution of X. Denote by Xϕ the set of fixed points of X, i.e.
Xϕ := {x ∈ X : ϕ(x) = x}. Then

X = Xϕ t {x ∈ X : ϕ(x) 6= x}. (3)

The set Y := {x ∈ X : ϕ(x) 6= x} has even cardinality, as can be checked by
induction on its cardinality:

• If Y = ∅, then |Y | = 0 is even and we are done.
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• Else fix y0 ∈ Y . Notice that ϕ(Y ) ⊆ Y as for y ∈ Y one can observe
that ϕ(ϕ(y)) = y 6= ϕ(y), so that ϕ(y) ∈ Y . Moreover, ϕ being an
involution, we see that {y0, ϕ(y0)} is mapped to itself by ϕ and so is
Y ′ := Y r{y0, ϕ(y0)} again because ϕ is an involution. Now consider the
involution ϕ′ of X given by

ϕ′(x) =

{
ϕ(x) x 6∈ {y0, ϕ(y0)}
x x ∈ {y0, ϕ(y0)}.

We have Xϕ′
= Xϕ t {y0, ϕ(y0)} so that {x ∈ X : ϕ′(x) 6= x} = Y ′ has

cardinality |Y ′| = |Y | − 2 < |Y | which by inductive hypothesis has even
cardinality. Hence |Y ′| has even cardinality as well.

Now if |X| is even, then |Xϕ| must be odd by what we have just showed
and (3), so that it cannot be empty. This means that there exists a fixed
point.

(b) If ϕ has a unique fixed point, then |Xϕ| = 1 is odd. Since {x ∈ X : ϕ(x) 6= x}
has even cardinality as seen in (a), equation (3) implies that |X| is odd.

(c) First of all, notice that for (x, y, z) ∈ Xp one has x 6= 0, y 6= 0 and z 6= 0.
Indeed, if x = 0 then 4yz = p, whereas for y = 0 or z = 0 we obtain
x2 = p, and both conclusions are impossible since p is prime. Then x, y, z
are all smaller than x2 + 4yz = p, so that they all lie in the set {1, . . . , p}.
Hence Xp is finite with at most p3 elements. Writing p = 1 + 4k, we see that
(1, 1, k) ∈ Xp which in turn is non-empty.

(d) Clearly, for (x, y, z) ∈ Xp one has (x, z, y) ∈ Xp and

g2(x, y, z) = g(x, z, y) = (x, y, z)

so that g is a well defined involution.

Let’s now deal with f . First notice that the three stated cases are disjoint and
cover all the possibilities: the equalities of coordinates x = y − z and x = 2y
are both impossible for (x, y, z) ∈ Xp. The former implies p = x2 + 4yz =
(y + z)2 whereas the latter implies that p = x2 + 4yz = 4y(y + z) and both
conclusions are a contradiction with primality of p. We use the claim from
the next point that f switches A and C and that it fixes B, which we prove
later together with the fact that ϕ actually maps elements of Xp in Xp, so
that it is well defined. We will denote (x′, y′, z′) := f(x, y, z). Then

• If (x, y, z) ∈ A, so that f(x, y, z) ∈ C, then

f 2(x, y, z) = f(x+ 2z, z, y − x− z) = (x′ − 2y′, x′ − y′ + z′, y′)

= (x+ 2z − 2z, x+ 2z − z + y − x− z, z) = (x, y, z).

• If (x, y, z) ∈ C, so that f(x, y, z) ∈ A, then

f 2(x, y, z) = f(x− 2y, x− y + z, y) = (x′ + 2z′, z′, y′ − x′ − z′)
= (x− 2y + 2y, y, x− y + z − (x− 2y)− y) = (x, y, z).
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• If (x, y, z) ∈ B, so that f(x, y, z) ∈ B, then

f 2(x, y, z) = f(2y − x, y, x− y + z) = (2y′ − x′, y′, x′ − y′ + z′)

= (2y − (2y − x), y, 2y − x− y + x− y + z) = (x, y, z).

(e) First, for each (x, y, z) in A, B or C, we prove that the image of (x, y, z)
is in Xp and precisely in the subset prescribed in the exercise. Again, for
(x, y, z) ∈ Xp, we use the notation (x′, y′, z′) = f(x, y, z).

• If (x, y, z) ∈ A, then x+ 2z, z and y − z − x are all non-negative and

x′2 + 4y′z′ = (x+ 2z)2 + 4z(y − x− z) = x2 + 4yz = p,

so that f(x, y, z) ∈ Xp. Moreover,

x′ − 2y′ = x > 0

This means that f(A) ⊆ C.

• If (x, y, z) ∈ B, then 2y − x, y and x− y + z are all non-negative and

x′2 + 4y′z′ = (2y − x)2 + 4y(x− y + z) = x2 + 4yz = p

y′ − z′ = 2y − x− z < 2y − x = x′ < 2y = 2y′,

so that f(x, y, z) ∈ B.

• If (x, y, z) ∈ C, then x− y + z > x > x− 2y > 0, y > 0 and

x′2 + 4y′z′ = (x− 2y)2 + 4(x− y + z)y = x2 + 4yz = p

x′ = x− 2y < (x− y + z)− y = y′ − z′

since z > 0, so that f(x, y, z) ∈ A.

Notice that assuming that f is an involution, then the fact that f switches
A and C already immediately implies that f(B) ⊆ B, because b = f(f(b))
cannot be in B if f(b) 6∈ B. However, since in part (d) we used all the three
inclusions that we have just proved in order to show that f is an involution, we
cannot skip the proof that f(B) ⊆ B, else there would be a circular argument.

Suppose that (x, y, z) ∈ Xp is a fixed point. Then it must belong to B but
what we have just proved. The map f on B extends to the Q-linear map
f̂ : Q3 −→ Q3 given by the matrix

M =

 −1 2 0
0 1 0
1 −1 1


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In order to find fixed points, we look at the eigenvectors associated to 1, that
is, at the subspace of Q3 described by the matrix

M − I =

 −2 2 0
0 0 0
1 −1 0

 .

Hence the fixed points of Xp are all those of the form (x, x, z) ∈ Z3
>0 which

satisfy x2 + 4xz = p and x − z < x < 2x. The inequality is always true
because x, z ∈ Z already remarked above, whereas the equality

p = x2 + 4xz = x(x+ 4z) (4)

implies that x = 1 and x+4z = p, since x < x+4z are two distinct factors of
p. This is true for x = 1 and for a unique value z = z0 for which p = 1 + 4z0
(which is the case by hypothesis on p). The unique fixed point of f is then
(1, 1, z0). Notice that it is in B.

(f) Parts (b), (c) and (e) together imply that |Xp| is odd. Then part (a) implies
that g has a fixed point (x0, y0, z0) ∈ Xp, which means y0 = z0. Hence there
exist x0, z0 ∈ Z>0 such that x20 + 4z20 = p. Let x = x0 and y = 2y0. Then
x2 + y2 = p as desired.

(g) If p = x2 + y2 is odd, then exactly one out of x and y is odd. WLOG suppose
it is x and write x = 2k + 1. Then x2 = 4k2 + 4k + 1. On the other hand,
y2 = 4` for some ` ∈ Z since 2 | y. Then p = 4k2 + 4k + 1 + 4`, which means
that p ≡ 1 (mod 4).

4. Let S be a set. A well-order on S is a total order on S such that every non-
empty subset S has a minimal element. For example, the natural order in N is a
well-order.

(a) Define a well-order on Z.

(b) Define a well-order on Q.

(c) Using Zorn’s lemma, prove that every set S admits a well-order. [Hint: Con-
sider the partially ordered set

S := {(A,R) : A ⊆ S, R is a well-order on A}

endowed with the partial order defined by

(A,R) 6 (A′, R′)
def.⇐⇒

(
A ⊆ A′;∀x, y ∈ A, xRy ⇐⇒ xR′y

and ∀a ∈ A, ∀a′ ∈ A′, a′R′a =⇒ a′ ∈ A

)
.

Check that (S,6) satisfies the hypotheses of Zorn’s lemma and get a maximal
element (M,R0). Prove that M = S.]
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Solution: For every bijection ϕ : S
∼−→ N, one can define a total order 6 on S via

s 6 t
def.⇐⇒ ϕ(s) 6 ϕ(t).

(a) Consider the bijection ϕ : Z −→ N sending 0 < k 7→ 2k− 1 and 0 > k 7→ 2k.
This is easily seen to be a bijection and it induces the following well-order on
Z:

0 6 1 6 −1 6 2 6 −2 6 3 6 −3 6 . . .

(b) One can construct a bijection ψ : Z −→ Q as follows:

• ψ(0) = 0;

• ψ(−n) = −ψ(n) for each n;

• write, for k ∈ Z>0,

Fk :=
{a
b
∈ Q : gcd(a, b) = 1, a+ b = k + 1

}
and denote fk := |Fk| < k + 1. Then the values of ψ(n) for n > 0 range,
in the order, on the sets F1 = {1}, F2 = {2, 1/2}, F3, . . . starting, in each
Fk, with the fraction of highest denominator. This means that ψ(n) ∈ Fk
if and only if

∑k−1
j=1 fj < n 6

∑k
j=1 fj, and in this case ψ(n) is equal to

the (n −
∑k−1

j=1 fj)-th element in Fk, the elements in Fk being ordered
with decreasing denominators.

The map ψ is a bijection because the Fj’s form a partition of Q>0. Considering
ϕ as in the previous part, the bijection ϕ◦ψ−1 : Q −→ N induces the following
well-order on Q:

0 6 1 6 −1 6
1

2
6 −1

2
6 2 6 −2 6

1

3
6 −1

3
6 3 6 −3 6

1

4
6 −1

4
6

2

3
6 . . .

(c) We follow the hint. We first notice that 6 defines a partial order on S:
reflexivity is clear, antisymmetry descends from the same property on sets
and transitivity is immediate by definition.

Now we check that (S,6) satisfies the hypothesis of Zorn’s lemma:

• S 6= ∅, as it contains (∅,∅).

• For every chain (Ai, Ri)i∈I ⊆ S, consider A0 =
⋃
i∈I Ai. Define a relation

R0 on A0 as follows: for a1 ∈ Ai1 and a2 ∈ Ai2 , let j = max{i1, i2}
(the total order on i being induced by (Ai, Ri)i∈I being a chain), so
that a1, a2 ∈ Aj, and we set a1R0a2 if and only if a1Rja2. This relation
is well defined: if it is also the case that a1 ∈ Ai′1 and a2 ∈ Ai′2 with
j′ = max{i′1, i′2}, let J := max{j, j′}; then

a1Rja2 ⇐⇒ a1RJa2 ⇐⇒ a1Rj′a2,
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because the RJ is an extension of both Rj and Rj′ by definition of the
partial order 6 on S.
All the axioms for R0 being a total order are satisfied because each
Ri is a well-order. For example, totality is proven by noticing that for
each a1, a2 ∈ A0 there exist i1, i2 ∈ I such that aλ ∈ Aiλ and for
j = max{a1, a2} one obtains that a1, a2 ∈ Aj, so that either a1Rja2
(and then a1R0a2) or a2Rja1 (and then a2R0a1), as Rj is a total order.
Consider now a non-empty subset A00 of A0. Let i ∈ I be such that
A00∩Ai 6= ∅. Then the set A00∩Ai ⊆ Ai has a minimum a0i with respect
to Ri. Let a00 ∈ A00 and let j ∈ I be such that a00 ∈ Aj. We want to show
that a0iR0a00, so that we can prove that a0i is minimal element of A00.
In order to show that a0iR0a00 it is enough to check that a0iRja00. This
is clearly the case if Aj ⊆ Ai, so assume that (Ai, Ri) 6 (Aj, Rj) strictly,
so that a00 ∈ Aj r Ai. Suppose that a00Rja0i. Then, by definition of 6
on S, we get a00 ∈ Ai, a contradiction, so that ¬a00Rja0i and by totality
of Rj we have a0iRja00. This allows us to deduce that (A0, R0) ∈ S.
Finally, (Ai, Ri) 6 (A0, R0) for each i ∈ I because Ai ⊆ A0 by definition
of R0.

By Zorn’s lemma, we obtain a maximal element (M,R0) of (S,6) and we
now prove that M = S. Suppose by contradiction that S r M 6= ∅. Let
s ∈ S rM . On the set M ∪ {s}, define the order for which t1R

′t2 if and only
if t1 = s or t1, t2 ∈M and t1R0t2. Then R′ is a well-order on M ∪{s}. Indeed,
it is a total order because the freshly added element can be compared with all
elements in M ∪{s} and, moreover, every subset of M ∪{s} has a minimum,
because either it is a subset of the well-ordered set (M,R0) or it contains s
which satisfies sR′t for each t ∈M ∪ {s}.
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