
D-MATH Algebra I HS18
Prof. Rahul Pandharipande

Solution 7

Groups, Subgroups, Group Homomorphism

1. Prove that the map f : R −→ C×, defined by f(x) := eix is a group homomor-
phism. Find its kernel and its image.

Solution: A basic property of the exponential of complex numbers tells us that
ei(x+y) = eixeiy, so that f is a group homomorphism. Since eix = cos(x) + i sin(x),
we deduce that eix = 1 if and only if cos(x) = 1 and sin(x) = 0, i.e., if and only
if x ∈ 2πZ. This means that ker(f) = 2πZ. As concerns the image, notice that
eix = cos(x) + i sin(x), for x ∈ R, is a parametrization of the unit circle of the
complex plane, so that

Im(f) = {a+ ib ∈ C such that a2 + b2 = 1}.

2. Find the order of the following elements:

(a) i, ei
√
3π and e

2πi
17 in the group C×;

(b)

(
1 1
0 1

)
and

(
2 3
1 4

)
in the group GL2(C);

(c) 1, 2 and 3 in F×17.

Solution:

(a) By definition, i2 = −1 6= 1, so that i4 = 1, as i3 = −i 6= 1, we can conclude
that i has order 4. For r ∈ R, we know that eir = 1 if and only if r = 2πk
for some k ∈ Z, as noticed in the Solution to Exercise 1. Let n ∈ Z>0 and
consider

wn := (ei
√
3π)n = ei

√
3nπ and zn := (e

2πi
17 )n = e

2πi
17
n.

The exponent in the former complex number cannot be of the form 2πik for
some integer k, because an equality 2πik = i

√
3πq implies that

√
3 ∈ Q,

which is false1. This implies that ei
√
3π has infinite order. On the other hand,

it is clear that z17 = 1, and that 2πi
17
n = 2πik for some integer k if and only

if 17|n, so that the order of e
2πi
17 is 17.

1Suppose that
√
3 ∈ Q and write

√
3 = a

b for some a, b ∈ Z. Then a2 = 3b2. Looking at the
decomposition into prime numbers of the two sides, we see that 3 appears an even number of times on
the left and an odd number of times of the right, contradiction.
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(b) Let A =

(
1 1
0 1

)
and B =

(
2 3
1 4

)
. By induction, one can prove that

An =

(
1 n
0 1

)
. This implies that An 6= Idn for n ∈ Z>0, so that A has

infinite order. The matrix B has infinite order as well, because det(B) = 5,
so that det(Bn) = 5n as seen in Linear Algebra, so that Bn 6= Id2 for n > 0
because det(Id2) = 1.

(c) Since 1 is the neutral element of F×17, it has order 1 by definition. For the
other two elements, we consider some of their powers modulo 17.

22 = 4, 23 = 8, 24 = 16 = −1, 28 = (−1)2 = 1.

Notice that for k ∈ {5, 6, 7}, we can say for sure that 2k 6= 1, because else
28−k = 28 · (2k)−1 = 1, which contradicts the above computed lower powers
of 2. This implies that ordF×

17
(2) = 8.

32 = 9, 33 = 27 = 10, 34 = 30 = 13 = −4, 38 = 16 = −1, 316 = 1.

Notice that for h ∈ {12, 13, 14, 15} we can write (3h)−1 = 316−h 6= −1 because
of computations above. Moreover, for h ∈ {1, 2, 3, 4, 5, 6, 7}, there is an
equality 38+k = 38·3k = −3k, from which we deduce that 3` 6= 1 for 4 < ` < 12
as well, so that ordF×

17
(3) = 16.

3. Let p be a prime number. Show that the cardinality of GL2(Fp) is equal the
number of ordered bases (e1, e2) of F2

p as a F-vector space, and that

Card(GL2(Fp)) = (p− 1)2p(p+ 1).

Solution: Let b1 = (1, 0), b2 = (0, 1) be the canonical Fp-basis of F2
p. An automor-

phism ϕ of F2
p is uniquely determined by the images of b1 and b2. Let ei = ϕ(bi)

for i = 1, 2. Then (e1, e2) must be a basis of F2
p as well because those two vec-

tors generate the image which coincides with F2
p. This proves the first part of the

statement. The number of Fp-bases of F2
p is (p2 − 1)(p2 − p), because e1 can be

freely chosen among the p2− 1 non-zero vectors in F2
p and then e2 can be taken to

be any vector which is not one of the p multiples of e1. Hence

Card(GL2(Fp)) = (p2 − 1)(p2 − p) = (p− 1)2p(p+ 1).

4. Let C be a category.

(a) For an object A of C let AutC(A) be the set of isomorphisms from A to A,
i.e.

AutC(A) = {f ∈ HomC(A,A) : f is an isomorphism}.
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Let f ◦ g be the composition of morphisms f, g : A → A and let idA ∈
HomC(A,A) be the identity homomorphism. Show that (AutC(A), ◦, idA) is
a group.

Remark: For Set the category of sets with homomorphisms being maps be-
tween sets, one has the object A = {1, 2, . . . , n}, a finite set, and

AutSet(A) = Sn

is the symmetric group.

(b) Let A,B isomorphic objects of C. Show that the groups AutC(A) and AutC(B)
are isomorphic.

Solution:

(a) We first note that ◦ gives a well-defined operation on AutC(A), since for
f, g ∈ AutC(A) also f ◦ g ∈ AutC(A). The inverse morphism is given by
g−1 ◦ f−1, so indeed f ◦ g is an isomorphism. Note also that idA is indeed
contained in AutC(A), since the identity is an isomorphism, which is its own
inverse.

Now we check the three axioms of a group.

• (Associativity) The property (f ◦ g) ◦ h = f ◦ (g ◦ h) was part of the
definition of composition of homomorphisms in a category.

• (Neutral element) The property idA ◦f = f = f ◦ idA was also part of
the definition of a category.

• (Inverse elements) For f : A → A an isomorphism, by definition there
exists g : A → A such that f ◦ g = g ◦ f = idA and clearly g itself is in
AutC(A).

For the Remark we just observe that a map between sets is an isomorphism
if and only if it is bijective (with the inverse being the inverse map).

(b) Let f ∈ HomC(A,B) be an isomorphism with inverse g ∈ HomC(B,A). We
can define maps

ϕ : HomC(A,A) −→ HomC(B,B)

σ 7−→ f ◦ σ ◦ g.

and

ψ : HomC(B,B) −→ HomC(A,A)

τ 7−→ g ◦ τ ◦ f.

Since f and g are inverses one another, we notice that for each τ ∈ HomC(B,B)
and σ ∈ HomC(A,A) there are equalities

(ϕ ◦ ψ)(τ) = f(gτf)g = (fg)τ(fg) = τ

(ψ ◦ ϕ)(σ) = g(fσg)f = (gf)σ(gf) = σ
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so that ψ is an inverse of ϕ. Moreover, ϕ respects composition of morphisms.
Indeed, for any σ, σ′ ∈ HomC(A,A),

ϕ(σ ◦ σ′) = fσσ′g = fσ(gf)σ′g = (fσg)(fσ′g) = ϕ(σ)ϕ(σ′).

If σ is an automorphism ofA with inverse σ−1, then (fσg)(fσ−1g) = fσσ−1g =
fg = idB, so that ϕ(σ) is an automorphism of B. Conversely if ϕ(σ) has in-
verse τ , then σ = gϕ(σ)f can be seen to have inverse gτf , so that it is
invertible as well.

Altogether, this proves that ϕ restrict to a group isomorphism

ϕ̄ : AutC(A)
∼−→ AutC(B).

5. Let G = GL2(F2) and consider the set X = (F2)
2 r {(0, 0)}. Define

H := Sym(X) := AutSet(X) = {f : X → X : f bijective}.

(a) Prove that

ϕ : G −→ H

α 7−→ (P 7→ α(P ))

is a well-defined group homomorphism.

(b) Show that ϕ is an group isomorphism

(c) Deduce that G ∼= S3.

Solution:

(a) For each α ∈ G = GL2(F2), we know that α((0, 0)) = (0, 0) and since α is
a bijection of (F2)

2, it must restrict to a bijection of X, sending P 7→ α(P ).
Hence the map ϕ is well-defined. Clearly, the composition of the restrictions
is the restriction of the composition, so that ϕ is a group homomorphism.

(b) The behavior of α ∈ G is completely determined by its restriction to X,
because as noticed above α((0, 0)) = (0, 0). Hence ϕ is injective. Notice
that |X| = 3, so that |H| = 3! = 6, whereas by Exercise 3 we know that
|G| = (2 − 1)2 · 2 · 3 = 6, so that the map ϕ is also surjective. This allows
us to conclude that ϕ is a group isomorphism, since the inverse of a bijective
group homomorphism is a group homomorphism as well (it can be proven in
an analog way to how it was done for rings in Assignment 2, Exercise 4).

(c) By part (b), G ∼= H. Since |X| = 3, there is a bijection (that is, an iso-
morphism of sets) X ∼= {1, 2, 3} and by Exercise 4 we can conclude that
H := AutSet(X) ∼= AutSet({1, 2, 3}) =: S3, so that G ∼= S3 as can be seen by
composing the two isomorphisms with H.
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6. Let p be a prime number. Consider the set

G :=

{(
a b
0 c

)
∈ GL2(Fp)

}
⊂ GL2(Fp).

(a) Show that G is a subgroup of GL2(Fp).
(b) Prove that the map

ϕ : G −→ F×p × F×p(
a b
0 c

)
7−→ (a, c)

is a group homomorphism, where F×p × F×p is endowed with componentwise
multiplication, and that ker(ϕ) ∼= (Fp,+).

Solution:

(a) The given subset G contains the identity matrix, so it is not empty. Moreover,
it is closed under multiplication because the lower-left entry in the product
of two matrices of the given shape is zero. Finally, the matrix(

a b
0 c

)−1
=

1

ac

(
c −b
0 a

)
=

(
1/a −b/ac
0 1/c

)
still lies in G, so that G is a subgroup of GL2(Fp).

(b) Notice that F×p × F×p is a group because the axioms hold in each component
and the operation is indeed defined component-wise. The neutral element is
(1, 1).

Given two matrices

(
a b
0 c

)
,

(
a′ b′

0 c′

)
∈ G, we notice that

(
a b
0 c

)(
a′ b′

0 c′

)
=

(
aa′ ab′ + bc′

0 cc′

)
,

so that

ϕ

((
a b
0 c

)(
a′ b′

0 c′

))
= (aa′, cc′)

= (a, c)(a′, c′) = ϕ

(
a b
0 c

)
ϕ

(
a′ b′

0 c′

)
.

We see that ker(ϕ) consists of all the matrices of G with 1 on the diagonal.
Notice that the upper-right element can be freely chosen as the determinant

5



of a matrix of the form

(
1 b
0 1

)
is always one. This proves that the following

is a well-defined bijective map:

ξ : Fp −→ ker(ϕ)

b 7−→
(

1 b
0 1

)
It is also immediate to check that ξ is a group homomorphism, since for all
b, b′ ∈ Fp we can write

ξ(b+ b′) =

(
1 b+ b′

0 1

)
=

(
1 b
0 1

)(
1 b′

0 1

)
= ξ(b) · ξ(b′).

Hence ξ is a bijective group homomorphism and as such it is a group isomor-
phism (see Exercise 5(b)).

7. Let G = GL2(Q) and consider its elements A =

(
0 −1
1 0

)
and B =

(
0 1
−1 1

)
.

Show that A4 = Id2 = B6, but that (AB)n 6= Id2 for each n > 1.

Solution: We compute

A2 =

(
−1 0
0 −1

)
,

which clearly implies that A4 = (A2)2 = Id2. Moreover,

B2 =

(
−1 1
−1 0

)
,

so that

B3 =

(
−1 1
−1 0

)(
0 1
−1 1

)
=

(
−1 0
0 −1

)
= A2

and B6 = Id2. On the other hand,

AB =

(
1 −1
0 1

)
tells us by induction that

(AB)n =

(
1 −n
0 1

)
,

so that (AB)n 6= Id2 for each n > 1.

6


