
D-MATH Algebra I HS18
Prof. Rahul Pandharipande

Solution 12

Algebraic closure, splitting field

1. Let K be a field of characteristic 6= 2 and L/K a field extension of degree 2. Show
that there exists α ∈ L such that α2 ∈ K and L = K(α). What is irr(α,K)?

Solution: First notice that char(L) 6= 2 as well, since otherwise 0 = 2 · 1L = 2 · 1K ,
contradiction. Hence 1

2
∈ K ⊆ L. Since [L : K] = 2, the extension is not

trivial and there exists β ∈ L r K. Then [L : K(β)][K(β) : K] = [L : K] = 2
forces L = K(β) and in particular deg(irr(β,K)) = [K(β) : K] = 2. Write
irr(β,K) = X2 + aX + b. Then

0 = β2 + aβ + b =
(
β +

a

2

)2
−
(
a2

4
− b
)
,

so that for α = β + a
2

we see that α2 = a2

4
− b ∈ K and that K(α) = K(β) = L.

2. Let L = K(α)/K be a field extension such that [L : K] is odd. Prove that
L = K(α2).

Solution: Clearly, K(α2) ⊂ K(α) = L. Notice that the element α ∈ L is a root of
X2 − α2 ∈ K(α2)[X]. This implies that [L : K(α2)] = deg(irr(α,K)) 6 2. On the
other hand, [L : K(α2)][K(α2) : K] = [L : K] is odd, so that [L : K(α2)] must be
odd, too. Hence [L : K(α2)] = 1, meaning that L = K(α2).

3. Let α =
√

2 +
√

3 ∈ C

(a) Show that α is algebraic over Q.

(b) Compute [Q(α) : Q]. [Hint: α + α−1 ∈ Q(α)]

(c) Determine irr(α,Q).

Solution:

(a) Since [Q(
√

2) : Q] = 2 and
√

3 is a root of X2 − 3 ∈ Q(
√

2)[X], so that
[Q(
√

2,
√

3) : Q(
√

2)] 6 2, the extension Q(
√

2,
√

3)/Q is finite and hence
algebraic. In particular, α =

√
2 +
√

3 ∈ Q(
√

2,
√

3) is algebraic over Q.

(b) Since Q(α) 3 α+α−1 =
√

2+
√

3−
√

2+
√

3 = 2
√

3, we know that
√

3 ∈ Q(α)
and
√

2 = α−
√

3 ∈ Q(α). This implies that Q(α) = Q(
√

2,
√

3). Notice that
X2 − 3 ∈ Q(

√
2)[X] is irreducible, because otherwise it would have a root in

Q(
√

2), which is not the case [indeed, writing a general element of Q(
√

2) as
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s + t
√

2 for s, t ∈ Q, we see that 3 = (s + t
√

2)2 = s2 + 2t2 + 2st
√

2 implies
that st = 0, so that 3 = s2 or 3 = 2t2, which are impossible equalities]. Hence
[Q(
√

2,
√

3) : Q(
√

2)] = 2 and we can conclude that

[Q(α) : Q] = [Q(
√

2,
√

3) : Q(
√

2)][Q(
√

2) : Q] = 2 · 2 = 4.

(c) Squaring both sides of
√

3 = α −
√

2 we obtain 3 = α2 − 2
√

2 + 2, that is,
2
√

2 = α2 − 1. Squaring this equality, we get 8 = α4 − 2α2 + 1. Hence α
is a root of the polynomial f := X4 − 10X2 + 1, so that irr(α,Q)|f . But
deg(irr(α,Q)) = [Q(α) : Q] = 4 = deg(f), so that

irr(α,Q) = f = X4 − 10X2 + 1.

4. Let p be a prime number. For d > 1, let Nd be the number of monic irreducible
polynomials in Fp[X] of degree d.

(a) Compute N1 and N2.

(b) Let n ∈ Z>1. Using the description of finite fields stated in class, prove that
Xpn − X is the product of all irreducible monic polynomials over Fp whose
degree divides n.

(c) Deduce that ∑
d|n

dNd = pn,

where d runs over divisors d > 1 of n.

(d) Prove that

lim
n−→∞

Nn

(pn/n)
= 1.

[Hint: pn −
∑

d|n,d<n dNd = nNn 6 pn. Notice that Nd 6 pd and d 6 n/2 for

d < n. Use this to estimate 1
n

∑
d|n,d<n dNd and conclude]

Solution:

(a) A monic polynomial of degree 1 in Fp can be written as X + a for a ∈ Fp.
This is an irreducible polynomial for each a ∈ Fp, so that

N1 = p.

In degree 2, we see that there are p2 monic polynomials (corresponding to
the choices of coefficients a1, a2 in the expression X2 + a1X + a2). Among
those, there are the non-irreducible polynomials, which can all written as
(X − b1)(X − b2) in a unique way up to switching b1 and b2, so that there are

p+
(
p
2

)
= p2+p

2
non-irreducible monic polynomials of degree 2. Hence

N2 = p2 − p2 + p

2
=
p2 − p

2
.
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(b) Fix an algebraic closure Fp of Fp. As seen in class, for each m ∈ Z>1 there
exists a unique subfield of Fp containing pm elements, that is,

Fpm = {y ∈ Fp : yp
m

= y}.

In particular, Fpn is the set of roots of Xpn − X and since its cardinality is
equal to the degree of the polynomial and the polynomials X − α ∈ Fpn are
coprime, we know that

Xpn −X =
∏
α∈Fpn

(X − α).

For every α ∈ Fpn we know that deg(irr(α,Fp)) = [Fp(α) : Fp]|[Fpn : Fp] = n,
so that X−α divides the product of all monic irreducible polynomials whose
degree divides n. As the polynomials X − α are pairwise coprime in Fpn , we
obtain that

Xpn −X =
∏
α∈Fpn

(X − α) |
∏

f∈Fp[X] irr. monic
deg(f)|n

f.

Conversely, let f ∈ Fp[X] be a monic irreducible polynomial of degree d|n.
Let x ∈ Fp be a root of f , so that f = irr(x,Fp) and [Fp(x) : Fp] = d, which

implies that Card(Fp(x)) = pd. Hence Fp(x) = Fpd and in particular xp
d

= x.
Write n = d` for ` ∈ N. Since pn = (pd)`, we see that xp

n
is obtained by

repeatedly raising x to the pd-th power for ` times, so that xp
n

= x. Hence
x is a root of Xpn − X, which implies that f = irr(x,Fp) divides Xpn − X.
By arbitrarity of f and since two distinct irreducible monic polynomials in
Fp[X] must be coprime, we obtain that∏

f∈Fp[X] irr. monic
deg(f)|n

f |Xpn −X.

Since the two polynomials are associated in Fp[X] and both monic, they must
coincide.

(c) This follows immediately from part (b), by comparing the degrees. Indeed,

pn = deg(Xpn −X) = deg

 ∏
f∈Fp[X] irr. monic

deg(f)|n

f

 =
∑
d|n

( ∑
f∈Fp[X] irr. monic

deg(f)=d

deg(f)
)

=
∑
d|n

dNd.
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(d) The number of monic polynomials in Fp of degree d is pd, so that Nd 6 pd

for all d. If d is a proper divisor of n, then d` = n for ` > 2, so that d 6 n/2.
In particular, the number of proper divisors of n is less than n/2. Hence

1

n

∑
d|n,d<n

dNd 6
1

n

n

2
· n

2
· pn =

n

4
p
n
2 . (1)

By the initial observation and by part (c), we know that pn−
∑

d|n,d<n dNd =
nNn 6 pn, which divided by pn gives

1− n

pn
1

n

∑
d|n,d<n

dNd =
Nn

pn/n
6 1

By (1), we notice that

0 6
n

pn
1

n

∑
d|n,d<n

dNd 6
n

pn
n

4
p
n
2 =

n2

4p
n
2

n→∞−→ 0

and we can conclude that Nn
pn/n
−→ 1 for n −→∞.

5. Prove that Q ⊂ C is countable.

Solution: First notice that Q is infinite because it contains N.

If α is an algebraic number, there exists a unique irreducible polynomial fα ∈ Z[X]
(in particular, f is primitive) with positive leading coefficient—it is obtained by
multiplying irr(α,Q) by the greatest common divisor of its coefficients. Thus for
each α ∈ Q there exist unique nα ∈ N and aα0 , . . . , a

α
nα ∈ Z>0 such that aαnα > 0

and
fα = aαnαX

nα + . . .+ aα1X + aα0 .

Define, for N ∈ N,

XN := {α ∈ Q : nα 6 N, ∀i = 1, . . . , nα |ai| 6 N}.

By construction, ⋃
N∈N

XN = Q.

Moreover, each XN has a finite cardinality. Indeed, for a fixed N , there are
N + 1 possible values of nα, for each of which there are no more than (2N + 1)nα

values for the coefficients ai and for each of the finitely many admissible tuples
(nα, a

α
0 , . . . , a

α
nα) which actually gives an irreducible polynomial there are at most

nα roots that can be chosen as initial α ∈ Q. This implies that Q is a countable
union of finite sets and as such it is countable.
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6. Let K be a field and f ∈ K[X] a non-constant polynomial. Let L be a splitting
field of f . Show that [L : K] 6 deg(f)!.

Solution: We recall the procedure used to prove existence of the splitting field.
Let g be an irreducible factor of f . Then K can be seen as a subfield of K1 :=
K[X]/(g) 3 [X] =: α. In L1, the image of f is divisible by X−α. By uniqueness of
the splitting field, the splitting field L of f over K is isomorphic as a K-extension
to the splitting field L′ of h = f

X−α over K ′. Since deg(h) = deg(f) − 1, we can
work by induction on deg(f), and get

[L : K] = [L′ : K] = [L′ : K1][K1 : K]

= deg(g)[L′ : K1] 6 deg(f)[L : K1] 6 deg(f)(deg(f)− 1)! = deg(f)!

where in the last inequality we supposed that our result works for degree deg(f)−1.

7. (Trace and norm for finite field extensions) Let L/K be a finite field extension.

(a) For x ∈ L, show that the following is a K-linear map:

mx : L −→ L

y 7−→ xy

(b) Show that the map rL/K : L −→ EndK(L) sending x 7→ mx is a ring homo-
morphism.

(c) Consider the maps

TrL/K : L −→ K (trace map)

x 7−→ Tr(mx),

NL/K : L −→ K (norm map)

x 7−→ det(mx).

Prove:

• TrL/K is K-linear.

• NL/K(xy) = NL/K(x)NL/K(y) for all x, y ∈ L and NL/K(x) = 0 if and
only if x = 0.

(d) Given a tower of finite extensions L1/L2/K, show that

TrL1/K = TrL2/K ◦TrL1/L2 .

[Hint: Write down a K-basis of L1 starting from a K-basis of L2 and an
L2-basis of L1, then evaluate the right-hand side on α ∈ L1].

(e) Prove that if x ∈ L is such that L = K(x), and

irr(x,K)(X) = Xd + ad−1X
d−1 + · · ·+ a1X + a0 ∈ K[X],

then TrL/K(x) = −ad−1 and NL/K(x) = (−1)da0. [Hint: (1, x, . . . , xd−1) is a
K-basis of L.]
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(f) Let p be an odd prime number, ζ = e
2πi
p and K = Q(ζ) (see Assignment 11,

Exercise 4). Compute: TrK/Q(ζ), NK/Q(ζ) and NK/Q(ζ − 1).

Solution:

(a) It is immediate to check K-linearity of each map mx. Indeed, mx is additive
by distributivity of the multiplication with respect to addition, and it respect
scalar multiplication by commutativity of the multiplication in L.

(b) We immediately notice that m0 = 0 and m1 = idL. For x, y, z ∈ L, we
have mx+y(z) = (x+ y)z = xz + yz = mx(z) +my(z) and mxy(z) = (xy)z =
x(yz) = mx(my(z)) = (mx◦my)(z). This means that rL/K respects both sum
and multiplication, and we can conclude that it is a ring homomorphism. As
rL/K is not the zero map (since it sends 1 7→ idL 6= 0) and L is a field, the
kernel is equal to (0), so that rL/K is injective.

(c) First, we prove linearity of TrL/K . Let n = [L : K] and fix a K-basis B
for L. Then by basic linear algebra we have a K-linear ring isomorphism
ϕ : EndK(L) −→ Mn(K). Also, the trace map tr : Mn(K) −→ K is easily
seen to be K-linear. Then by construction we have that TrL/K = tr◦ ϕ◦rL/K ,
which is K-linear as it is a composition of K-linear maps.

As concerns norm, we have NL/K = det ◦ϕ ◦ rL/K . Since all the composed
maps respect multiplication, so does NL/K . Moreover, we have NL/K(x) = 0
if and only if det(mx) = 0, which is equivalent to saying that mx is not an
invertible endomorphism, and this happens precisely when x = 0 (since for
x 6= 0, me have mx−1 = m−1x ).

(d) Let B1 = (e1, . . . , ek) be an L2-basis for L1, and B2 = (f1, . . . , fl) be an
K-basis for L2. As seen in class,

B := (e1f1, e1f2, . . . , e1fl, e2f1, . . . , e2fl, . . . , ekf1, . . . , ekfl)

is a K-basis for L1.

For α ∈ L1, we can find coefficients λij ∈ L2, with 1 6 i, j 6 k, so that for
each i one has

α · ei =
k∑
j=1

λijej.

Then for each i, j as above and 1 6 s, t 6 l we can find coefficients µijst ∈ L2

such that for each i, j and s one has

λij · fs =
l∑

t=1

µijstft.

Putting those two equalities together we get, for each i and t as above,

α · eifs =
k∑
j=1

l∑
t=1

µijstejft
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Then the matrix correspondent to mα as a L2-linear map of L1, with respect
to the basis B1, is

[mα]L1/L2 = T (λij)i,j,

so that TrL1/L2(α) =
∑k

i=1 λii. Moreover, the matrix correspondent to mα as
a K-linear map of L1, with respect to the basis B, is

[mα]L1/K = T (µijst)(i,s),(j,t),

where the row index is the couple (i, s) and the column index is the couple
(j, t), and row (column) indexes are ordered with lexicographical order, so
that TrL1/K(α) =

∑k
i=1

∑l
s=1 µiiss.

Furthermore, for each i, j as before, the matrix correspondent to mλi,j as a
K-linear map of L2, with respect to the basis B2, is

[mλi,j ]L2/K = T (µijst)s,t,

so that TrL2/K(λij) =
∑l

s=1 µijss.

In conclusion, we have

TrL2/K(TrL1/L2(α)) = TrL2/K(
k∑
i=1

λii) =
k∑
i=1

TrL2/K(λii)

=
k∑
i=1

l∑
s=1

µiiss = TrL1/K(α).

(e) Since L ∼= K[X]/(irr(x,Q)) as field extensions of K and (1, x, . . . , xd−1) is a
K-basis of L, we are interested in the matrix Mx = (λij)06i,j6d−1 associated
to mx. For j = 0, . . . , d− 2, we have x · xj = xj+1 so that we have

λij =

{
1 if i = j + 1
0 else.

, for j = 0, . . . , d− 2.

Moreover, x · xd−1 = xd = −a0 − a1x− · · · − ad−1xd−1, so that

λi,(d−1) = −ai.

What we have found is

Mx =


0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1

. . .
...

...
...

. . . . . . 0 −ad−2
0 . . . 0 1 −ad−1

 .

Then we get TrL/K(x) = tr(Mx) = −ad−1, and using Legendre form for the
determinant on the first row we also obtain NL/K(x) = det(Mx) = (−1)da0.
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(f) By Assignment 11, Exercise 4, the minimal polynomial of ζ is

Φp :=
Xp − 1

X − 1
.

By part (e), TrK/Q(ζ) = −1 and NK/Q(ζ) = 1, since p is odd. Notice that
Q(ζ) = Q(ζ − 1), so that Irr(ζ − 1,Q) has degree p− 1. Since ζ − 1 satisfies
G(X) := ϕ(X + 1) which is irreducible of degree p− 1, we get

Irr(ζ − 1,Q) =
(X + 1)p − 1

X
,

whose constant coefficient has been seen in Assignment 11, Exercise 4 to be
equal to p. Then NL/K(ζ − 1) = p.
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