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Solution 10

Group actions, the symmetric Group

1. Let p be a prime number and T the set of one-dimensional Fp-subspaces in (Fp)n+1,
i.e., of lines through the origin in (Fp)n+1.

(a) Show that GLn+1(Fp) acts transitively on T by g · L = g(L).

(b) Compute the stabilizer of the line L0 := 〈(1, 0, . . . , 0)〉 ∈ T .

(c) Compute Card(T ). [Hint: T has the same number of elements of the set of
orbits of F×p acting on (Fp)n+1 r {0}]

Solution:

(a) In the following, all ‘lines’ are supposed to be line through the origin.

Under the identification GLn+1(Fp) ∼= AutFp(Fn+1
p ), in the statement g · L is

defined as the image of the line L under g, which we know is again a line.
The axioms of group action are trivially checked.

A line in GLn+1(Fp) can be determined by a non-zero vector. Since any non-
zero vector v0 of Fn+1

p can be completed to a basis, there exists for each v0 6= 0
an automorphism of the Fp-vector space Fn+1

p sending (1, 0, . . . , 0) 7→ v0 (in
other words, the action of GLn+1(Fp) on Fn+1

p is transitive). Such an auto-
morphism sends the line L0 generated by (1, 0, . . . , 0) to the one generated
by v0, which is a arbitrary. Hence the GLn+1(Fp)-orbit of L0 is T and the
GLn+1(Fp)-action on T is transitive.

(b) An automorphism of Fn+1
p sends L0 7→ L0 if and only if it sends (1, 0, . . . , 0)

to (λ, 0, . . . , 0) for λ ∈ Fp. Hence

Stab(L0) =



∗ ∗ . . . ∗
0 ∗ . . . ∗
...

...
. . .

...
0 ∗ . . . ∗

 ∈ GLn+1(Fp)

 .

(c) One can use the hint to obtain that

Card(T ) =
pn+1 − 1

p− 1
= 1 + p+ · · ·+ pn.
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Alternatively, one can use the orbit stabilizer theorem, which tells us that

T ∼= GLn+1(Fp)/Stab(L0).

We notice that Card(Stab(L0)) = (p − 1)pnCard(GLn(Fp)), since the upper
left entry can be any element of F×p , the remaining n elements in the first
row are arbitrary elements of Fp and the remaining element for an invertible
n×n matrix. For the cardinality of GLn(Fp), one can generalize the counting
of bases in Assignment 7, Exercise 3 and obtain

Card(GLn(Fp)) = (pn − 1)(pn − p) · · · (pn − pn−1).

Altogether, this lets us compute

Card(T ) =
Card(GLn+1(Fp))

(p− 1)pnCard(GLn(Fp))

=
(pn+1 − 1)(pn+1 − p) · · · (pn+1 − pn)

(p− 1)pn(pn − 1)(pn − p) · · · (pn − pn−1)
=
pn+1 − 1

p− 1
.

2. Consider the standard action of GL2(R) on R2. Determine the orbits of (1, 0)
under each of the subgroups

H1 :=

{(
1 t
0 1

)}
, H2 :=

{(
a 0
0 b

)}
, H3 :=

{(
a b
0 1

)}
, H4 := SO2(R).

Solution: This is done by looking at the images of (1, 0) under the matrices of the
given forms, which coincides with the first column of the matrix.

• Since the first column of

(
1 t
0 1

)
is

(
1
0

)
for all t, the H1-orbit of (1, 0)

is {(1, 0)}.

• The matrices in H2 and H3 have all first column equal to

(
a
0

)
for a ∈ R×.

Hence the H2-orbit and the H3-orbit of (1, 0) coincide and they are given
by {(a, 0) : a ∈ R×}, the horizontal line through the origin, removed of the
origin.

• Since a generic element of SO2(R) is a matrix

(
cos θ − sin θ
sin θ cos θ

)
with θ ∈ R,

we can conclude that the H4-orbit of (1, 0) is

{(cos θ, sin θ), θ ∈ R} = {(a, b) ∈ R2 : a2 + b2 = 1}.

3. Let G be a group acting on a set T . Fix x0 ∈ T . Let H ⊂ G be a subgroup and
define X to be the H-orbit of x0. Show that, for g ∈ G,

g ·X = {g · x : x ∈ X}
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is the gHg−1-orbit of g · x0.
Solution: The gHg−1-orbit of g · x0 is

(gHg−1) · (g · x0) = {(ghg−1) · (g · x0) : h ∈ H} = {g · (h · x0) : h ∈ H} = g ·X,

where the last equality is due to the fact that the H-orbit of x0 is, by definition,
the set of elements h · x0 with h ∈ H.

4. Let σ ∈ Sn. Denote by F (σ) the number of points fixed by σ. Prove that the
following formulas hold:

1

n!

∑
σ∈Sn

F (σ) = 1

1

n!

∑
σ∈Sn

F (σ)2 = 2

[Hint: Notice that F (σ) =
∑

x:σ(x)=x 1. Invert the order of summation.]

Solution: As suggested by the hint, we see that F (σ) =
∑

x:σ(x)=x 1. Then

1

n!

∑
σ∈Sn

F (σ) =
1

n!

∑
σ∈Sn

∑
x:σ(x)=x

1 =
1

n!

n∑
x=1

∑
σ∈Sn:σ(x)=x

1 =
1

n!

n∑
x=1

(n− 1)! =
1

n
· n = 1.

We have used the fact that Card(StabSn(x)) = (n − 1)!, since a permutation
σ ∈ Sn fixing x is given an arbitrary partition of {1, . . . , n}r{x}. For the average
of (F (σ))2, we first look at the product of sums

(F (σ))2 =
( ∑
x:σ(x)=x

1
)( ∑

y:σ(x)=x

1
)

=
∑

x,y∈{1,...,n}
σ(x)=x
σ(y)=y

1.

Then, switching the summation order,

1

n!

∑
σ∈Sn

(F (σ))2 =
1

n!

∑
σ∈Sn

∑
x,y∈{1,...,n}
σ(x)=x
σ(y)=y

1 =
1

n!

∑
x,y∈{1,...,n}

∑
σ∈Sn
σ(x)=x
σ(y)=y

1

=
1

n!

( ∑
x,y∈{1,...,n}

x 6=y

∑
σ∈Sn
σ(x)=x
σ(y)=y

1 +
∑

x∈{1,...,n}

∑
σ∈Sn
σ(x)=x

1
)

=

=
1

n!

(
n · (n− 1) · (n− 2)! + n · (n− 1)!

)
= 2
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5. For each conjugacy class S6, write down a representative and the cardinality of
the class.

Solution: As seen in class, the elements in a conjugacy class of S6 are all those
with a specific cyclic type, that is, a specific length of the cycles appearing in their
unique decomposition into disjoint cycles, where we also include 1-cycles in order
to obtain an unordered partition of n. Hence the conjugacy classes of S6 are given
by partitions of 6, which we list in an order for which their number of summands
increases. In a single partition the order of the summands is irrelevand, so we sum
them in decreasing order. This gives:

• 6 = 6, the trivial partition. We obtain the class of 6-cycles, [(1 2 3 4 5 6)].
The number of elements is the number of 6-cycles in S6. Notice that such a
6-cycle can always be written as (1 a1 a2 a3 a4 a5), and that different choices of
(a1, a2, a3, a4, a5) lead to different 6-cycles. Hence there are 5! = 120 elements
in this class.

• 6 = 5 + 1. This corresponds to the class of 5-cycles, [(1 2 3 4 5)]. The number
of 5-cycles in S6 can be easily determined. There are 6 subsets of 5 elements
in {1, . . . , 6}. For each of those, we can write any 5-cycle with first element
equal to the minimal one, and freely choose the remaining 4 elements. Hence
there are 6 · 4! = 144 elements in this class.

• 6 = 4 + 2. This corresponds to the class [(1 2)(3 4 5 6)]. In order to determine
how many elements with this cycle type are there, we first notice that there
are

(
6
2

)
= 15 ways to choose 2 elements in {1, . . . , 6}. For each of those,

the 2-cycle is uniquely determined, while the 4-cycle can be chosen with
first element equal to the minimum of the four elements involved, and the
remaining 3 elements freely chosen, giving 3! possibilities. Hence this class
contains 15 · 3! = 90 elements.

• 6 = 3 + 3. This corresponds to the class [(1 2 3)(4 5 6)]. In order to determine
how many elements with this cycle type are there, we first notice that there
are 1

2!

(
6
3

)
= 10 ways to choose 2 disjoint triples of elements (without caring

about the order of the two couples) in {1, . . . , 6}. The two subsets of three
elements can be independently put in one of the 2 distinct three cycles, so
that we obtain 10 · 2 · 2 = 40 elements in this conjugacy class.

• 6 = 4 + 1 + 1. This corresponds to the class of 4-cycles, [(1 2 3 4)]. There are(
6
4

)
= 15 subsets of 4 elements in {1, . . . , 6}. For each of those, as already

seen above, there are 3! possible 4-cycles. Hence this class contains 15 ·6 = 90
elements.

• 6 = 3 + 2 + 1. This corresponds to the class [(1 2 3)(4 5)]. In order to
determine how many elements with this cycle type are there, we first notice
that there are

(
6
3

)(
3
2

)
= 60 ways to choose disjoint subsets of 3 and 2 elements
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in {1, . . . , 6}. For each of those, the 2-cycle is determined, while for the 3-
cycle there are 2 possibilities. Hence we have 60 · 2 = 120 elements in this
conjugacy class.

• 6 = 2 + 2 + 2. This corresponds to the class [(1 2)(3 4)(5 6)]. In order to
determine how many elements with this cycle type are there, we first notice
that there are 1

3!

(
6
2

)(
4
2

)
= 15 ways to choose 3 disjoint couple of elements in

{1, . . . , 6} (without caring of the order of the couples). For each of those,
the 2-cycles are uniquely determined, so that we have 15 elements in this
conjugacy class.

• 6 = 3 + 1 + 1 + 1. This corresponds to the class of 3-cycles, [(1 2 3)]. There
are

(
6
3

)
= 20 subsets of 3 elements in {1, . . . , 6}. For each of those, as already

seen above, there are 2 possible 3-cycles. Hence this class contains 20 ·2 = 40
elements.

• 6 = 2 + 2 + 1 + 1. This corresponds to the class [(1 2)(3 4)]. In order to
determine how many elements with this cycle type are there, we first notice
that there are 1

2!

(
6
2

)(
4
2

)
= 45 ways to choose two disjoint couple of elements

in {1, . . . , 6} (without caring of the order of the couples). For each of those,
the 2-cycles are uniquely determined, so that we have 45 elements in this
conjugacy class.

• 6 = 2 + 1 + 1 + 1 + 1. This corresponds to the class of 2-cycles, [(1 2)]. There
are
(
6
2

)
= 15 subsets of 2 elements in {1, . . . , 6}. For each of those, the 2-cycle

is already determined. Hence this class contains 15 elements.

• 6 = 1 + 1 + 1 + 1 + 1 + 1. This correspond to the class [id], which consist of
1 element.

We hence found the following conjugacy classes:

partition representative cardinality
6 = 6 (1 2 3 4 5 6) 120

6 = 5 + 1 (1 2 3 4 5) 144
6 = 4 + 2 (1 2)(3 4 5 6) 90
6 = 3 + 3 (1 2 3)(4 5 6) 40

6 = 4 + 1 + 1 (1 2 3 4) 90
6 = 3 + 2 + 1 (1 2 3)(4 5) 120
6 = 2 + 2 + 2 (1 2)(3 4)(5 6) 15

6 = 3 + 1 + 1 + 1 (1 2 3) 40
6 = 2 + 2 + 1 + 1 (1 2)(3 4) 45

6 = 2 + 1 + 1 + 1 + 1 (1 2) 15
6 = 1 + 1 + 1 + 1 + 1 + 1 id 1

Aliter: In order to compute the cardinalities, one could use the general formula
obtained in Exercise 8d), which says that the cardinality of the conjugacy class
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associated to the partition 6 = k1 · 1 + k2 · 2 + · · · + k6 · 6 is 6!/(
∏6

i=1 ki!i
ki). For

instance,

Card[(1 2 3)(4 5 6)] =
6!

2!32
= 4 · 5 · 2 = 40, since ki =

{
2 i = 3
0 i 6= 3

6. Let n > 3. Prove that [Sn, Sn] = An. [Recall: for a group G, the commutator
[G,G] is defined as the subgroup of G generated by {aba−1b−1 : a, b ∈ G}. See
Assignment 8, Exercise 6]

Solution: Consider the signature morphism ε : Sn −→ {±1}. Since {±1} is an
abelian group, we have [Sn, Sn] ⊂ ker(ε) = An as seen in Assignment 8, Exercise
6(d).

Conversely, in order to prove that An ⊂ [Sn, Sn], it is enough to check that [Sn, Sn]
contains all 3-cycles, as those are generators ofAn. This is indeed the case, because,
as Exercise 6 suggests,

(a b)(b c) = (a b c),

and by the conjugation rules seen in class

(b c) = (a c)(b a)(a c)−1,

so that

(a b c) = (a b)(a c)(b a)(a c) = (a b)(b c)(a b)(b c) = [(a b), (b c)] ∈ [Sn, Sn].

Aliter: The second inclusion can be proven in another way for n > 5. Indeed, in
this case An is simple, so on can observe that 1 6= [(1 2), (2 3)] ∈ [Sn, Sn] C Sn, so
that {1} 6= [Sn, Sn] C An and hence [Sn, Sn] = An.

7. (a) Prove that Sn is generated by {σi := (i i + 1), 1 6 i 6 n − 1}, and that
those generators satisfy the relations

σiσj = σjσi, if |i− j| > 2

(σiσi+1)
3 = id, for 1 6 i 6 n− 2.

(b) Let τ := (1 2 . . . n). Show that Sn is generated by {σ1, τ}. [Hint: Express σi
in terms of σ1 and τ ]

Solution:

(a) First, notice that Sn is generated by {(1 i) : 2 6 i 6 n− 1}. Indeed, for each
i, j ∈ {1, . . . , j}r {1}, there is an equality

(1 i)(1 j)(1 i) = (i j),
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so that {(1 i) : 2 6 i 6 n − 1} generates all transpositions, which is enough
to generate Sn as seen in class. In order to conclude, it is enough to check
for each 2 6 i 6 n − 1 that (1 i) ∈ 〈{σk : 1 6 k 6 n − 1}〉. We do it
by induction on i. This is clear for i = 2, since (1 2) = σ1. Suppose that
(1 i− 1) ∈ 〈{σk : 1 6 k 6 n− 1}〉. Then

(1 i) = σi−1(1 i− 1)σ−1i−1 ∈ 〈{σk : 1 6 k 6 n− 1}〉,

which concludes the proof that the elements σi generate S3.

We observe that σi and σj are disjoint when |i−j| > 2, so that they commute,
while σiσi+1 = (i i+ 1 i+ 2) is a 3-cycle and, as such, it has order 3.

(b) By the conjugation formula seen in class, for each 1 6 k 6 n− 1,

τ k−1(1 2)τ−k+1 = (k k + 1) = σk,

so that 〈{σ1, τ}〉 contains all the elements σk and by part (a) it coincides with
S3.

8. Let n > 2 be an integer and ki ∈ Z>0 for i = 1, . . . , n be such that

k1 · 1 + k2 · 2 + . . .+ kn · n = n.

Let X be the conjugacy class of X determined by (k1, . . . , kn). Tautologically, Sn
acts on X by conjugation and the action is transitive.

(a) Fix σ0 ∈ X and let H = StabSn(σ0). Prove that

Card(H) =
n∏
i=1

iki · ki!

(b) Use the above to write down an expression for Card(X).

(c) Show that Card({n− cycles in Sn}) = (n− 1)!

Solution:

(a) As seen in class, a conjugation class in Sn is uniquely determined by an un-
ordered partition of n, that is, a way of writing n as a sum of positive integers,
which gives the cycle type of any elements in the considered conjugation class
in Sn [For instance, 3 + 2 = 5 corresponds to the conjugation class consisting
of all permutations (a1 a2 a3)(a4 a5) ∈ S5 for distinct aj]. In the notation of
the exercise, ki is the number of times that the number i ∈ {1, . . . , n} appears
in the partition of n. Hence the class X consist of the permutations of the
form

(a1,1,1) · · · (a1,1,k1)(a2,1,1 a2,2,1) · · · (a2,1,k2 a2,2,k2) · · · (an,1,1 · · · an,n,1) · · · (an,1,1 · · · an,n,1)
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where the aλ,µ,ν all distinct and {aλ,µ,ν} = {1, . . . , n}. As visible in the above
expression, λ stands for the length of the cycle, µ stands for the position in
the cycle expression and ν for the position of the cycle among those of same
length.

Call σ0 the element written in the above expression in terms of aλ,µ,ν . As
seen in class, for σ ∈ Sn, the conjugate σσ0σ

−1 can be written with the same
expression, by replacing each aλ,µ,ν with σ(aλ,µ,ν).

Since the aλ,µ,ν are distinct, so are the σ(aλ,µ,ν) and, as the decomposition into
disjoint cycles is unique up to order, we obtain that σσ0σ

−1 = σ0 if and only if
the cycles of the same length are permuted, and the elements appearing in the
same cycle are permuted in a cyclic way (since (a1 a2 · · · am) = (b1 b2 · · · bm)
if and only if there exists t ∈ Z such that bj ≡ aj + t (mod m)). In terms of
the indices, this means that

σ(aλ,µ,ν) = aλ,µ+tλ,ν ,ν′λ , (1)

where for each λ the index ν ′ is independent on µ (which gives kλ! choices) and
tλ,ν ∈ {0, . . . , λ − 1} for independently for each ν (which gives λkλ choices).
[Notice that the index µ + tλ,ν in (1) needs to be interpreted modulo λ.]
Hence, for each λ, we have kλ! · λkλ choices, so that

Card(H) =
n∏
λ=1

kλ! · λkλ

as desired.

(b) By the orbit stabilizer theorem, since the action on Sn is transitive, we obtain

Card(X) =
Card(Sn)

Card(H)
=

n!∏n
λ=1 kλ! · λkλ

.

(c) The n-cycles in Sn form the conjugacy class corresponding to the trivial
partition n = n, i.e., kn = 1 and kj = 0 for j < n. We can apply the previous
part in this special case to obtain:

Card({n− cycles in Sn}) =
n!∑n

λ=1 kλ! · λkλ
=

n!

0 + . . .+ 0 + 1! · n1
= (n− 1)!
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