D-MATH Algebra I HS18
Prof. Rahul Pandharipande
Solution 5

PRIME AND MAXIMAL IDEALS, ARITHMETIC OF POLYNOMIALS

1. Let R be a commutative ring. Assume that there exists an ideal I C R such that
R*=R~N1I (1)

(a) Show that [ is a maximal ideal.
(b) Show that [ is the unique maximal ideal in R.

(c) Conversely, assume that [ is the unique maximal ideal of a commutative ring

R. Prove that R* = R ~ I holds.

We call a commutative ring R local if there is an ideal I = mpr C R satisfying (1)
(which as just shown is equivalent to asking that mg is the unique maximal ideal
of R). The field R/mp, is called the residue field of the local ring R.

Solution:

(a) Let I € J C R for some ideal J and suppose that J # R. Then, for each
g € J, either j € [ or j € R*. Since 5 € R* implies that 1 € J so that
J = R, the only possibility is that j € I, so that J C [ and I is maximal
because J was arbitrary.

(b) Let J C R be a maximal ideal, so that J # R. Then, as observed above, .J
does not contain units of R. This implies that J C I # R and by maximality
of J we obtain an equality J = 1.

(c) Suppose that [ is the unique maximal ideal of R. In particular, I is maximal,
so it does not contain any unit of R, meaning that R* C R~ I. Conversely,
assume that » € R~ [ and look at the ideal rR. If rR is a proper ideal, then
rR is contained in a maximal ideal of R which by assumption implies that
rR C I, a contradiction since r ¢ I. Hence rR = R, so that 1 € rR which
means that » € R*. This implies that R* D R~ 1.

2. Let p be a prime number and consider the set
Z(p):{xEQ:x:%forsomea,bGZ,pJ(b}.

(a) Show that Z, is a commutative ring.

(b) Show that Z,) is a local ring. Find its maximal ideal and its residue field.



Solution:

(a)

The set Z,) is embedded by definition in Q. We check that Z,) is a subring
of Q. Since p 1 1, we can take b = 1 and see that the set Z, contains all
the integers. In particular it contains 0 and 1. For every ¢, Z—,/ € L), with
p1b, b, the denominators of ¢ — % and 2% can both be taken to be bb'. As
p is a prime number, p { bb’, so that § — 2—:, %‘;—:
commutative because Q is.

If R is a local ring, then R~ R* = I must be an ideal of R by (1). Let us
compute Z(Xp ) Consider a fraction a/b € Z,), written with coprime a and b.
Since reducing a fraction with denominator not divisible by p gives a fraction
with denominator still not divisible by b, we necessarily have p 1 b. Then
a/b € ZX) if and only if the element b/a € Q belongs to Z,). Again by

(p
coprimality of a and b, this last condition means that p{ a. Hence

€ L) and Zy,) is a ring. It is

Ly ™ Z(Xp) = {% € L) : a,b € Z are coprime and p|a}

pa’ .
=1 € Z) : a,b € Z are coprime, p{ b

P
= {I T,T € Z(p)} = PLy),

which is the ideal in Z,) generated by p = .

The residue field is the ring Z,)/pZ,), which we compute by looking at the
first isomorphism theorem. Consider the ring homomorphism f defined as
the composition of ring homomorphisms

f1Z = Zy) — L) /pZLy).-

The kernel of f is seen to be pZ, so that the first isomorphism theorem induces
an isomorphism

Z/pZ — Tm(f).

We claim that f is surjective, which will let us conclude that the residue field
of Z) is isomorphic to IF,,.

In order to prove our claim, let a/b € Z,). We want to prove that § = m—i—p‘;—,/
for some integers m, a’, b’ such that p { /. This can be done by noticing that,
since p and b are coprime, there exist A\, u € Z such that 1 = A\p + ub. Then
the decomposition

a-1  a-(Ap+ pub) a\

a_ Captp 2
b b b —aTPy

lets us conclude that a/b + pZ) = f(ap). Hence f is surjective.
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3. Let R be a commutative ring and I, J ideals in R. Define the ideal

()
(b)
(c)

IJ:={ij:iel,je J})R.

Why is the set {ij : i € I,j € J} not necessarily an ideal?
Show that IJ C I N J and find an example in which the inclusion is strict.
Prove that if I and J are coprime, then I N J = 1J.

Solution:

(a)

The reason why the set {ij € R:i € I, j € J} is not itself an ideal is that
for 7,7/ € I and j,j" € J, the element ij + 7’7’ may not be decomposable
as 1pjo for some ig € I and j, € J. However, notice that if any of the
two ideals I and J is principal, then this special situation does not occur.
In order to find a counterexample, we need to consider non-principal ideals.
For instance, let R = (C[Xl,XQ,Xg,X4] and [ = (X17X2)7 J = (X37X4).
Then X;X3 + X5X, does not belong to {ij : i € I, j € J}, although both
X7 X5 and X5 X, belong to this set. Indeed, suppose by contradiction that
X1 X3+ XoX,=1djfori el andj € J. The total degrees of 7 and j add up to
2. Necessarily, 7, j # 0, and since the evaluation of all polynomials of I and J
on (Xi, Xy, X3, X4) = (0,0,0,0) is zero, then ¢ and j are non-constant. This
implies that deg(i) = deg(j) = 1 and moreover we can write i = A\; X7+ A X5
and 7 = A\3X3 + A\ Xy, for some A\, € C, u € {1,2,3,4}. Then we obtain an
equality

in C[ X1, Xy, X3, X4]. In particular, the equality of complex numbers AgA3 = 0
tells us that Ay = 0 or A3 = 0, but these conclusions are incompatible with
the other equalities A\;A3 = 1 and A\ Ay = 1, contradiction. Hence {ij : i €
I, 7 € J} is not an ideal in this case.

For each 7 € I and j € J, the element 75 € R must lie in / and J because
I and J are ideals. Hence {ij :i € I,j € J} C INJ, and since I N J is an
ideal, we can conclude that IJ C I N J. As suggested by the next part, I
and .J cannot be coprime, so we can consider some example in which I C J.
Then I NJ = I and we want that multiplication by elements in J makes the
ideal I smaller. It is then easy to come up with the following examples:

o R=Z/8Z,1 =4Z/8Z, J = 2Z/8Z. Then IJ = 8Z/8Z = 0 is the trivial
ideal, whereas I N J = I = 47 /87 is not trivial (the quotient R/I being
isomorphic to Z/47Z # 0 by exercise 5).

e R =R[X]|, [ = X°R[X], J = X?R[X]. Then IJ = X"R[X] is strictly
smaller than I N J = I = X°R[X].



(c) Now we suppose that I,.J are coprime ideals. In particular one can write
l=14jforsomei el and j€ J. Let x € INJ. Then
r=x-1=x(i+7j)=wi+zj=1ir+xj.
As x € I'NJ, both 1z and xj are in I.J, implying that € [.J. This proves

the equality of ideals, the other inclusion having been proven in part (b).

4. (a) Consider the polynomials p, ¢ € Q[X] defined by

p:—XS—gXQ—l—;X and ¢ =2X? — X — 3.
Compute the Euclidean division of p by q.
(b) Find a single generator of the principal ideal (p, ¢)Q[X]| C Q[X]

(¢) Let K = C(T). Compute the Euclidean division in K[X] of
f=X34+TX?—1byg=(1+T)X*-1.

(d) Using Euclidean division in F3[X]|, where F3 = Z/3Z is the field of three
elements, check that the ideals (X 42X + 1)F3[X] and (X? + X — 1)F3[X]
are coprime.

Solution:

(a) We compute the Euclidean division by starting with the highest degree and
adjusting the lower coefficients, as seen in class:

5 3 1 1 3 5 3
X3 X2+ X =-X(2X? - X — X4 X - X2+ 2X
2™ T3 2( 3>+2 T3 2 T3
1
:§X(2X2—X—3)—2X2+3X
1
:(§X—1>(2X2—X—3)—X—3+3X

1
:(§X—1> (2X* - X —3)+2X -3

so that we get quotient %X — 1 and remainder 2X — 3.

(b) From now on we will omit the ring when writing the ideal generated by some
element. Part (a) tells us that

5 3
(X3—§X2+§X,2X2—X—3> =(2X* - X —3,2X - 3) Cc Q[X].

We perform a further Euclidean division:
2X7 - X —3=X(2X -3)+3X - X -3=(X+1)(2X - 3),
so that (X® — 2X? + 323X, 2X% — X —3) = (2X — 3) C Q[X].
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(c) We use the Euclidean method over the field of functions C(T').

1 1
f:X3+TX2—1:H—TX((1+T)X2—1)+1+—TX+TX2—1

:( ! X + ! )((1+T)X2—1)+;X—1+L

1+T 1+T 1+T 1+T

1 T 1 1
= X X — :
(1+T +1+T>g+1+T 1+T
(d) We compute the Euclidean division of u := X4 +2X +1byv:= X?+X —1
in ]FS[X]

X' 42X +1=X*(X?+X-1) - X3+ X2 +2X +1
=X -X)( X+ X -1+ X - X+ X*+2X +1
=(X?-X+2)(X?+X—-1)-2X+2+ X +1
= (X2 - X+2)(X?+ X —1) +2X.

Hence (X4 +2X +1, X2+ X -1)=(X?+X -1, -X)=(X?+X-1,X) =
(—1,X) = (—1) = F3[X], so that the two given ideals are coprime.

5. Let R be a commutative ring and I C R an ideal.
(a) Show that for J C R an ideal containing I, there is an isomorphism
(R/I)/(J/I) = R/J.

(b) Show that the maximal (resp., prime) ideals of R/I are the ideals J/I where
J C R is a maximal (resp., prime) ideal containing I.

Solution:

(a) Since I C J and J is the kernel of the canonical projection p; : R — R/J,
this projection factors through R/I, i.e., there is a commutative diagram

R—> R[]
R/T

where p; is the canonical projection. The map f: R/I — R/.J is surjective
because p; is surjective. Moreover,

ker(f)={r+I,reR:r+J=J}={r+1,r€J}=J/I,

so that by the first isomorphism theorem the map f induces a ring isomor-
phism

o: (R/D)/(J/I) = R/J.
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(b) As seen in class, the ideals of R/I are all J/I where J are ideals of R con-
taining I. Notice that, for such an ideal I C J C R, the ideal J/I is prime
(resp., maximal) if and only if (R/I)/(J/I) is an integral domain (resp., a
field). The latter condition is equivalent to R/J being an integral domain
(resp., a field), because of the isomorphism ¢ from part (a). Finally, the last
condition is equivalent to J being a prime (resp., maximal) ideal in R, which
proves the desired statement.

6. Find all the ideals of Z/8Z. Which are prime? Which are maximal?

Solution: The ideals of Z/8Z are J/8Z where J C Z is an ideal containing 8Z.
Since the ideals of Z are all principal, we look for J = aZ C 87, which is equivalent
to al8. Since a change of sign in a gives the same J (as —1 € Z*), we have the
four possibilities a € {1,2,4,8}. This gives four ideals Z/87, 27./8Z, 47 /87 and
8Z/8Z = (0). By Exercise 5b), the ideal J/8Z C Z/8Z is prime (resp., maximal)
if and only if J C Z is prime (resp., maximal). Hence

e The ideal 2Z C Z is prime and maximal, so that 2Z/8Z C Z/8Z is a prime
and maximal ideal.

e The ideals Z,47,87 C 7 are neither prime nor maximal, so that the ideals
7.)87,47. /87, (0) C Z/8Z are neither prime nor maximal.

7. Which of the following ideals of Z/4Z[X]| are prime? Which are maximal? [Hint:
quotient ring]

(a) (X,2)(Z/4Z[X]) C Z/AZ[X];
(b) 2(Z/4Z[X]) C Z/AZX];

(c) (X —1)(Z/4Z[X]) C Z/AZ[X].
Solution:

(a) The surjective ring homomorphism Z/4Z — Z/2Z reducing all classes mod-
ulo 2 induces a surjective ring homomorphism

¢ : ZJAZIX] — 727

sending X — 0. Writing a general polynomial f € Z/4Z[X| as f = a+ Xg
for some a € Z/AZ and g € Z/AZ[X], we notice that ¢(f) = 0 if and only if
a € 2Z/4Z, in which case f € (2,X). As ¢(2) = ¢(X) = 0, we deduce that
ker(p) = (2, X)Z/4Z[X] and the first isomorphism theorem reads

ZJAZ[X]/((2, X)ZJAZ| X)) = 7.)27.

Since the latter is a field, the ideal (2, X)Z/4Z[X] is maximal (and in partic-
ular prime).



(b) The ideal 2(Z/4Z]X]) is the kernel of the unique ring homomorphism
ZJALIX] — Z)27]X]

which sends X ~ X and constant elements to their reduction modulo 2.
Since this ring homomorphism is surjective, the first isomorphism theorem
reads

(ZJAZ[ X)) (2Z/4Z| X)) — Z./2Z[X).

As Z/27[X] is an integral domain (because Z/2Z[X] is a domain) but not a
field, the ideal 2(Z/47Z[X]) of Z/AZ]X] is prime but not maximal.

(c¢) Consider the evaluation at 1, that is, the unique ring homomorphism
evy : ZJAZIX]| — Z]AZ

which is the identity on constant polynomials and sends X — 1. As seen in
the Hint to Assignment 3, Exercise 5(d), each polynomial f € Z/4Z[X] can be
written as f = (X —1)g+ f(1). This tells us that ker(evy) = (X —1)Z/4Z[X]
and since evy is surjective, the first isomorphism theorem reads

ZJAZIX) /(X — 1)Z/AZ]X]) > Z/4Z,

by which we can conclude that (X — 1)Z/4Z[X] is neither prime neither
maximal, as Z/47 is not an integral domain.

8. Let Ry, Ry be two commutative rings and R = R; X Ry. Let I C R be an ideal
and define

IL:={a€R: (a,0) €I} C Ry
IQ = {bGRQi (O,b)EI}CRQ

(a) Show that Iy, I are ideals in R and that [ = I X .

(b) Prove that the ideal I is maximal (resp., prime) if and only if either I = R,
and I, is maximal (resp., prime) or I, = Ry and [; is maximal (resp., prime).

Solution:

(a) Clearly, 0 € I; as (0,0) € [ since [ is an ideal. For each 4,7’ € I, we know
that (¢,0), (¢/,0) € I so that

(1,0) — (¢/,0) = (i —¢',0) € I
and ¢ — i’ € I,. Finally, for » € R;, we know that
(2,0) - (r,0) = (ir,0) € I,

which implies that ¢r € I;. This concludes the proof that I, is an ideal. The
analog argument on the second component proves that I is an ideal. We
prove the equality I = I; x I, by checking the two inclusion:
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e For each i; € I and iy € Iy, by definition we know that (i, 0), (0,i2) € I.
Then (i1,i2) = (i1,0) + (0,i2) € I. This proves that I D I} X Is.

e Conversely, let (i1,72) € I. Since [ is an ideal, it contains both (i1, s) -
(1,0) = (i1,0) and (i1,42) - (0,1) = (0, 42), which implies that i; € I; and
ig € Iy, i.e., (i1,12) € I X I5. This prooves that I C I} x I5.

(b) Notice that combining the two natural projections R; — R;/I; we get a
surjective ring homomorphism

R:R1XR2—>R1/11XR2/]2 (2)

with kernel I} x I, = I by part (a). Hence R/I = Ry /I; X Ry/I5 by the first
isomorphism theorem. Notice that if I, = R, then this isomorphism tells us
that R/I = Ry/I;, so that [ is prime (resp., maximal) if and only if [; is
prime (resp., maximal), because this condition is equivalent to the quotient
ring being a domain (resp., a field). Similarly, for I; = R; we get that [ is
prime (resp., maximal) if and only if I, is prime (resp., maximal).

In order to conclude, we need to check that either Iy = Ry or Iy = Ry
whenever [ is prime. This is because of the isomorphism R/I = Ry /Iy X Ry /I
that we proved above. Indeed, the two rings R;/I; and Rs/I; cannot be both
non-trivial, because otherwise their product would contain the two non-zero
elements (1,0) and (0, 1) with product 0, which is a contradiction with R/
being a domain (as [ is assumed to be prime). Hence either R;/I; = 0 or
Ry /I, = 0, that is, either I} = Ry or I = Rs.



