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Solution 7

GROUPS, SUBGROUPS, GROUP HOMOMORPHISM

1. Prove that the map f : R — C*, defined by f(z) := ¢ is a group homomor-
phism. Find its kernel and its image.

Solution: A basic property of the exponential of complex numbers tells us that
e (*tY) = ¢i®eW 50 that f is a group homomorphism. Since ¢ = cos(z) + i sin(z),
we deduce that ¢ = 1 if and only if cos(z) = 1 and sin(z) = 0, i.e., if and only
if © € 2nZ. This means that ker(f) = 27Z. As concerns the image, notice that
e’ = cos(x) + isin(z), for z € R, is a parametrization of the unit circle of the

complex plane, so that

Im(f) = {a + ib € C such that a® + b* = 1}.

2. Find the order of the following elements:

(a) i, ¢V3™ and e in the group C*;

11 2 3.
(b) ( 0 1 ) and ( 1 4 ) in the group GL3(C);
(c) 1,2 and 3 in [F}5.
Solution:

(a) By definition, i? = —1 # 1, so that i* = 1, as i®* = —i # 1, we can conclude
that 7 has order 4. For r € R, we know that e = 1 if and only if r = 27k
for some k € Z, as noticed in the Solution to Exercise 1. Let n € Z-( and
consider A A

ei\/?:w)n _ ei\/g'mr 27\ 2—”7’71

wy, = ( and z, 1= (e17 )" = e

The exponent in the former complex number cannot be of the form 27ik for
some integer k, because an equality 2mik = iv/3mg implies that v/3 € Q,
which is false'. This implies that ¢’V3™ has infinite order. On the other hand,

it is clear that z;7 = 1, and that %n = 2mik for some integer k if and only

if 17|n, so that the order of €77 is 17.

ISuppose that v/3 € Q and write /3 = ¢ for some a,b € Z. Then a® = 3b%. Looking at the
decomposition into prime numbers of the two sides, we see that 3 appears an even number of times on
the left and an odd number of times of the right, contradiction.



(b) Let A = ( L1 ) and B = ( 23 ) By induction, one can prove that

0 1 1 4
A" = ( (1) T ) This implies that A" # Id,, for n € Z-g, so that A has

infinite order. The matrix B has infinite order as well, because det(B) = 5,
so that det(B™) = 5" as seen in Linear Algebra, so that B" # Id, for n > 0
because det(Idy) = 1.

(c) Since 1 is the neutral element of F, it has order 1 by definition. For the
other two elements, we consider some of their powers modulo 17.

22=4 2°=8 2'=16=—1, 28 =(-1)* = 1.

Notice that for k € {5,6,7}, we can say for sure that 2¥ # 1, because else
28—k = 28 .(2M)~! = 1, which contradicts the above computed lower powers
of 2. This implies that ord]le7(2) = 8.

32=9,3=21=10,3"=30=13=—4, 33=16=—1, 39 =1.

Notice that for h € {12,13,14, 15} we can write (3")~1 = 315=" £ —1 because
of computations above. Moreover, for h € {1,2,3,4,5,6,7}, there is an
equality 3%+% = 38.3% = —3% from which we deduce that 3¢ # 1for4 < ¢ < 12
as well, so that ord]le7(3) = 16.

3. Let p be a prime number. Show that the cardinality of GLy(F,) is equal the
number of ordered bases (e, e2) of IF% as a [F-vector space, and that

Card(GLy(F,)) = (p — 1)°p(p + 1)

Solution: Let by = (1,0),by = (0,1) be the canonical IFy-basis of F>. An automor-
phism ¢ of IF?U is uniquely determined by the images of b; and by. Let e; = ¢(b;)
for i = 1,2. Then (e, e3) must be a basis of ]F‘f7 as well because those two vec-
tors generate the image which coincides with IFZ. This proves the first part of the
statement. The number of F,-bases of F2 is (p* — 1)(p* — p), because e; can be
freely chosen among the p? — 1 non-zero vectors in ]FZQ) and then ey can be taken to
be any vector which is not one of the p multiples of e;. Hence

Card(GLy(F,)) = (p* = 1)(p* —p) = (p — 1)*p(p + 1).

4. Let C be a category.

(a) For an object A of C let Autc(A) be the set of isomorphisms from A to A,
le.

Aute(A) = {f € Hom¢(A, A) : f is an isomorphism}.



(b)

Let f o g be the composition of morphisms f,g : A — A and let idy €
Hom¢ (A, A) be the identity homomorphism. Show that (Autc(A),o,id4) is
a group.

Remark: For Get the category of sets with homomorphisms being maps be-
tween sets, one has the object A = {1,2,...,n}, a finite set, and

Autg(A) = S,

is the symmetric group.

Let A, B isomorphic objects of C. Show that the groups Aut¢(A) and Aute(B)
are isomorphic.

Solution:

(a)

We first note that o gives a well-defined operation on Autc(A), since for
frg € Aute(A) also fog € Aute(A). The inverse morphism is given by
g to f!, so indeed f o g is an isomorphism. Note also that id4 is indeed
contained in Aute(A), since the identity is an isomorphism, which is its own
inverse.

Now we check the three axioms of a group.

e (Associativity) The property (f o g) oh = f o (go h) was part of the
definition of composition of homomorphisms in a category.

e (Neutral element) The property idqof = f = f oids was also part of
the definition of a category.

e (Inverse elements) For f : A — A an isomorphism, by definition there
exists g : A — A such that fog = go f =idy and clearly g itself is in
Autc(A).

For the Remark we just observe that a map between sets is an isomorphism
if and only if it is bijective (with the inverse being the inverse map).

Let f € Home(A, B) be an isomorphism with inverse g € Home (B, A). We
can define maps

¢ : Home(A, A) — Home (B, B)
oc— focogog.
and
¢ : Home(B, B) — Home (A, A)
T——>goTof.

Since f and g are inverses one another, we notice that for each 7 € Hom¢(B, B)
and o € Homeg (A, A) there are equalities

(po)(r) = flgrflg = (fo)T(fg) =T
(WYop)o)=g(fog)f = (g9f)o(gf) =0



so that 1 is an inverse of . Moreover, ¢ respects composition of morphisms.
Indeed, for any 0,0’ € Home (A, A),

ploood') = foo'g= fo(gf)o'g= (fog)(fo'g) = p(o)p(d’).

If o is an automorphism of A with inverse 0!, then (fog)(fo~'g) = foo~lg =
fg =1idg, so that ¢(o) is an automorphism of B. Conversely if ¢(o) has in-
verse T, then 0 = gp(o)f can be seen to have inverse g7 f, so that it is
invertible as well.

Altogether, this proves that ¢ restrict to a group isomorphism

@ : Autc(A) ;> Autc<B).

5. Let G = GLy(F;) and consider the set X = (F3)? \ {(0,0)}. Define

(a)

(b)
(c)

H :=Sym(X) := Autegu(X) = {f : X — X : f bijective}.
Prove that

p:G— H
ar— (P~ a(P))

is a well-defined group homomorphism.
Show that ¢ is an group isomorphism
Deduce that G = S5.

Solution:

()

For each o € G = GLy(F3), we know that «((0,0)) = (0,0) and since « is
a bijection of (IFy)?, it must restrict to a bijection of X, sending P + «a(P).
Hence the map ¢ is well-defined. Clearly, the composition of the restrictions
is the restriction of the composition, so that ¢ is a group homomorphism.

The behavior of a € G is completely determined by its restriction to X,
because as noticed above «((0,0)) = (0,0). Hence ¢ is injective. Notice
that | X| = 3, so that |H| = 3! = 6, whereas by Exercise 3 we know that
|G| = (2 —1)%-2-3 = 6, so that the map ¢ is also surjective. This allows
us to conclude that ¢ is a group isomorphism, since the inverse of a bijective
group homomorphism is a group homomorphism as well (it can be proven in
an analog way to how it was done for rings in Assignment 2, Exercise 4).

By part (b), G = H. Since |X| = 3, there is a bijection (that is, an iso-
morphism of sets) X = {1,2,3} and by Exercise 4 we can conclude that
H = Aute(X) & Aute({1,2,3}) =: S3, so that G = S3 as can be seen by
composing the two isomorphisms with H.

4



6. Let p be a prime number. Consider the set

Cc

G = {( 8 b ) € GLQ(F,,)} C GLy(F,).

(a) Show that G is a subgroup of GLy(F,).
(b) Prove that the map

0:G—F; xF;

(g i)H(a,C)

is a group homomorphism, where F; x F is endowed with componentwise
multiplication, and that ker(p) = (F,, +).

Solution:

(a) The given subset GG contains the identity matrix, so it is not empty. Moreover,
it is closed under multiplication because the lower-left entry in the product
of two matrices of the given shape is zero. Finally, the matrix

a b\ 1 (e b\ _[(1/a —bjac
0 ¢ Cac\ 0 a - 0 1/c
still lies in G, so that G is a subgroup of GLy(IF,).

(b) Notice that F; x F) is a group because the axioms hold in each component
and the operation is indeed defined component-wise. The neutral element is

(1,1).

. . a b a v .
Given two matrices 0o ¢ lo v € (¢, we notice that

a b a b\ [ ad ab+0bd
0 c 0o ¢ ) 0 cc ’
so that

(325 1) -
~@aw.)=¢ (g 0 )e( V)

We see that ker(p) consists of all the matrices of G with 1 on the diagonal.
Notice that the upper-right element can be freely chosen as the determinant



of a matrix of the form ( é li ) is always one. This proves that the following

is a well-defined bijective map:

¢ :F, — ker(p)

1 b
br—>(0 1)

It is also immediate to check that £ is a group homomorphism, since for all
b, € F, we can write

o= "1 )= (0 1) (o 1) -cw-ewn

Hence £ is a bijective group homomorphism and as such it is a group isomor-
phism (see Exercise 5(b)).

1 -1 1
Show that A* =1d, = B, but that (AB)" # Id, for each n > 1.

Solution: We compute
s (-1 0
#=(3 5)

which clearly implies that A* = (A?)? = Id,. Moreover,

=
pe(Do)(A1)=(3 5)-

and B% = Id,. On the other hand,

7. Let G = GLy(Q) and consider its elements A = ( 0 _01 ) and B = ( 01 )

so that

tells us by induction that

s =y 7).

so that (AB)™ # 1d, for each n > 1.



