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Solution 11

Field extensions

1. Let f = X4 −X − 1 ∈ Q[X] and α ∈ C a root of f . Let K := Q(α).

(a) Prove that the polynomial f = X4 −X − 1 ∈ F2[X] is irreducible in F2[X].

(b) Deduce that f is irreducible in Q[X]. Recall: this implies that Q[X]/(f) ∼= K.

(c) Write down the following elements as linear combinations of the Q-basis ele-
ments 1, α, α2, α3:

α10,
1

α
,

1

α + 1
,

α5

α2 + 2
.

Solution:

(a) Since f(0) = f(1) = 1 6= 0, the polynomial f has no root in F2, hence it
is not divisible by any degree 1 polynomial. Suppose that f = g · h for g, h
non-constant polynomials. Then deg(g) = deg(h) = 2. Comparing leading
coefficients and constant terms in g, h and f , we see that g = X2 + aX + 1
and h = X2 + bX + 1 for some a, b ∈ F2. Then

X4 +X + 1 = f = gh = X4 + (a+ b)X3 + abX2 + (a+ b)X + 1

forces a+ b = 0 and a+ b = 1 at the same time, a contradiction. Hence f is
irreducible in F2[X].

(b) A decomposition of f in Z[X] gives via the map π2 (as defined in Exercise 2)
a decomposition of f in F2[X] into polynomials of corresponding degrees, so
that by (a) f cannot be factored into a product of two non-constant polyno-
mials in Z[X]. Since f is primitive, we can conclude that it is irreducible in
Z[X]. By Gauss’ Lemma, f is irreducible in Q[X] as well.

The evaluation map evα : Q[X] −→ K has kernel ker(evα) = (irr(α,Q))
as seen in class, and since f ∈ ker(evα) we know that irr(α,Q)|f . As f
and irr(α,Q) are both irreducible, we can conclude that (irr(α,Q)) = (f) so
that by the First Isomorphism Theorem on rings we obtain an isomorphism
Q[X]/(f) ∼= K.

(c) For this task, we use constantly the fact that α4 = α + 1.

• α10 = α2(α4)2 = α2(α + 1)2 = α4 + 2α3 + α2 = 2α3 + α2 + α + 1.

• Since α ·α3 = α+1, we realise that α · (α3−1) = 1, so that α−1 = α3−1.
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• By the previous computation, we obtain (α + 1)−1 = α−4 = (α−1)4 =
(α3 − 1)4 = (α6 − 2α4 + 1)2. Since α5 = α2(α + 1) = α2 + α and
α6 = α3 + α2, we can conclude that

(α + 1)−1 = (α6 − 2α3 + 1)2 = (−α3 + α2 + 1)2

= α6 + α4 + 1− 2α5 − 2α3 + 2α2

= α3 + α2 + α + 1 + 1− 2α2 − 2α + 2α2 − 2α3

= −α3 + α2 − α + 2.

• We first compute (α2 + 2)−1. Let p, q, r, s ∈ Q and suppose that p+ qα+
rα2 + sα3 = (α2 + 2)−1. Then

(p+ qα + rα2 + sα3)(α2 + 2) = 1 ⇐⇒
2p+ 2qα + (p+ 2r)α2 + (q + 2s)α3 + rα4 + sα5 = 1 ⇐⇒
2p+ 2qα + (p+ 2r)α2 + (q + 2s)α3 + r(1 + α) + s(α + α2) = 1 ⇐⇒
(2p+ r) + (r + s+ 2q)α + (p+ 2r + s)α2 + (q + 2s)α3 = 1 ⇐⇒
2p+ r = 1 and r + s+ 2q = p+ 2r + s = q + 2s = 0,

where the last equivalence is due to the fact that 1, α, α2, α3 is a Q-basis
of K. Solving the system of equations in Q, we obtain

(α2 + 2)−1 =
7

11
+

2

11
α− 3

11
α2 − 1

11
α3.

Hence

α5

α2 + 2
=

(
7

11
α +

2

11
α2 − 3

11
α3 − 1

11
α4

)
(1 + α)

=

(
− 1

11
+

6

11
α +

2

11
α2 − 3

11
α3

)
(1 + α)

= − 1

11
+

5

11
α +

8

11
α2 − 1

11
α3 − 3

11
(1 + α)

= − 4

11
+

2

11
α +

8

11
α2 − 1

11
α3.

2. Let p be a prime number. Recall that the canonical projection Z −→ Z/pZ = Fp
induces a surjective ring homomorphism

πp : Z[X] −→ Fp[X].

Let f =
∑n

k=0 akX
k ∈ Z[X] be a polynomial such that p divides a0, a1, . . . , an−1,

p does not divide an and p2 does not divide a0.

(a) Prove that πp(f) is monomial of degree n in Fp[X].
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(b) Prove that f is irreducible in Q[X] [This result is referred to as Eisenstein’s
criterion]

Solution:

(a) Write ak = pa′k for k = 0, . . . , n− 1. Recall that πp is reduction modulo p on
coefficients and maps X 7→ X. Then

πp(f) = πp(anX
n+

n−1∑
k=0

pa′kX
k) = πp(an)Xn+

n−1∑
k=0

πp(p)πp(a
′
k)X

k = πp(an)Xn

since πp(p) = 0. Since p - an, we know that πp(an) 6= 0, so that πp(f) is a
monomial of degree n.

(b) Suppose by contradiction that f = g0h0 for g0, h0 ∈ Q[X] non-invertible poly-
nomials. Then g0 and h0 are non-constant and by Gauss’ Lemma there exist
g, h ∈ Z[X] of corresponding degree such that f = gh. Then πp(g)πp(h) =
πp(f) and since Fp[X] is a UFD we know that πp(g) and πp(h) are monomials
whose degrees add up to n. This means by construction of πp that p divides
the constant term of both g and h. Since a0, the constant term of f , is the
product of those two constant terms, we deduce that p2|a0, in contradiction
with our assumption. Hence f is irreducible in Q[X].

3. Let a ∈ Z r {0,±1} be a square-free integer, that is, an integer which is not
divisible by any perfect square except 1. Prove that, for each n ∈ Z>0, the
polynomial Xn − a ∈ Q[X] is irreducible. Conclude that there are irreducible
polynomials in Q[X] of any degree n > 1.

Solution: Let p be a prime factor of a. Since a is squarefree, p2 - a. Then Xn − a
satisfies the hypothesis of Eisenstein’s criterion for p (Exercise 2), so that it is
irreducible in Q[X]. Since n > 1 is arbitrary and a = 101 is an example of square
free integer, there are irreducible polynomial in Q[X] of any degree n > 1.

4. Let p be a prime number. Let ζ := e
2πi
p ∈ C and consider the polynomial

f :=
Xp − 1

X − 1
= Xp−1 + · · ·+X + 1 ∈ Q[X].

(a) Prove that f is irreducible [Hint: g(X) := f(X + 1). Use Exercise 2]

(b) Deduce that [Q(ζ) : Q] = p− 1. The field Q(ζ) is called the p-th cyclotomic
field.

Solution:

(a) Consider the unique ring homomorphism γ : Q[X] −→ Q[X] which sends
Q 3 a 7→ a and X 7→ X + 1. Clearly, it is a ring isomorphism with inverse
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defined via X 7→ X−1. In particular, f is irreducible if and only if g := γ(f)
is irreducible. We notice that

Xg = γ(X − 1)γ(f) = γ(Xp − 1) = (X + 1)p − 1,

so that

g =

p∑
k=1

(
p

k

)
Xk−1 =

p−1∑
h=0

(
p

h+ 1

)
Xh.

Since p|
(

p
h+1

)
for h = 0, . . . , p− 2, while p -

(
p

(p−1)+1

)
= 1 and p2 -

(
p

0+1

)
= p,

the polynomial g satisfies the hypothesis of Eisenstein’s Lemma (Exercise 2),
so that it is irreducible in Q[X]. Hence g is irreducible in Q[X].

(b) First, notice that

f(ζ) =
ζp − 1

ζ − 1
=

1− 1

ζ − 1
= 0.

As in Exercise 1(b), since f is irreducible, we can conclude that Q[X]/(f) ∼=
Q(ζ). This is also an isomorphism of Q-vector spaces, so that [Q(ζ) : Q] =
[Q[X]/(f) : Q] = deg(f) = p− 1.

5. Let f =
∑

i aiX
i ∈ Z[X]. Suppose that α ∈ Q is a root of f and write α = a

b
for

a, b ∈ Z with gcd(a, b) = 1.

(a) Prove that a|a0 and b|an.

(b) Deduce that 2X4+X+3 ∈ Q[X] has no roots in Q. Is it irreducible in Q[X]?

Solution:

(a) Since α is a root of f , we see that

an
an

bn
+ · · ·+ a1

a

b
+ a0 = 0.

Multiplying both sides by bn we obtain

ana
n + · · ·+ a1ab

n−1 + a0b
n = 0.

In particular, ana
n = −b(

∑n−1
k=0 aka

kbn−k−1) and a0b
n = −a(

∑n
k=1 aka

k−1bn−k),
so that b|anan and a|a0bn. Since a and b are coprime, we conclude that b|an
and a|a0.

(b) Let f = 2X4 +X + 3. By part (a),

{roots of f in Q} ⊂
{
±1,±3,±1

2
,±3

2

}
.
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One easily checks that those eight rational numbers are not roots of the
given polynomial, so that f has no root in Q. This means that f has no
linear factors, but not yet that it is irreducible. In order to decide if it is
irreducible, we need to check if it possible to write it as a product of degree-2
polynomials in Q[X].

Suppose that f = gh for g, h ∈ Q[X] of degree 2. By Gauss’ Lemma, we
can find g and h with integer coefficients. Since the product of the leading
coefficients of g and h must be the prime number 2, we can assume without
loss of generality that g = 2X2 + aX + b and h = X2 + cX + d (the leading
coefficients can be chosen to be any two rational numbers with product equal
to 2) for a, b, c, d ∈ Z. Then

X4 + (a+ 2c)X3 + (2d+ ac+ b)X2 + (ad+ bc)X + bd = 2X4 +X + 3.

Comparing the coefficients of X3, we see that a = −2c, so that a is even.
Then, comparing the coefficients of X2, we see that b = −2d − ac must is
even as well. This implies that ad + bc = 1 is even as well, contradiction.
Hence f is irreducible.

6. Let x ∈ RrQ be algebraic over Q. Let f = irr(x,Q) and n = deg(f).

(a) Show that there exists c ∈ R>0 such that, for any a
b
∈ Q with coprime

a, b ∈ Z, b > 0, we have ∣∣∣x− a

b

∣∣∣ > c

bn
.

[Hint: Write f(a
b
) = f(a

b
)− f(x) = (a

b
− x)f ′(y) for some y]

(b) Show that α :=
∑∞

n=1 10−n! is an irrational number.

(c) Show that α is transcendental over Q. [Hint: Consider am
bm

=
∑m

n=1 10−n! and
estimate |α− am

bm
|]

Solution:

(a) Following the hint, we use the mean value theorem and write∣∣∣f (a
b

)∣∣∣ =
∣∣∣f(x)− f

(a
b

)∣∣∣ =
∣∣∣x− a

b

∣∣∣ |f ′(y)| (1)

for some y between a
b

and x. If we take c > 1, the statement clearly holds
for
∣∣x− a

b

∣∣ > 1. So we can assume that
∣∣x− a

b

∣∣ < 1. Then |y| < 1 + |x| and
|f ′(y)| < 1

c′
for some constant c′ > 0 depending only on x. Hence (1) tells us

that ∣∣∣x− a

b

∣∣∣ > c′
∣∣∣f (a

b

)∣∣∣ =
c′

bn

∣∣∣bnf (a
b

)∣∣∣ > c′

bn
, (2)

where the last inequality is due to the fact that f
(
a
b

)
6= 0 since f is irreducible

in Q, while bnf
(
a
b

)
is seen (similarly as in Exercise 5) to be an integer, so

that
∣∣bnf (a

b

)∣∣ > 1.
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(b) A basic result in number theory states that the decimal expansion of a rational
number is eventually periodic. But the decimal expansion of α, which consists
of 0’s everywhere, except on the positions n! for n > 1, can be seen not to be
eventually periodic, so that α 6∈ Q.

(c) Let am = 10m!
∑m

n=1 10−n! and bm = 10m!. Then∣∣∣∣α− am
bm

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

10−n! −
m∑
n=1

10−n!

∣∣∣∣∣ =
∞∑

n=m+1

10−n!

< 10−(m+1)!

∞∑
n=0

10−n = 10−(m+1)!10

9
=

10

9bm+1
m

<
1

bmm
,

so that α cannot be algebraic, because otherwise m � 0 would give a con-
tradiction.

7. [Transcendence of e] Let f ∈ R[X] be a polynomial of degree m. For t ∈ R, define

If (t) :=

∫ t

0

et−uf(u)du.

(a) Show that If (t) = et
∑m

j=0 f
(j)(0) −

∑m
j=0 f

(j)(t). [Hint: Induction and inte-
gration by parts]

(b) Show that |If (t)| 6 |t|e|t|f̃(|t|), where f̃ =
∑m

i=0 |ai|X i if f =
∑m

i=0 aiX
i.

(c) From now on, we assume by contradiction that e is algebraic over Q. Show
that there exist n ∈ Z>0 and q0, . . . , qn ∈ Z with qn 6= 0, such that

q0 + q1e+ · · ·+ qne
n = 0.

(d) Let p be a prime number and fp = Xp−1(X − 1)p · · · (X − n)p. Define

Jp =
n∑
k=0

qkIfp(k).

Show that there exists a constant c ∈ R>0 independent of p such that

|Jp| 6 cp.

[Hint: Prove that f̃p(k) 6 (2n)m, where m = deg(fp), for k = 0, . . . , n.]

(e) Prove that

Jp = −
m∑
j=0

n∑
k=0

qkf
(j)
p (k), where m = (n+ 1)p− 1.
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(f) Using part (e), show that if p > n and p > |q0|, then Jp is an integer divisible
by (p− 1)! but not by p!

(g) Conclude by contradiction that e is transcendental over Q.

Solution:

(a) Let Lf (t) := et
∑m

j=0 f
(j)(0) −

∑m
j=0 f

(j)(t) for m = deg(f). We prove that
If (t) = Lf (t) by induction on m = deg(f).

For m = 0, i.e., when f is constant r ∈ R,

If (t) = Ir(t) = r

∫ t

0

et−udu = ret
∫ t

0

e−udu = ret(1− e−t),

Lf (t) = et
0∑
j=0

f (j)(0)−
0∑
j=0

f (j)(t) = etr − r,

which means that If (t) = Lf (t) in this case.

Now suppose that the equality has been proven on degree m − 1 and let us
prove it for f of degree m. Via integration by parts and inductive hypothesis
we obtain

If (t) =

∫ t

0

et−uf(u)du = [−et−uf(u)]
∣∣u=t
u=0

+

∫ t

0

et−uf ′(u)du

= −f(t) + etf(0) + Lf ′(t)

= −f(t) + etf(0) + et
m−1∑
j=0

f (1+j)(0)−
m−1∑
j=0

f (1+j)(t)

= −f(t) + etf(0) + et
m∑
j=1

f (j)(0)−
m∑
j=1

f (j)(t) = Lf (t).

This concludes the proof of the given formula by induction.

(b) By triangular equality, for every u in the segment from 0 to t, |f(u)| 6
f̃(|u|) 6 f̃(|t|). Moreover, for those values of u, the values of t − u range in
the same segment, so that |et−u| = e|t−u| 6 e|t|. Then, denoting by lh([0, t])
the length of the segment from 0 to t, by basic calculus we obtain that

|If (t)| =
∣∣∣∣∫ t

0

et−uf(u)du

∣∣∣∣ 6 lh([0, t])|et−uf(u)| 6 |t|e|t|f̃(|t|)

(c) If e is algebraic over Q, then there exist n > 0 and q′0, . . . , q
′
n ∈ Q, coefficients

of the minimal polynomial of e, such that

q′0 + q′1e+ · · ·+ q′ne
n = 0.

Multiplying out all denominators of the rational numbers q′k, we integers
q0, . . . , qn satisfying the desired equality.
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(d) If one replaces all minus signs appearing in the product fp = Xp−1(X −
1)p · · · (X−n)p with plus signs, one gets a polynomial where each coefficient is
a sum of absolute values of integers whose sum is the corresponding coefficient
of fp. Hence each coefficient of f̃p has coefficients respectively smaller to those
of this polynomial. This implies that fp(k) 6 kp−1(k+1)p · · · (k+n)p 6 (2n)m

for 0 6 k 6 n, where m = (n+ 1)p− 1 is the degree of fp.

By the triangular inequality and part (b),

|Jp| 6
n∑
k=0

|qk||Ifp(k)| 6
n∑
k=1

|qk|kekf̃p(k) 6

(
n∑
k=1

|qk|kek
)

(2n)m

6

(
n∑
k=1

|qk|kek
)

((2n)n+1)p 6

(
(2n)n+1

n∑
k=1

|qk|kek
)p

6 cp

for some constant c > 0 independent on p.

(e) Using part (b) and the equation in (c) satisfied by q0, . . . , qn we obtain

Jp =
n∑
k=0

qk

(
ek

m∑
j=0

f (j)
p (0)−

m∑
j=0

f (j)
p (k)

)

=
m∑
j=0

n∑
k=0

qk
(
ekf (j)

p (0)− f (j)
p (k)

)
=

m∑
j=0

(
f (j)
p (0)(

n∑
k=0

qke
k)−

n∑
k=0

qkf
(j)
p (k)

)
= −

m∑
j=0

n∑
k=0

qkf
(j)
p (k),

where m = (n+ 1)p− 1 is indeed the degree of fp.

(f) For j > p, we have p!|f (j)
p (k). Since k = 0, . . . , n are all root of multiplicity

at least p − 1 of fp, we see that f
(j)
p (k) = 0 for j < p − 1. For all values

of k, except k = 0, we actually know that they are roots of multiplicity p,
so that for j = p − 1 and k 6= 0 we have f

(j)
p (k) = 0. This means that all

f
(j)
p (k) appearing in the sum of part (e) are divisible by p!, except eventually

f
(p−1)
p (0). Hence, using also Leibniz rule we can write, modulo p:

Jp ≡ q0f
(p−1)
p (0) = q0(p− 1)!(−1)np(n!)p.

This number is not divisible by p! if p > n and p > |q0|, but it is divisible by
(p− 1)!.

(g) By the previous part, we see that |Jp| > (p − 1)!. By Stirling’s formula,
(p− 1)! ∼ 1

p

√
2πp

(
p
e

)p
for p→∞ meaning that (p− 1)! is eventually bigger

than cp for c > 0. Since there are infinitely many primes, we can find a prime
big enough to get a contradiction.

Hence e is not algebraic, but transcendental.
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