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Solution 8

Normal subgroups, quotient groups, Isomorphism theorems for groups

1. Show that the center Z(Sn) is trivial for n > 3.

Solution: Let σ ∈ Sn r {id}. Then there exist i, j ∈ {1, 2, . . . , n} such that
σ(i) = j and i 6= j. Since n > 3, there exists k ∈ {1, 2, . . . , n} r {i, j}. Let τ be
the permutation switching i and k and fixing all other elements. Then

τσ(i) = j

στ(i) = σ(k)
(∗)
6= σ(i) = j

where in the inequality (*) we used the fact that σ is a bijection. This implies
that τσ 6= στ , so that σ 6∈ Z(Sn). By arbitrarity of σ 6= id, and since id ∈ Z(Sn)
by definition, we have proven that Z(Sn) = {id}.

2. Show that any subgroup of a cyclic group is cyclic.

Solution: Let G = 〈g〉 be a cyclic group generated by g ∈ G. Let H < G be a
subgroup of G. If G = {eG}, then G is cyclic, generated by eG.

Else, there exists n ∈ Zr {0} such that gn ∈ H. If n < 0, then (gn)−1 = g−n ∈ H
because H is closed under taking inverses, so that we know that there exists
m ∈ Z>0 such that gm ∈ H. Now let m0 = min{m ∈ Z>0 : gm = h}. We claim
that

H = 〈gm0〉,

which proves that H is cyclic.

The inclusion ’⊃’ in due to the fact that H is a subgroup containing gm0 , so it must
contain 〈gm0〉, which is by definition the intersection of all subgroups containing
gm0 . Conversely, suppose that x ∈ H. Write x = gh and h = qm0 + r for
0 6 r < m0. Then

gr = gh−qm0 = x(gm0)−q ∈ H

because x ∈ H and (gm0)−q ∈ H as we have already proven the inclusion ’⊃’. By
minimality of m0, we must have r = 0, so that x = gh = gqm0 ∈ 〈gm0〉, proving
the inclusion ’⊂’.
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3. Let G := R/Z. Prove that G is isomorphic to the group {z ∈ C× : |z| = 1}.
Solution: Consider the group homomorphism f : R −→ C× sending x 7→ eix. We
have seen in Assignment 7, Exercise 1, that ker(f) = 2πZ and Im(f) = {z ∈ C× :
|z| = 1}. By the First Isomorphism Theorem for groups, f induces an isomorphism

f : R/(2πZ)
∼−→ {z ∈ C× : |z| = 1}.

In order to conclude, we need to check that R/Z ∼= R/(2πZ). This can be done
by looking at the multiplication by 2π. More precisely, the map m2π : R −→ R
sending t 7→ 2πt is a group isomorphism (it is additive by the distributive property
in R and it has inverse m(2π)−1 sending u 7→ (2π)−1u). Composing m2π with the
canonical projection R −→ R/(2πZ) we obtain a surjective group homomorphism
ψ : R −→ R/(2πZ) sending t 7→ 2πt+ (2πZ). Clearly, ker(ψ) = Z, so that by the
First Isomorphism Theorem ψ induces a group isomorphism G = R/Z ∼= R/(2πZ),
which composed with f gives an isomorphism G ∼= {z ∈ C× : |z| = 1}.
Aliter: Of course, one could directly define the group homomorphism g : R −→ C×
sending r 7→ e2πir, and prove, similarly as in Assignment 7, Exercise 1, that
ker(g) = Z and Im(g) = {z ∈ C× : |z| = 1}. A single application of the First
Isomorphism theorem will then give an isomorphism G

∼−→ {z ∈ C× : |z| = 1}.

4. Let G be a group. Recall the group homomorphism ρ : G −→ Aut(G) seen in class,
sending an element g to the automorphism (x 7→ gxg−1), that is the conjugation
by x. We define the group of inner automorphisms of G as

Inn(G) := Im(ρ).

(a) Prove that Inn(G) C Aut(G).

We define the group of outer automorphisms of G as the quotient group Out(G) :=
Aut(G)/Inn(G).

(b) Determine Out(S3). [Hint: S3 is generated by the two permutations: τ :
(1 7→ 2 7→ 3 7→ 1) and σ12 : (1 7→ 2 7→ 1, 3 7→ 3). Use Exercise 1]

(c) Prove that Out(GLn(C)) 6= {1}. [Hint: Complex conjugation, eigenvalues]

(d) Suppose that Aut(G) is cyclic. Prove: G is abelian. [Hint: Exercise 2]

Solution:

(a) A general element of Inn(G) can be written as ρ(g) for g ∈ G. It is the inner
automorphism sending x 7→ gxg−1. Let σ ∈ Aut(G). Then, for each x ∈ G,

(σρ(g)σ−1)(x) = σ(g(σ−1(x))g−1)
(∗)
= σ(g)xσ(g−1)

(∗)
= σ(g)xσ(g)−1.

In the equalities (*) we have used the fact that σ respects multiplication. By
arbitrarity of x, this proves that σρ(g)σ−1 = ρ(σ(g)) ∈ Inn(G). Hence Inn(G)
is stable under conjugation by elements in Aut(G), so that Inn(G)CAut(G)
by definition.
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(b) As seen in class, the map ρ : G −→ Aut(G) has kernel Z(G). For G = S3

the map ρ is injective since Z(S3) = {id} by Exercise 1. Hence Inn(S3) ∼= S3

has 6 elements.

The group S3 is generated by the 3-cycle τ : (1 7→ 2 7→ 3 7→ 1) and the switch
σ12 as stated in the hint. Indeed, the subgroup 〈τ, σ12〉 of S3 contains the four
elements id, τ, τ 2, σ12, and since its cardinality must divide Card(S3) = 6 by
Lagrange’s Theorem, the only possibility is that 〈τ, σ12〉 = S3.

Any group homomorphism is uniquely determined by the image of a set of
generators, because a general element can be written as a finite product of
generators and their inverses and a group homomorphism respects multiplica-
tion by definition. This means that any ψ ∈ Aut(S3) is uniquely determined
by ψ(τ) and ψ(σ12). A group isomorphism must respect the order of the
elements in the group1. This means that ψ(τ) ∈ {τ, τ 2} since it must have
order 3, whereas ψ(σ12) ∈ {σ12, σ13, σ23} since it must have order 2. Hence we
have at most 2 · 3 = 6 possibilities for ψ, meaning that Card(Aut(S3)) 6 6.
Hence

6 = Card(S3) = Card(Inn(S3)) 6 Card(Aut(S3) 6 6

which proves that Inn(S3) = Aut(S3), so that Out(S3) is the trivial group.

(c) The complex conjugation of each entry of a given matrix gives a group en-
domorphism ϕ : GLn(C) −→ GLn(C), which we denote by an upper bar.
Indeed, for each A,B ∈ GLn(C),

det(A) = det(A) 6= 0 = 0 and

AB = A ·B

because the expression of the determinant of A, as well as the expressions of
the entries of AB consist of sums and multiplications of the entries of A (and
B), and complex conjugation respects both sum and multiplication. Clearly,
ϕ ◦ ϕ = idGLn(C), so that ϕ ∈ Aut(GLn(C)).

Suppose that ϕ ∈ Inn(GLn(C)). Then ϕ sends each matrix to a similar
matrix, so that by what we saw in Linear Algebra it preserves the eigen-
value. Clearly this is not the case, because the matrix i · Idn has the only
eigenvalue i, whereas ϕ(i · Idn) = −iIdn has the only eigenvalue −i, con-
tradiction. This proves that ϕ ∈ Aut(GLn(C)) r Inn(GLn(C)), so that
Out(GLn(C)) = Aut(GLn(C))/Inn(GLn(C)) is not trivial.

(d) Since Aut(G) is assumed to be cyclic, by Exercise 2 the group Inn(G) is cyclic
as well. The First Isomorphism Theorem applied on ρ tells us that G/Z(G) ∼=

1Let f : G −→ H be a group homomorphism and g ∈ G. Then f(g)ordG (g) = f(gordG (g)) = f(eG) =
eH , so that ordH(f(g))|ordG(g). If f is an isomorphism, the same can be done in the other direction,
so that we obtain ordH(f(g)) = ordG(g).
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Inn(G), so that G/Z(G) is cyclic as well and we can write 〈uZ(G)〉 = G/Z(G)
for some u ∈ G. This means that for each g ∈ G there exists ng ∈ Z such
that gZ(G) = (uZ(G))ng = ungZ(G), i.e., such that g = ungyg for some
yg ∈ Z(G).

Let g, h ∈ G and write g = ungyg, h = unhyh for yg, yh ∈ Z(G). Then

gh = ungygu
nhyh = ungunhyhyg = unhungyhyg = unhyhu

ngyg = hg.

The fact used in the equation above that two powers of u commute can be
proven with an easy induction. This proves that G is abelian, as desired.

5. Let G be a group and H,K finite subgroups of G such that Card(H) and Card(K)
are coprime.

(a) Prove that H ∩K = {1}.
(b) Suppose moreover that G is finite and Card(G) = Card(H) ·Card(K). Prove

that HK = G.

Solution:

(a) Clearly, eG ∈ H ∩K. Moreover, for x, y ∈ H ∩K, xy−1 ∈ H because H is a
subgroup of G and xy−1 ∈ K because K is a subgroup of G. Hence H ∩K
is a subgroup of G and as such it is tautologically a subgroup of both H
and K. By Lagrange’s theorem, Card(H ∩ K) divides both the cardinality
of H and the cardinality of K. Since those two cardinalities are coprime,
Card(H ∩K) = 1 and H ∩K is trivial.

(b) If H CG, the second isomorphism theorem gives an isomorphism

K/(H ∩K)
∼−→ HK/H

x(H ∩K) 7−→ xH.

which gives an equality of cardinalities

Card(K)

Card(H ∩K)
=

Card(HK)

Card(H)
(1)

from which we obtain by part (a) that Card(HK) = Card(H)Card(K) =
Card(G).

Clearly equality (1) is enough to conclude, even when H 6CG. In general, this
equality can be proven by measuring how not uniquely an element x ∈ HK
can be written as x = hk for h ∈ H and k ∈ K. To do so, look at the map of
sets m : H ×K −→ HK sending (h, k) 7→ hk. This map is well-defined and
surjective by definition of HK.

Fix h0 ∈ H and k0 ∈ K. We want to find all (h, k) ∈ H × K such that
m(h0, k0) = m(h, k), i.e., h0k0 = hk. For d := h−10 h ∈ H, we see that
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h = h0d and k = h−1h0k0 = d−1k0, which means that d = k−1k0 ∈ K, so
that d ∈ H ∩K and (h, k) = (h0d, d

−1k0). Conversely, for each d ∈ H ∩K
we have m(h0d, d

−1k0) = m(h0, k0), and for d 6= d′ the elements (h0d, d
−1k0)

and (h0d
′, d′−1k0) do not coincide. This proves that

Card({(h, k) ∈ H ×K : m(h, k) = m(h0, k0)}) = Card(H ∩K).

Partitioning H ×K into subsets of elements with equal image under m, and
using surjectivity of m, we can conclude that

Card(H)Card(K) = Card(H ×K) = Card(HK)Card(H ∩K),

which implies equality (1) and hence the fact that HK = G.

6. Let G be a group. For a, b ∈ G, define their commutator as

[a, b] := aba−1b−1 ∈ G.

Define the commutator subgroup of G as

[G,G] := 〈{[a, b] : a, b ∈ G}〉.

(a) Prove that G is abelian if and only if [G,G] is trivial.

(b) Prove that [G,G] CG.

(c) The abelianization of G is defined as the quotient group Gab := G/[G,G].
Prove: Gab is an abelian group.

(d) Let π : G −→ Gab be the canonical projection. Prove: for each abelian
group A and group homomorphism ϕ : G −→ A, there exists a unique group
homomorphism ϕ : Gab −→ A such that ϕ ◦ π = ϕ. [Hint: First, show that
[G,G] ⊆ ker(ϕ)]

Solution:

(a) Suppose that G is abelian. For any a, b ∈ G, [a, b] = aba−1b−1 = baa−1b−1 =
eG, so that [G,G] =< eG >= {eG}. Conversely, since [G,G] contains all
commutators, if [G,G] is trivial then [a, b] = aba−1b−1 = eG for all a, b ∈ G
and this is equivalent to ab = ba for all a, b ∈ G, so that G is abelian.

(b) Let u ∈ [G,G] and g ∈ G. Then

gug−1 = gug−1u−1u = [g, u]u ∈ [G,G],

so that [G,G] CG.

(c) For every x, y ∈ G, we can write

(x[G,G])(y[G,G]) = xy[G,G] = yxx−1y−1xy[G,G]

= yx[x−1, y−1][G,G] = yx[G,G] = (y[G,G])(x[G,G]).

This proves that Gab is abelian.
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(d) For every g, h ∈ G,

ϕ([g, h]) = ϕ(ghg−1h−1) = [ϕ(g), ϕ(h)] = eA

by part (a). This tells us that ker(ϕ) contains all commutators and hence the
whole [G,G]. Because of this, the map

ϕ : Gab = G/[G,G] −→ A

g[G,G] 7−→ ϕ(g)

is a well-defined ring homomorphism, and it is the unique one for which we
obtain ϕ ◦ π = ϕ, because this equality of maps implies that each g[G,G] =
π(g) can only be sent by ϕ to ϕ(g).

7. Let n > 3 be an integer. Let Dn be the group of affine transformations of R2

mapping a regular polygon Xn of n sides to itself. Those transformations can be
described in terms of permutations of the vertices of Xn. The group Dn contains
2n elements: n counterclockwise rotations by 2πk/n for k = 0, . . . , n − 1 around
the center of Xn, as well as n symmetries with respect to lines through its center.
In the picture below are drawn, for n = 6, the symmetry axes of the 6 symmetries,
the 6 rotations not being represented:

(a) Let T be the rotation by 2π/n, and S one of the n symmetries. Prove that
STS−1 = T−1 [Hint: Notice that an element of Dn is uniquely determined
by where it maps two adjacent vertices of Xn]

(b) Notice that for each integer k the element ST k has order 2, and deduce that

Dn = {id, T, . . . , T n−1, S, ST, . . . , ST n−1}.

(c) Determine Z(Dn) for all n.

(d) Let now n = 4. Prove that 〈S〉C 〈S, T 2〉CD4, but 〈S〉 6CD4, and determine
explicitly the left and right cosets of 〈S〉 in D4.

Solution:
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(a) As suggested by the hint, an element of Dn is uniquely determined by where
it maps two adjacent vertices. If n is odd, each of the n symmetry axes passes
through a vertex and in the midpoint of the opposite side. If n is even, half
of those axes pass through two opposite vertices and the other half of them
passes through midpoints of opposite sides.

We start by examining the case in which the axis describing the symmetry
S passes through at least one vertex. Label such a vertex with 1 and the
other vertices with 2, 3, . . . , n in counterclowise order. Hence T (k) = k + 1
for k = 1, . . . , n − 1 and T (n) = 1. Clearly, S2 = idXn = T 0. In particular,
S = S−1. Notice moreover that S(n) = 2. Now apply STS−1 = STS to the
vertex 1. Since the symmetry axis of S passes through 1, we get:

S(1) = 1, T (1) = 2, S(2) = n =⇒ STS(1) = n = T−1(1);

S(2) = n, T (n) = 1, S(1) = 1 =⇒ STS(2) = 1 = T−1(2).

This implies that STS = T−1 in this case.

The only remaining case is the one in which n is even and the symmetry axis
describing S passes through the midpoints of two opposite sides. Number
the vertices of one of the two sides as 1 and 2 so that 2 is after 1 in counter-
clockwise order, and keep on numbering the other vertices as 3, . . . , n in this
order. Again, T (k) = k + 1 for k = 1, . . . , n− 1 and T (n) = 1, whereas for S
we know that S(1) = 2 and S(3) = n. Then

S(1) = 2, T (2) = 3, S(3) = n =⇒ STS(1) = n = T−1(1);

S(2) = 1, T (1) = 2, S(2) = 1 =⇒ STS(2) = 1 = T−1(2).

Again, STS = T−1, as desired.

(b) Since S switches the vertices into a clockwise order (and back), while T does
not, we see that ST k 6= T ` for each k and `. Moreover, since T has order n,
for each 0 6 k < ` 6 n − 1 we know that T k 6= T ` and ST k 6= ST `, which
implies that we can write

Dn = {id, T, . . . , T n−1, S, ST, . . . , ST n−1}

as desired. In fact, for each k we know by part (a) that

(ST k)2 = ST kST k = (STS)kT k = T−kT k = id,

so that the n elements ST k are indeed the n axial symmetries.

(c) We know that x ∈ Z(Dn) if and only if for each g ∈ Dn, gxg−1 = x. Clearly,
id ∈ Z(Dn). Now we look at which other elements of Dn are stable under
conjugation by any other element. In order to perform computations in Dn,
we will repeatedly use that ST k = T−kS because of part (a).
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We start with computing the conjugates of the axial symmetries ST k.

T `ST k(T `)−1 = ST−`T k−` = ST k−2`,

which is different from ST k when ` = 1. Hence ST k 6∈ Z(Dn) for all k.

Now we look at the rotations T k for k = 1 ∈ {1, . . . , n − 1}. It is clear that
T k commutes with all rotations T `, so that we are left to check whether it
commutes with all ST `.

ST `T k(ST `)−1 = ST `T kST ` = T−k,

which coincides with T k if and only if n = 2k.

Hence the size of the center depends on the parity of n. More precisely, we
have proven that

Z(Dn) =

{
{1}, n is odd
{1, T n

2 }, n is even.

(d) We notice that 〈S〉 = {1, S}, whereas 〈S, T 2〉 = {1, S, T 2, ST 2} (because
T 2S = SST 2S = ST−2 = ST 2). Hence [D4 : 〈S, T 2〉] = [〈S, T 2〉 : 〈S〉] = 2 so
that 〈S〉 C 〈S, T 2〉 CD4 because subgroup of index two are always normal2.
But TST−1 = SSTST−1 = ST−2 6∈ 〈S〉, so that 〈S〉 is not normal in D4.

We know that there are [D4 : 〈S〉] = [D4 : 〈S, T 2〉][〈S, T 2〉 : 〈S〉] = 4 left
(resp., right) cosets of 〈S〉 in D4 and those are obtained by mulplying 〈S〉 on
the left (resp., on the right) by elements of D4:

• The left cosets of 〈S〉 are

〈S〉 = {1, S}, ST 〈S〉 = {ST, T 3},
ST 2〈S〉 = {ST 2, T 2}, ST 3〈S〉 = {ST 3, T}.

• The left cosets of 〈S〉 are

〈S〉 = {1, S}, 〈S〉ST = {ST, T},
〈S〉ST 2 = {ST 2, T 2}, ST 3〈S〉ST 3 = {ST 3, T 3}.

This makes it clear that 〈S〉 6CD4, as left and right cosets do not coincide.

8. Let G be a group and H,K subgroups of G.

(a) Prove that the intersection xH ∩ yK of two cosets of H and K respectively
is either empty or a coset of H ∩K.

2Indeed, if a subgroup has index two, then left and right cosets of this subgroup coincide, as they
both are given by the subgroup itself and its complement.
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(b) Prove that each coset of H ∩K is an intersection of a coset of H with a coset
of K.

(c) Prove that if H and K have finite index in G, then H ∩K has finite index
as well.

Solution:

(a) Suppose that xH ∩ yK is non-empty and let g ∈ xH ∩ yK. This means
that g = xh = yk for some h ∈ H and k ∈ K. Then, for each u ∈ H ∩K,
gu = xhu = yku, implying that gu ∈ xH ∩yK. This proves that g(H ∩K) ⊂
xH ∩ yK. Conversely, if g′ = xh′ = yk′ ∈ xH ∩ yK for some h′ ∈ H and
k′ ∈ K, then g−1g′ = (xh)−1xh′ = h−1h′ ∈ H, and g−1g′ = (yk)−1yk′ =
k−1k′ ∈ K, so that g−1g′ ∈ H ∩ K. This means that g′ ∈ g(H ∩ K). We
can then conclude that g(H ∩K) = xH ∩ yK, so that xH ∩ yK is a coset of
H ∩K.

(b) Let g(H ∩K) be a coset of H ∩K. Then g ∈ gH ∩ gK and by the proof of
part (a) we can conclude that g(H ∩K) = gH ∩ gK.

(c) By part (b), we have an inequality

[G : (H ∩K)] 6 [G : H] · [G : K]

and we can conclude because the right hand side is finite by assumption.
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