
D-MATH Algebra I HS18
Prof. Rahul Pandharipande

Solution 9

Group actions

1. Let G be a group. Consider the set of maps C(G) = {f : G −→ C}.

(a) Check that G acts on C(G) via (g ·f)(x) := f(xg) for g, x ∈ G and f ∈ C(G).

(b) Is the action above faithful?

Solution:

(a) First, notice that (g, f) 7→ g · f defines a map G × C(G) −→ C(G). This is
compatible with the group structure since, for all g, h ∈ G and f ∈ C(G),

∀x ∈ G, ((gh) · f)(x) = f(xgh) = (h · f)(xg) = (g · (h · f))(x),

implying that (gh) · f = g · (h · f). Moreover, eG ∈ G acts trivially on C(G),
since for all f ∈ C(G)

∀x ∈ X : (1G · f)(x) = f(x1G) = f(x).

so that 1G · f = f . This proves that we have a group action

(b) Consider the characteristic function χ : G −→ C sending 1G 7→ 1C and 1G 6=
g 7→ 0. Then if g ∈ StabG(χ), one can write χ(g) = g · χ(1G) = χ(1G) = 1C,
which implies that if and only g = 1G. This proves that StabG(χ) = {1G}
and that the action is faithful.

2. Let G be a group acting on a set T and t1, t2 ∈ T be elements in the same G-orbit.
Prove that the stabilizers of t1 and t2 in G are conjugate.

Solution: Since t1, t2 are in the same G-orbit, there exists g ∈ G such that t2 =
g0 · t1. Then

StabG(t2) = {g ∈ G : g · t2 = t2} = {g ∈ G : g · (g0 · t1) = g0 · t1}
= {g ∈ G : (g−10 gg0) · t1 = t1} = {g ∈ G : (g−10 gg0) ∈ StabG(t1)}
= g0StabG(t1)g

−1
0 ,

so that the stabilizers of t1 and t2 are conjugate.
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3. Let G be a group acting on a set T . For H ⊆ G, define the set of H-invariants as

TH := {x ∈ T : ∀h ∈ H, h · x = x}.

Prove: if H EG, then the action of G on T induces an action of G/H on TH .

Solution: Consider the map

l : G/H × TH −→ TH

(gH, x) 7−→ g · x.

We first check that it is well-defined:

• For every g ∈ G, x ∈ TH and h ∈ H, we have that h·(g ·x) = g ·((g−1hg)·x) =
g · x as H EG. Hence g · x ∈ TH .

• If gH = g′H, then g = g′h for h ∈ H. Then g ·x = (g′h) ·x = g′ ·(h ·x) = g′ ·g
for every x ∈ TH , so that `(gH) does not depend on the representative g.

The map l is an action of G/H on TH , as the axioms of group actions are inherited
from the given action of G on T .

4. Consider the complex upper half-plane H = {z ∈ C : Im(z) > 0}.

(a) Show that SL2(R) acts on H by(
a b
c d

)
· z =

az + b

cz + d
.

(b) Is the action faithful?

(c) Show that the subgroup H :=

{(
a b
0 a−1

)
: a ∈ R×, b ∈ R

}
acts transi-

tively on H.

(d) Compute the stabilizer of i in SL2(R).

(e) Deduce that any g ∈ SL2(R) can be written as g = hk for h ∈ H and

k ∈ SO2(R) =

{(
cos θ sin θ
− sin θ cos θ

)
: θ ∈ R

}
.

(f) Compute and sketch the orbit of i ∈ H under the following subgroups:

H1 :=

{(
a 0
0 a−1

)}
, H2 :=

{(
1 t
0 1

)}
, H3 :=

{(
1 0
t 1

)}
.

Solution:
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(a) First, we check that for each M ∈ SL2(R) and z ∈ H we have M · z ∈ H. For

M =

(
a b
c d

)
, the denominator cz+ d has imaginary part cz, which is zero

only if c = 0, in which case d 6= 0 because M ∈ SL2(R). This means that
cz+d 6= 0 so that M ·z is a well-defined complex number. Writing α = <(z),
β = =(z), we see that

=(M · z) = =
(
aα + iaβ + b

cα + icβ + d

)
= =

(
(aα + iaβ + b)(cα− icβ + d)

(cα + d)2 + c2β2

)
=
aβ(cα + d)− cβ(aα + b)

(cα + d)2 + c2β2
=

det(A)

(cα + d)2 + c2β2
=

1

(cα + d)2 + c2β2
.

Hence M · x ∈ H. Hence we have indeed a map SL2(R) × H −→ H. Now

consider another M ′ =

(
a′ b′

c′ d′

)
∈ SL2(R). Then

M ′M =

(
a′a+ b′c a′b+ b′d
c′a+ d′c c′b+ d′d

)
, (M ′M) · z =

(a′a+ b′c)z + (a′b+ b′d)

(c′a+ d′c)z + (c′b+ d′d)
,

whereas

M ′ · (M · z) =
a′(M · z) + b′

c′(M · z) + d′
=
a′ az+b
cz+d

+ b′

c′ az+b
cz+d

+ d′
=
a′(az + b) + b′(cz + d)

c′(az + b) + d′(cz + d)

and we realise that M ′ · (M · z) = (M ′M) · z. Finally, the identity matrix
maps z 7→ z by definition. This prove that we are indeed dealing with a
groups action of SL2(R) on H.

(b) The equality z = M · z for M =

(
a b
c d

)
is equivalent to

cz2 + (d− a)z − b = 0.

We want to find for which M the above equality is satisfied for all z ∈ Z.
Substituting z = i and comparing real and imaginary part, we obtain−c−b =
0 and a = d. Then, substituting 1 + i, we obtain 2ic − b = 0, which implies
b = c = 0. Since M ∈ SL2(R), we need that a = d = ±1. This shows that
the only matrices fixing all elements of H are Id2 and −Id2.

(c) In order to prove that the subgroup H acts transitively on H, it is enough to
show that the orbit of i contains all w ∈ H. This amounts to show that for
each w = α + iβ, where α, β ∈ R and β > 0, there exists a, b, d ∈ R, with
ad = 1, such that

α + iβ = w =
ai+ b

d
.

This can be attained (in a unique way) by taking a =
√
β, d = 1√

β
and

b = α√
β
.
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(d) We compute the desidered stabilizer:

StabSL2(R)(i) = {M ∈ SL2(R) : i = M · i}

=

{(
a b
c d

)
∈ SL2(R) : di− c = ai+ b

}
=

{(
a c
−c a

)
∈ SL2(R)

}
=

{(
cos θ sin θ
− sin θ cos θ

)
, θ ∈ R

}
= SO2(R).

(e) Let g ∈ SL2(R). By part (c), there exists h ∈ H such that h · i = g · i. Then
h−1g · i = i, so that k := h−1g ∈ StabSL2(R)(i) = SO2(R). Then g = hk is the
desired composition.

(f) We compute the image of i under a general element of the different subgroups:

• Let M =

(
a 0
0 a−1

)
∈ H1. Then M · i = ai

a−1 = a2i. The quantity a2

attains all positive real values, so that the H1-orbit of i is iR>0, an open
vertical half-line in H starting at 0.

• Let M =

(
1 t
0 1

)
∈ H2. Then M · i = i+ t. Hence the H2-orbit of i is

the horizontal line in C passing through i.

• Let M =

(
1 0
t 1

)
∈ H3. Then

M · i =
i

ti+ 1
=

t

1 + t2
+ i

1

1 + t2
.

Let x = <(M · i) = t
1+t2

and y = =(M · i). Then we see that (x, y) can
be any pair of values such that 0 < y < 1 and

x2 + y2 = y.

This is the equation of the circle in the complex plain with center in i
2

and radius 1/2.

5. Let G be a finite group and H ⊂ G a subgroup. Suppose that the index of H in G
is equal to the smallest prime number dividing |G|. Prove: H CG. [Hint: Define
a suitable action ρ : G −→ Sym(G/H). Look at ker(ρ) and Card(Im(ρ)).]

Solution: Let G be a finite group, p the minimal prime dividing |G| and H 6 G
subgroup of index [G : H] = p. The group G acts on G/H by left multiplication,
giving a group homomorphism

ρ : G −→ Sym(G/H).
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The kernel is

ker(ρ) = {g ∈ G : ∀x ∈ G, gxH = xH} = {g ∈ G : ∀x ∈ G, x−1gx ∈ H} = (1)

= {g ∈ G : ∀x ∈ G, g ∈ xHx−1} =
⋂
x∈G

xHx−1 ⊆ H. (2)

By Lagrange’s Theorem,

Card(Im(G)) |Card(Sym(G/H)) = [G : H]! = p!.

By the First Isomorphism Theorem, Im(ρ) ∼= G/ ker(ρ), so that

Card(Im(ρ)) |Card(G).

Since the prime factors of Card(G) are all bigger or equal to p, while the prime
factors of p! are all smaller or equal to p (which itself has exponent 1 in the prime
decomposition of p!, we deduce that Card(Im(G)) ∈ {1, p}. Then

{1, p} 3 Card(Im(G)) = [G : ker(ρ)]
(1)

> [G : H] = p

implies that [G : H] = [G : ker(ρ)], so that H = ker(ρ) again by (1). Since kernels
are normal subgroup, we can conclude that H CG.

6. Let G be a finite group and p a prime number. Let Tp be the set of all p-Sylow
subgroups and fix P ∈ Tp. Since conjugation preserves cardinality of subsets, G
acts on Tp by

g ·H = gHg−1.

(a) Show that the induced action of P on Tp has a unique fixed point.

(b) Deduce that Card(Tp) ≡ 1 (mod p).

(c) Prove that Card(Tp) |m := [G : P ]. [Hint: Use the action of G by conjugation
on the set of its subgroups]

(d) Let M ⊃ P be a subgroup of G containing NG(P ). Prove that NG(M) = M .

Solution:

(a) Let H ∈ Tp be fixed by P . Then xHx−1 = H for each x ∈ P . This means
that P is a subgroup of NG(H). Since Card(NG(H))|Card(G), both H and
P are p-Sylow subgroups of NG(H), so that they are conjugates in NG(H).
But H is stable under conjugation by elements in NG(H) (i.e., H CNG(H))
by definition of NG(H), so that H = P . On the other hand P ∈ Tp is clearly
fixed by P . This implies that P is the only point in Tp which is fixed by P .
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(b) Let H ∈ Tpr{P}. Denote by orbP (H) the orbit of H under the action of P on
Tp by conjugation. By part (a), Card(orbP (H)) > 1. By the orbit-stabilizer
Theorem,

Card(orbP (H)) = [P : StabP (H)]

so that Card(orbP (H)) 6= 1 divides a power of p, meaning that it is divisible
by p. We can than conclude that

Card(Tp) =
∑

P -orbits U⊂Tp

Card(U) = 1 +
∑

P -orbits {P}6=U⊂Tp

Card(U) ∈ 1 + pZ

as desired.

(c) Since all p-Sylow subgroups are conjugated in G and all conjugates of p-Sylow
subgroups are p-Sylow subgroups, the number of p-Sylow subgroups is equal
to the cardinality of the G-orbit of P with respect to the action of G on
the set of its subgroups by conjugation. Notice that StabG(P ) = NG(P ) by
definition. By the orbit stabilizer theorem, we can conclude:

Card(Tp) = [G : NG(P )] | [G : P ]

(d) It is clear that M ⊂ NG(M), so we now prove that NG(M) ⊂ M . Let
x ∈ NG(M). Since P ⊂M ,

xPx−1 ⊂ xMx−1 = M.

This means that P and xPx−1 are both Sylow subgroups of M , meaning that
there exists y ∈ M such that yPy−1 = xPx−1, i.e., P = (y−1x)P (y−1x)−1.
Hence y−1x ∈ NG(P ) ⊂M , implying that x = y(y−1x) ∈M .

7. Let K be a field and D be the subgroup of G := GL2(K) consisting of diagonal
matrices. Determine NG(D) and NG(D)/D.

Solution: If K = F2, then D = {Id2}, so that NG(D)/D ∼= NG(D) = GL2(K).

If K 6= F2, then D contains both scalar matrices and matrices with different two
distinct entries in the diagonal. Since scalar matrices commute with all other
matrices, we deduce that

NG(D) = {g ∈ GL2(K) : ∀λ, µ ∈ K s.t. λ 6= µ, g

(
λ 0
0 µ

)
g−1 ∈ D}.

If the matrix g

(
λ 0
0 µ

)
g−1 above is diagonal, then it can be either

(
λ 0
0 µ

)
or

(
µ 0
0 λ

)
, because similar matrices have the same eigenvalues. Thus we have

two sufficient conditions for g in the above expression of NG(D), which we parse

for g =

(
a b
c d

)
:
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• First possibility: g

(
λ 0
0 µ

)
=

(
λ 0
0 µ

)
g. This equality reads

(
aλ bµ
cλ dµ

)
=(

aλ bλ
cµ dµ

)
, which holds if and only if b = c = 0, because λ 6= µ. This pos-

sibility is equivalent to ask that g ∈ D.

• Second possibility: g

(
λ 0
0 µ

)
=

(
µ 0
0 λ

)
g. This equality reads

(
aλ bµ
cλ dµ

)
=(

aµ bµ
cλ dλ

)
, which implies that a = d = 0. This possibility is equivalent to

ask that g ∈
(

0 1
1 0

)
D.

This proves:

NG(D) := D ∪
(

0 1
1 0

)
D =

{(
u 0
0 v

)}
∪
{(

u 0
0 v

)}
.

This tells us that [NG(D) : D] = 2, so that NG(D)/D has cardinality 2 and as
such is isomorphic to Z/2Z.

8. Let Sn act on {1, . . . , n}. Define an action of Sn on {1, . . . , n} × {1, . . . , n} by
g · (i, j) = (g(i), g(j)). Show that this action has exactly two orbits and determine
them.

Solution: For σ ∈ Sn and i, j ∈ {1, . . . , n}, we know that σ(i) = σ(j) if and only
if i = j. This means that an element (k, k) ∈ {1, . . . , n}2 cannot lie in the same
orbit of an element (i, j) ∈ {1, . . . , n}2 with i 6= j. Hence we have at least two
orbits. In order to conclude, we need to check that all elements (k, k) are in the
same orbit and all elements (i, j) for i 6= j are in the same orbit.

• Let k, k′ ∈ {1, . . . , n}. As seen in class, the action on Sn is transitive, so that
there is σ ∈ Sn such that σ(k) = k′, implying that σ · (k, k) = (k′, k′).

• Let, i, j, i′, j′ ∈ {1, . . . , n} be elements such that i 6= j and i′ 6= j′. Then the
sets {1, . . . , n}r {i, j} and {1, . . . , n}r {i′, j′} have the same cardinality so
that there is a bijective map {1, . . . , n}r {i, j} −→ {1, . . . , n}r {i′, j′}. We
extend this to a bijection σ ∈ Sn by sending i 7→ i′ and j 7→ j′. Then

σ(i, j) = (i′, j′).

This concludes the proof that there are two orbits: {(k, k) ∈ {1, . . . , n}2} and
{(i, j) ∈ {1, . . . , n}2 : i 6= j}.
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