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Prof. Rahul Pandharipande

Solution 5

Prime and maximal ideals, Arithmetic of polynomials

1. Let R be a commutative ring. Assume that there exists an ideal I ⊂ R such that

R× = Rr I (1)

(a) Show that I is a maximal ideal.

(b) Show that I is the unique maximal ideal in R.

(c) Conversely, assume that I is the unique maximal ideal of a commutative ring
R. Prove that R× = Rr I holds.

We call a commutative ring R local if there is an ideal I = mR ⊂ R satisfying (1)
(which as just shown is equivalent to asking that mR is the unique maximal ideal
of R). The field R/mR is called the residue field of the local ring R.

Solution:

(a) Let I ⊂ J ⊂ R for some ideal J and suppose that J 6= R. Then, for each
j ∈ J , either j ∈ I or j ∈ R×. Since j ∈ R× implies that 1 ∈ J so that
J = R, the only possibility is that j ∈ I, so that J ⊂ I and I is maximal
because J was arbitrary.

(b) Let J ⊂ R be a maximal ideal, so that J 6= R. Then, as observed above, J
does not contain units of R. This implies that J ⊂ I 6= R and by maximality
of J we obtain an equality J = I.

(c) Suppose that I is the unique maximal ideal of R. In particular, I is maximal,
so it does not contain any unit of R, meaning that R× ⊂ Rr I. Conversely,
assume that r ∈ Rr I and look at the ideal rR. If rR is a proper ideal, then
rR is contained in a maximal ideal of R which by assumption implies that
rR ⊂ I, a contradiction since r 6∈ I. Hence rR = R, so that 1 ∈ rR which
means that r ∈ R×. This implies that R× ⊃ Rr I.

2. Let p be a prime number and consider the set

Z(p) =
{
x ∈ Q : x =

a

b
for some a, b ∈ Z, p - b

}
.

(a) Show that Z(p) is a commutative ring.

(b) Show that Z(p) is a local ring. Find its maximal ideal and its residue field.
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Solution:

(a) The set Z(p) is embedded by definition in Q. We check that Z(p) is a subring
of Q. Since p - 1, we can take b = 1 and see that the set Z(p) contains all

the integers. In particular it contains 0 and 1. For every a
b
, a

′

b′
∈ Z(p), with

p - b, b′, the denominators of a
b
− a′

b′
and a

b
a′

b′
can both be taken to be bb′. As

p is a prime number, p - bb′, so that a
b
− a′

b′
, a
b
a′

b′
∈ Z(p) and Z(p) is a ring. It is

commutative because Q is.

(b) If R is a local ring, then R r R× = I must be an ideal of R by (1). Let us
compute Z×(p). Consider a fraction a/b ∈ Z(p), written with coprime a and b.
Since reducing a fraction with denominator not divisible by p gives a fraction
with denominator still not divisible by b, we necessarily have p - b. Then
a/b ∈ Z×(p) if and only if the element b/a ∈ Q belongs to Z(p). Again by

coprimality of a and b, this last condition means that p - a. Hence

Z(p) r Z×(p) =
{a
b
∈ Z(p) : a, b ∈ Z are coprime and p|a

}
=

{
pa′

b
∈ Z(p) : a, b ∈ Z are coprime, p - b

}
=
{p

1
· x, x ∈ Z(p)

}
= pZ(p),

which is the ideal in Z(p) generated by p = p
1
.

The residue field is the ring Z(p)/pZ(p), which we compute by looking at the
first isomorphism theorem. Consider the ring homomorphism f defined as
the composition of ring homomorphisms

f : Z ↪→ Z(p) −→ Z(p)/pZ(p).

The kernel of f is seen to be pZ, so that the first isomorphism theorem induces
an isomorphism

Z/pZ ∼−→ Im(f).

We claim that f is surjective, which will let us conclude that the residue field
of Z(p) is isomorphic to Fp.

In order to prove our claim, let a/b ∈ Z(p). We want to prove that a
b

= m+pa′

b′

for some integers m, a′, b′ such that p - b′. This can be done by noticing that,
since p and b are coprime, there exist λ, µ ∈ Z such that 1 = λp + µb. Then
the decomposition

a

b
=
a · 1
b

=
a · (λp+ µb)

b
= aµ+ p · aλ

b

lets us conclude that a/b+ pZ(p) = f(aµ). Hence f is surjective.
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3. Let R be a commutative ring and I, J ideals in R. Define the ideal

IJ := ({ij : i ∈ I, j ∈ J})R.

(a) Why is the set {ij : i ∈ I, j ∈ J} not necessarily an ideal?

(b) Show that IJ ⊂ I ∩ J and find an example in which the inclusion is strict.

(c) Prove that if I and J are coprime, then I ∩ J = IJ .

Solution:

(a) The reason why the set {ij ∈ R : i ∈ I, j ∈ J} is not itself an ideal is that
for i, i′ ∈ I and j, j′ ∈ J , the element ij + i′j′ may not be decomposable
as i0j0 for some i0 ∈ I and j0 ∈ J . However, notice that if any of the
two ideals I and J is principal, then this special situation does not occur.
In order to find a counterexample, we need to consider non-principal ideals.
For instance, let R = C[X1, X2, X3, X4] and I = (X1, X2), J = (X3, X4).
Then X1X3 + X2X4 does not belong to {ij : i ∈ I, j ∈ J}, although both
X1X3 and X2X4 belong to this set. Indeed, suppose by contradiction that
X1X3+X2X4 = ij for i ∈ I and j ∈ J . The total degrees of i and j add up to
2. Necessarily, i, j 6= 0, and since the evaluation of all polynomials of I and J
on (X1, X2, X3, X4) = (0, 0, 0, 0) is zero, then i and j are non-constant. This
implies that deg(i) = deg(j) = 1 and moreover we can write i = λ1X1 +λ2X2

and j = λ3X3 + λ4X4, for some λu ∈ C, u ∈ {1, 2, 3, 4}. Then we obtain an
equality

X1X3 +X2X4 = λ1λ3X1X3 + λ1λ4X1X4 + λ2λ3X2X3 + λ2λ4X2X4

in C[X1, X2, X3, X4]. In particular, the equality of complex numbers λ2λ3 = 0
tells us that λ2 = 0 or λ3 = 0, but these conclusions are incompatible with
the other equalities λ1λ3 = 1 and λ2λ4 = 1, contradiction. Hence {ij : i ∈
I, j ∈ J} is not an ideal in this case.

(b) For each i ∈ I and j ∈ J , the element ij ∈ R must lie in I and J because
I and J are ideals. Hence {ij : i ∈ I, j ∈ J} ⊂ I ∩ J , and since I ∩ J is an
ideal, we can conclude that IJ ⊂ I ∩ J . As suggested by the next part, I
and J cannot be coprime, so we can consider some example in which I ⊂ J .
Then I ∩ J = I and we want that multiplication by elements in J makes the
ideal I smaller. It is then easy to come up with the following examples:

• R = Z/8Z, I = 4Z/8Z, J = 2Z/8Z. Then IJ = 8Z/8Z = 0 is the trivial
ideal, whereas I ∩ J = I = 4Z/8Z is not trivial (the quotient R/I being
isomorphic to Z/4Z 6= 0 by exercise 5).

• R = R[X], I = X5R[X], J = X2R[X]. Then IJ = X7R[X] is strictly
smaller than I ∩ J = I = X5R[X].
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(c) Now we suppose that I, J are coprime ideals. In particular one can write
1 = i+ j for some i ∈ I and j ∈ J . Let x ∈ I ∩ J . Then

x = x · 1 = x(i+ j) = xi+ xj = ix+ xj.

As x ∈ I ∩ J , both ix and xj are in IJ , implying that x ∈ IJ . This proves
the equality of ideals, the other inclusion having been proven in part (b).

4. (a) Consider the polynomials p, q ∈ Q[X] defined by

p := X3 − 5

2
X2 +

3

2
X and q = 2X2 −X − 3.

Compute the Euclidean division of p by q.

(b) Find a single generator of the principal ideal (p, q)Q[X] ⊆ Q[X]

(c) Let K = C(T ). Compute the Euclidean division in K[X] of

f = X3 + TX2 − 1 by g = (1 + T )X2 − 1.

(d) Using Euclidean division in F3[X], where F3 = Z/3Z is the field of three
elements, check that the ideals (X4 + 2X + 1)F3[X] and (X2 +X − 1)F3[X]
are coprime.

Solution:

(a) We compute the Euclidean division by starting with the highest degree and
adjusting the lower coefficients, as seen in class:

X3 − 5

2
X2 +

3

2
X =

1

2
X(2X2 −X − 3) +

1

2
X2 +

3

2
X − 5

2
X2 +

3

2
X

=
1

2
X(2X2 −X − 3)− 2X2 + 3X

=

(
1

2
X − 1

)
(2X2 −X − 3)−X − 3 + 3X

=

(
1

2
X − 1

)
(2X2 −X − 3) + 2X − 3

so that we get quotient 1
2
X − 1 and remainder 2X − 3.

(b) From now on we will omit the ring when writing the ideal generated by some
element. Part (a) tells us that(

X3 − 5

2
X2 +

3

2
X, 2X2 −X − 3

)
= (2X2 −X − 3, 2X − 3) ⊂ Q[X].

We perform a further Euclidean division:

2X2 −X − 3 = X(2X − 3) + 3X −X − 3 = (X + 1)(2X − 3),

so that
(
X3 − 5

2
X2 + 3

2
X, 2X2 −X − 3

)
= (2X − 3) ⊂ Q[X].
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(c) We use the Euclidean method over the field of functions C(T ).

f = X3 + TX2 − 1 =
1

1 + T
X((1 + T )X2 − 1) +

1

1 + T
X + TX2 − 1

=

(
1

1 + T
X +

T

1 + T

)
((1 + T )X2 − 1) +

1

1 + T
X − 1 +

T

1 + T

=

(
1

1 + T
X +

T

1 + T

)
g +

1

1 + T
X − 1

1 + T
.

(d) We compute the Euclidean division of u := X4 + 2X + 1 by v := X2 +X − 1
in F3[X]:

X4 + 2X + 1 = X2(X2 +X − 1)−X3 +X2 + 2X + 1

= (X2 −X)(X2 +X − 1) +X2 −X +X2 + 2X + 1

= (X2 −X + 2)(X2 +X − 1)− 2X + 2 +X + 1

= (X2 −X + 2)(X2 +X − 1) + 2X.

Hence (X4 + 2X + 1, X2 +X − 1) = (X2 +X − 1,−X) = (X2 +X − 1, X) =
(−1, X) = (−1) = F3[X], so that the two given ideals are coprime.

5. Let R be a commutative ring and I ⊂ R an ideal.

(a) Show that for J ⊂ R an ideal containing I, there is an isomorphism

(R/I)/(J/I)
∼→ R/J.

(b) Show that the maximal (resp., prime) ideals of R/I are the ideals J/I where
J ⊂ R is a maximal (resp., prime) ideal containing I.

Solution:

(a) Since I ⊆ J and J is the kernel of the canonical projection pJ : R −→ R/J ,
this projection factors through R/I, i.e., there is a commutative diagram

R
pJ
> R/J

R/I

pI
∨

f
>

where pI is the canonical projection. The map f : R/I −→ R/J is surjective
because pJ is surjective. Moreover,

ker(f) = {r + I, r ∈ R : r + J = J} = {r + I, r ∈ J} = J/I,

so that by the first isomorphism theorem the map f induces a ring isomor-
phism

ϕ : (R/I)/(J/I)
∼→ R/J.
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(b) As seen in class, the ideals of R/I are all J/I where J are ideals of R con-
taining I. Notice that, for such an ideal I ⊂ J ⊂ R, the ideal J/I is prime
(resp., maximal) if and only if (R/I)/(J/I) is an integral domain (resp., a
field). The latter condition is equivalent to R/J being an integral domain
(resp., a field), because of the isomorphism ϕ from part (a). Finally, the last
condition is equivalent to J being a prime (resp., maximal) ideal in R, which
proves the desired statement.

6. Find all the ideals of Z/8Z. Which are prime? Which are maximal?

Solution: The ideals of Z/8Z are J/8Z where J ⊂ Z is an ideal containing 8Z.
Since the ideals of Z are all principal, we look for J = aZ ⊂ 8Z, which is equivalent
to a|8. Since a change of sign in a gives the same J (as −1 ∈ Z×), we have the
four possibilities a ∈ {1, 2, 4, 8}. This gives four ideals Z/8Z, 2Z/8Z, 4Z/8Z and
8Z/8Z = (0). By Exercise 5b), the ideal J/8Z ⊂ Z/8Z is prime (resp., maximal)
if and only if J ⊂ Z is prime (resp., maximal). Hence

• The ideal 2Z ⊂ Z is prime and maximal, so that 2Z/8Z ⊂ Z/8Z is a prime
and maximal ideal.

• The ideals Z, 4Z, 8Z ⊂ Z are neither prime nor maximal, so that the ideals
Z/8Z, 4Z/8Z, (0) ⊂ Z/8Z are neither prime nor maximal.

7. Which of the following ideals of Z/4Z[X] are prime? Which are maximal? [Hint:
quotient ring]

(a) (X, 2)(Z/4Z[X]) ⊂ Z/4Z[X];

(b) 2(Z/4Z[X]) ⊂ Z/4Z[X];

(c) (X − 1)(Z/4Z[X]) ⊂ Z/4Z[X].

Solution:

(a) The surjective ring homomorphism Z/4Z −→ Z/2Z reducing all classes mod-
ulo 2 induces a surjective ring homomorphism

ϕ : Z/4Z[X] −→ Z/2Z

sending X 7→ 0. Writing a general polynomial f ∈ Z/4Z[X] as f = a + Xg
for some a ∈ Z/4Z and g ∈ Z/4Z[X], we notice that ϕ(f) = 0 if and only if
a ∈ 2Z/4Z, in which case f ∈ (2, X). As ϕ(2) = ϕ(X) = 0, we deduce that
ker(ϕ) = (2, X)Z/4Z[X] and the first isomorphism theorem reads

Z/4Z[X]/((2, X)Z/4Z[X])
∼−→ Z/2Z.

Since the latter is a field, the ideal (2, X)Z/4Z[X] is maximal (and in partic-
ular prime).
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(b) The ideal 2(Z/4Z[X]) is the kernel of the unique ring homomorphism

Z/4Z[X] −→ Z/2Z[X]

which sends X 7→ X and constant elements to their reduction modulo 2.
Since this ring homomorphism is surjective, the first isomorphism theorem
reads

(Z/4Z[X])/(2Z/4Z[X])
∼−→ Z/2Z[X].

As Z/2Z[X] is an integral domain (because Z/2Z[X] is a domain) but not a
field, the ideal 2(Z/4Z[X]) of Z/4Z[X] is prime but not maximal.

(c) Consider the evaluation at 1, that is, the unique ring homomorphism

ev1 : Z/4Z[X] −→ Z/4Z

which is the identity on constant polynomials and sends X 7→ 1. As seen in
the Hint to Assignment 3, Exercise 5(d), each polynomial f ∈ Z/4Z[X] can be
written as f = (X−1)g+f(1). This tells us that ker(ev1) = (X−1)Z/4Z[X]
and since ev1 is surjective, the first isomorphism theorem reads

Z/4Z[X]/((X − 1)Z/4Z[X])
∼−→ Z/4Z,

by which we can conclude that (X − 1)Z/4Z[X] is neither prime neither
maximal, as Z/4Z is not an integral domain.

8. Let R1, R2 be two commutative rings and R = R1 × R2. Let I ⊂ R be an ideal
and define

I1 := {a ∈ R1 : (a, 0) ∈ I} ⊂ R1

I2 := {b ∈ R2 : (0, b) ∈ I} ⊂ R2.

(a) Show that I1, I2 are ideals in R and that I = I1 × I2.
(b) Prove that the ideal I is maximal (resp., prime) if and only if either I1 = R1

and I2 is maximal (resp., prime) or I2 = R2 and I1 is maximal (resp., prime).

Solution:

(a) Clearly, 0 ∈ I1 as (0, 0) ∈ I since I is an ideal. For each i, i′ ∈ I1, we know
that (i, 0), (i′, 0) ∈ I so that

(i, 0)− (i′, 0) = (i− i′, 0) ∈ I

and i− i′ ∈ I1. Finally, for r ∈ R1, we know that

(i, 0) · (r, 0) = (ir, 0) ∈ I,

which implies that ir ∈ I1. This concludes the proof that I1 is an ideal. The
analog argument on the second component proves that I2 is an ideal. We
prove the equality I = I1 × I2 by checking the two inclusion:
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• For each i1 ∈ I1 and i2 ∈ I2, by definition we know that (i1, 0), (0, i2) ∈ I.
Then (i1, i2) = (i1, 0) + (0, i2) ∈ I. This proves that I ⊃ I1 × I2.
• Conversely, let (i1, i2) ∈ I. Since I is an ideal, it contains both (i1, i2) ·

(1, 0) = (i1, 0) and (i1, i2) · (0, 1) = (0, i2), which implies that i1 ∈ I1 and
i2 ∈ I2, i.e., (i1, i2) ∈ I1 × I2. This prooves that I ⊂ I1 × I2.

(b) Notice that combining the two natural projections Ri −→ Ri/Ii we get a
surjective ring homomorphism

R = R1 ×R2 −→ R1/I1 ×R2/I2 (2)

with kernel I1 × I2 = I by part (a). Hence R/I ∼= R1/I1 ×R2/I2 by the first
isomorphism theorem. Notice that if I2 = R2, then this isomorphism tells us
that R/I ∼= R1/I1, so that I is prime (resp., maximal) if and only if I1 is
prime (resp., maximal), because this condition is equivalent to the quotient
ring being a domain (resp., a field). Similarly, for I1 = R1 we get that I is
prime (resp., maximal) if and only if I2 is prime (resp., maximal).

In order to conclude, we need to check that either I1 = R1 or I2 = R2

whenever I is prime. This is because of the isomorphism R/I ∼= R1/I1×R2/I2
that we proved above. Indeed, the two rings R1/I1 and R2/I2 cannot be both
non-trivial, because otherwise their product would contain the two non-zero
elements (1, 0) and (0, 1) with product 0, which is a contradiction with R/I
being a domain (as I is assumed to be prime). Hence either R1/I1 = 0 or
R2/I2 = 0, that is, either I1 = R1 or I2 = R2.
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