Algebra I

Solution 7

GROUPS, SUBGROUPS, GROUP HOMOMORPHISM

1. Prove that the map $f : \mathbb{R} \longrightarrow \mathbb{C}^{\times}$, defined by $f(x) := e^{ix}$ is a group homomorphism. Find its kernel and its image.

Solution: A basic property of the exponential of complex numbers tells us that $e^{i(x+y)} = e^{ix}e^{iy}$, so that f is a group homomorphism. Since $e^{ix} = \cos(x) + i\sin(x)$, we deduce that $e^{ix} = 1$ if and only if $\cos(x) = 1$ and $\sin(x) = 0$, i.e., if and only if $x \in 2\pi\mathbb{Z}$. This means that $\ker(f) = 2\pi\mathbb{Z}$. As concerns the image, notice that $e^{ix} = \cos(x) + i\sin(x)$, for $x \in \mathbb{R}$, is a parametrization of the unit circle of the complex plane, so that

$$\operatorname{Im}(f) = \{a + ib \in \mathbb{C} \text{ such that } a^2 + b^2 = 1\}.$$

- 2. Find the order of the following elements:
 - (a) $i, e^{i\sqrt{3}\pi}$ and $e^{\frac{2\pi i}{17}}$ in the group \mathbb{C}^{\times} ; (b) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$ in the group $\operatorname{GL}_2(\mathbb{C})$; (c) 1, 2 and 3 in \mathbb{F}_{17}^{\times} .

Solution:

(a) By definition, $i^2 = -1 \neq 1$, so that $i^4 = 1$, as $i^3 = -i \neq 1$, we can conclude that *i* has order 4. For $r \in \mathbb{R}$, we know that $e^{ir} = 1$ if and only if $r = 2\pi k$ for some $k \in \mathbb{Z}$, as noticed in the Solution to Exercise 1. Let $n \in \mathbb{Z}_{>0}$ and consider

$$w_n := (e^{i\sqrt{3}\pi})^n = e^{i\sqrt{3}n\pi}$$
 and $z_n := (e^{\frac{2\pi i}{17}})^n = e^{\frac{2\pi i}{17}n}$

The exponent in the former complex number cannot be of the form $2\pi ik$ for some integer k, because an equality $2\pi ik = i\sqrt{3}\pi q$ implies that $\sqrt{3} \in \mathbb{Q}$, which is false¹. This implies that $e^{i\sqrt{3}\pi}$ has infinite order. On the other hand, it is clear that $z_{17} = 1$, and that $\frac{2\pi i}{17}n = 2\pi ik$ for some integer k if and only if 17|n, so that the order of $e^{\frac{2\pi i}{17}}$ is 17.

¹Suppose that $\sqrt{3} \in \mathbb{Q}$ and write $\sqrt{3} = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$. Then $a^2 = 3b^2$. Looking at the decomposition into prime numbers of the two sides, we see that 3 appears an even number of times on the left and an odd number of times of the right, contradiction.

- (b) Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$. By induction, one can prove that $A^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$. This implies that $A^n \neq \operatorname{Id}_n$ for $n \in \mathbb{Z}_{>0}$, so that A has infinite order. The matrix B has infinite order as well, because det(B) = 5, so that det $(B^n) = 5^n$ as seen in Linear Algebra, so that $B^n \neq \operatorname{Id}_2$ for n > 0 because det $(\operatorname{Id}_2) = 1$.
- (c) Since 1 is the neutral element of \mathbb{F}_{17}^{\times} , it has order 1 by definition. For the other two elements, we consider some of their powers modulo 17.

$$2^2 = 4, \ 2^3 = 8, \ 2^4 = 16 = -1, \ 2^8 = (-1)^2 = 1.$$

Notice that for $k \in \{5, 6, 7\}$, we can say for sure that $2^k \neq 1$, because else $2^{8-k} = 2^8 \cdot (2^k)^{-1} = 1$, which contradicts the above computed lower powers of 2. This implies that $\operatorname{ord}_{\mathbb{F}_{2}^{\times}}(2) = 8$.

$$3^2 = 9, \ 3^3 = 27 = 10, \ 3^4 = 30 = 13 = -4, \ 3^8 = 16 = -1, \ 3^{16} = 1.$$

Notice that for $h \in \{12, 13, 14, 15\}$ we can write $(3^h)^{-1} = 3^{16-h} \neq -1$ because of computations above. Moreover, for $h \in \{1, 2, 3, 4, 5, 6, 7\}$, there is an equality $3^{8+k} = 3^8 \cdot 3^k = -3^k$, from which we deduce that $3^\ell \neq 1$ for $4 < \ell < 12$ as well, so that $\operatorname{ord}_{\mathbb{F}_{12}^{\times}}(3) = 16$.

3. Let p be a prime number. Show that the cardinality of $\operatorname{GL}_2(\mathbb{F}_p)$ is equal the number of ordered bases (e_1, e_2) of \mathbb{F}_p^2 as a \mathbb{F} -vector space, and that

$$\operatorname{Card}(\operatorname{GL}_2(\mathbb{F}_p)) = (p-1)^2 p(p+1).$$

Solution: Let $b_1 = (1,0), b_2 = (0,1)$ be the canonical \mathbb{F}_p -basis of \mathbb{F}_p^2 . An automorphism φ of \mathbb{F}_p^2 is uniquely determined by the images of b_1 and b_2 . Let $e_i = \varphi(b_i)$ for i = 1, 2. Then (e_1, e_2) must be a basis of \mathbb{F}_p^2 as well because those two vectors generate the image which coincides with \mathbb{F}_p^2 . This proves the first part of the statement. The number of \mathbb{F}_p -bases of \mathbb{F}_p^2 is $(p^2 - 1)(p^2 - p)$, because e_1 can be freely chosen among the $p^2 - 1$ non-zero vectors in \mathbb{F}_p^2 and then e_2 can be taken to be any vector which is not one of the p multiples of e_1 . Hence

Card(GL₂(
$$\mathbb{F}_p$$
)) = $(p^2 - 1)(p^2 - p) = (p - 1)^2 p(p + 1).$

4. Let \mathcal{C} be a category.

(a) For an object A of C let Aut_C(A) be the set of isomorphisms from A to A, i.e.

 $\operatorname{Aut}_{\mathcal{C}}(A) = \{ f \in \operatorname{Hom}_{\mathcal{C}}(A, A) : f \text{ is an isomorphism} \}.$

Let $f \circ g$ be the composition of morphisms $f, g : A \to A$ and let $id_A \in Hom_{\mathcal{C}}(A, A)$ be the identity homomorphism. Show that $(Aut_{\mathcal{C}}(A), \circ, id_A)$ is a group.

Remark: For \mathfrak{Set} the category of sets with homomorphisms being maps between sets, one has the object $A = \{1, 2, ..., n\}$, a finite set, and

$$\operatorname{Aut}_{\mathfrak{Set}}(A) = S_n$$

is the symmetric group.

(b) Let A, B isomorphic objects of C. Show that the groups $\operatorname{Aut}_{\mathcal{C}}(A)$ and $\operatorname{Aut}_{\mathcal{C}}(B)$ are isomorphic.

Solution:

(a) We first note that \circ gives a well-defined operation on $\operatorname{Aut}_{\mathcal{C}}(A)$, since for $f, g \in \operatorname{Aut}_{\mathcal{C}}(A)$ also $f \circ g \in \operatorname{Aut}_{\mathcal{C}}(A)$. The inverse morphism is given by $g^{-1} \circ f^{-1}$, so indeed $f \circ g$ is an isomorphism. Note also that id_A is indeed contained in $\operatorname{Aut}_{\mathcal{C}}(A)$, since the identity is an isomorphism, which is its own inverse.

Now we check the three axioms of a group.

- (Associativity) The property $(f \circ g) \circ h = f \circ (g \circ h)$ was part of the definition of composition of homomorphisms in a category.
- (Neutral element) The property $id_A \circ f = f = f \circ id_A$ was also part of the definition of a category.
- (Inverse elements) For $f : A \to A$ an isomorphism, by definition there exists $g : A \to A$ such that $f \circ g = g \circ f = id_A$ and clearly g itself is in $Aut_{\mathcal{C}}(A)$.

For the Remark we just observe that a map between sets is an isomorphism if and only if it is bijective (with the inverse being the inverse map).

(b) Let $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ be an isomorphism with inverse $g \in \operatorname{Hom}_{\mathcal{C}}(B, A)$. We can define maps

$$\varphi: \operatorname{Hom}_{\mathcal{C}}(A, A) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(B, B)$$
$$\sigma \longmapsto f \circ \sigma \circ g.$$

and

$$\psi : \operatorname{Hom}_{\mathcal{C}}(B, B) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(A, A)$$
$$\tau \longmapsto g \circ \tau \circ f.$$

Since f and g are inverses one another, we notice that for each $\tau \in \text{Hom}_{\mathcal{C}}(B, B)$ and $\sigma \in \text{Hom}_{\mathcal{C}}(A, A)$ there are equalities

$$\begin{aligned} (\varphi \circ \psi)(\tau) &= f(g\tau f)g = (fg)\tau(fg) = \tau \\ (\psi \circ \varphi)(\sigma) &= g(f\sigma g)f = (gf)\sigma(gf) = \sigma \end{aligned}$$

so that ψ is an inverse of φ . Moreover, φ respects composition of morphisms. Indeed, for any $\sigma, \sigma' \in \operatorname{Hom}_{\mathcal{C}}(A, A)$,

$$\varphi(\sigma \circ \sigma') = f \sigma \sigma' g = f \sigma(gf) \sigma' g = (f \sigma g)(f \sigma' g) = \varphi(\sigma) \varphi(\sigma').$$

If σ is an automorphism of A with inverse σ^{-1} , then $(f\sigma g)(f\sigma^{-1}g) = f\sigma\sigma^{-1}g = fg = \mathrm{id}_B$, so that $\varphi(\sigma)$ is an automorphism of B. Conversely if $\varphi(\sigma)$ has inverse τ , then $\sigma = g\varphi(\sigma)f$ can be seen to have inverse $g\tau f$, so that it is invertible as well.

Altogether, this proves that φ restrict to a group isomorphism

 $\bar{\varphi} : \operatorname{Aut}_{\mathcal{C}}(A) \xrightarrow{\sim} \operatorname{Aut}_{\mathcal{C}}(B).$

5. Let $G = \operatorname{GL}_2(\mathbb{F}_2)$ and consider the set $X = (\mathbb{F}_2)^2 \setminus \{(0,0)\}$. Define

$$H := \operatorname{Sym}(X) := \operatorname{Aut}_{\mathfrak{Set}}(X) = \{f : X \to X : f \text{ bijective}\}.$$

(a) Prove that

$$\varphi: G \longrightarrow H$$
$$\alpha \longmapsto (P \mapsto \alpha(P))$$

is a well-defined group homomorphism.

- (b) Show that φ is an group isomorphism
- (c) Deduce that $G \cong S_3$.

Solution:

- (a) For each $\alpha \in G = \operatorname{GL}_2(\mathbb{F}_2)$, we know that $\alpha((0,0)) = (0,0)$ and since α is a bijection of $(\mathbb{F}_2)^2$, it must restrict to a bijection of X, sending $P \mapsto \alpha(P)$. Hence the map φ is well-defined. Clearly, the composition of the restrictions is the restriction of the composition, so that φ is a group homomorphism.
- (b) The behavior of $\alpha \in G$ is completely determined by its restriction to X, because as noticed above $\alpha((0,0)) = (0,0)$. Hence φ is injective. Notice that |X| = 3, so that |H| = 3! = 6, whereas by Exercise 3 we know that $|G| = (2-1)^2 \cdot 2 \cdot 3 = 6$, so that the map φ is also surjective. This allows us to conclude that φ is a group isomorphism, since the inverse of a bijective group homomorphism is a group homomorphism as well (it can be proven in an analog way to how it was done for rings in Assignment 2, Exercise 4).
- (c) By part (b), $G \cong H$. Since |X| = 3, there is a bijection (that is, an isomorphism of sets) $X \cong \{1, 2, 3\}$ and by Exercise 4 we can conclude that $H := \operatorname{Aut}_{\mathfrak{Set}}(X) \cong \operatorname{Aut}_{\mathfrak{Set}}(\{1, 2, 3\}) =: S_3$, so that $G \cong S_3$ as can be seen by composing the two isomorphisms with H.

6. Let p be a prime number. Consider the set

$$G := \left\{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \in \mathrm{GL}_2(\mathbb{F}_p) \right\} \subset \mathrm{GL}_2(\mathbb{F}_p).$$

- (a) Show that G is a subgroup of $\operatorname{GL}_2(\mathbb{F}_p)$.
- (b) Prove that the map

$$\varphi: G \longrightarrow \mathbb{F}_p^{\times} \times \mathbb{F}_p^{\times}$$
$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \longmapsto (a, c)$$

is a group homomorphism, where $\mathbb{F}_p^{\times} \times \mathbb{F}_p^{\times}$ is endowed with componentwise multiplication, and that $\ker(\varphi) \cong (\mathbb{F}_p, +)$.

Solution:

(a) The given subset G contains the identity matrix, so it is not empty. Moreover, it is closed under multiplication because the lower-left entry in the product of two matrices of the given shape is zero. Finally, the matrix

$$\left(\begin{array}{cc}a&b\\0&c\end{array}\right)^{-1} = \frac{1}{ac}\left(\begin{array}{cc}c&-b\\0&a\end{array}\right) = \left(\begin{array}{cc}1/a&-b/ac\\0&1/c\end{array}\right)$$

still lies in G, so that G is a subgroup of $\operatorname{GL}_2(\mathbb{F}_p)$.

(b) Notice that $\mathbb{F}_p^{\times} \times \mathbb{F}_p^{\times}$ is a group because the axioms hold in each component and the operation is indeed defined component-wise. The neutral element is (1, 1).

Given two matrices $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, $\begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix} \in G$, we notice that

$$\left(\begin{array}{cc}a&b\\0&c\end{array}\right)\left(\begin{array}{cc}a'&b'\\0&c'\end{array}\right) = \left(\begin{array}{cc}aa'&ab'+bc'\\0&cc'\end{array}\right),$$

so that

$$\varphi \left(\left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \left(\begin{array}{cc} a' & b' \\ 0 & c' \end{array} \right) \right) = (aa', cc')$$
$$= (a, c)(a', c') = \varphi \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \varphi \left(\begin{array}{cc} a' & b' \\ 0 & c' \end{array} \right).$$

We see that $\ker(\varphi)$ consists of all the matrices of G with 1 on the diagonal. Notice that the upper-right element can be freely chosen as the determinant of a matrix of the form $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ is always one. This proves that the following is a well-defined bijective map:

$$\begin{aligned} \xi : \mathbb{F}_p &\longrightarrow \ker(\varphi) \\ b &\longmapsto \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \end{aligned}$$

It is also immediate to check that ξ is a group homomorphism, since for all $b,b'\in\mathbb{F}_p$ we can write

$$\xi(b+b') = \begin{pmatrix} 1 & b+b' \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b' \\ 0 & 1 \end{pmatrix} = \xi(b) \cdot \xi(b').$$

Hence ξ is a bijective group homomorphism and as such it is a group isomorphism (see Exercise 5(b)).

7. Let $G = \operatorname{GL}_2(\mathbb{Q})$ and consider its elements $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$. Show that $A^4 = \operatorname{Id}_2 = B^6$, but that $(AB)^n \neq \operatorname{Id}_2$ for each $n \geq 1$. Solution: We compute

$$A^2 = \left(\begin{array}{cc} -1 & 0\\ 0 & -1 \end{array}\right),$$

which clearly implies that $A^4 = (A^2)^2 = \text{Id}_2$. Moreover,

$$B^2 = \left(\begin{array}{cc} -1 & 1\\ -1 & 0 \end{array}\right)$$

so that

$$B^{3} = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = A^{2}$$

and $B^6 = \mathrm{Id}_2$. On the other hand,

$$AB = \left(\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array}\right)$$

tells us by induction that

$$(AB)^n = \left(\begin{array}{cc} 1 & -n \\ 0 & 1 \end{array}\right),$$

so that $(AB)^n \neq \mathrm{Id}_2$ for each $n \geq 1$.