D-MATH Algebra I HS18

Prof. Rahul Pandharipande .
Solution 12

ALGEBRAIC CLOSURE, SPLITTING FIELD

1. Let K be a field of characteristic # 2 and L/K a field extension of degree 2. Show
that there exists o € L such that a? € K and L = K(a). What is irr(a, K)?

Solution: First notice that char(L) # 2 as well, since otherwise 0 =2-1, = 2 1,
contradiction. Hence § € K C L. Since [L : K] = 2, the extension is not
trivial and there exists § € L ~ K. Then [L : K(B)|[K(8) : K] = [L : K] = 2
forces L = K(f) and in particular deg(irr(8, K)) = [K(B) : K] = 2. Write

irr(8, K) = X2+ aX +b. Then

0=B2+aﬂ+b:(5+g)2—<a£—b>,

so that for o =  + § we see that aQZ%f—bEKand that K(a) = K(8) = L.

2. Let L = K(a)/K be a field extension such that [L : K] is odd. Prove that
L = K(a?).
Solution: Clearly, K (a?®) C K(«a) = L. Notice that the element « € L is a root of
X? —a? € K(a*)[X]. This implies that [L : K(a?)] = deg(irr(a, K)) < 2. On the
other hand, [L : K(a?)][K(a?): K] = [L: K] is odd, so that [L : K(a?)] must be
odd, too. Hence [L : K(a?)] = 1, meaning that L = K(a?).

3. Let a=+v24++V3€C

(a) Show that « is algebraic over Q.
(b) Compute [Q(«) : Q|. [Hint: o+ a~' € Q(a)]
(c¢) Determine irr(a, Q).

Solution:

(a) Since [Q(v/2) : Q] = 2 and /3 is a root of X? —3 € Q(v/2)[X], so that
[Q(\/ﬁ, V3) : Q(\/ﬁ)} < 2, the extension Q(ﬂ, V/3)/Q is finite and hence
algebraic. In particular, a = v/2 4+ v/3 € Q(v/2,V/3) is algebraic over Q.

(b) Since Q(a) 3 a+a~ = v2+v3—v2+V3 = 2¢/3, we know that /3 € Q(a)
and v2 = a—+/3 € Q(a). This implies that Q(a) = Q(v/2,v/3). Notice that
X? —3 € Q(v/2)[X] is irreducible, because otherwise it would have a root in
Q(+v/2), which is not the case [indeed, writing a general element of Q(v/2) as



s +1y/2 for s,t € Q, we see that 3 = (s + t1/2)? = 52 + 2t? 4 2st/2 implies
that st = 0, so that 3 = s% or 3 = 2¢2, which are impossible equalities]. Hence

[Q(v/2,v3) : Q(+/2)] = 2 and we can conclude that
Qo) : Q] = [Q(vV2,v3) : Q(vV2)][Q(V2) : Q] = 2-2 = 4.

(c¢) Squaring both sides of V3 = a — /2 we obtain 3 = o — 2v/2 + 2, that is,
2v/2 = o — 1. Squaring this equality, we get 8 = a* — 20? + 1. Hence a
is a root of the polynomial f := X* — 10X? + 1, so that irr(a, Q)|f. But
deg(irr(0, @) = [Q(a) : Q] = 4 = deg(f), so that

irr(a, Q) = f = X* — 10X? + 1.
4. Let p be a prime number. For d > 1, let N; be the number of monic irreducible
polynomials in F,[X] of degree d.
(a) Compute Ny and No.

(b) Let n € Z~;. Using the description of finite fields stated in class, prove that
X?" — X is the product of all irreducible monic polynomials over F, whose
degree divides n.

(¢) Deduce that
D dNg =yp",
djn
where d runs over divisors d > 1 of n.
(d) Prove that
lim N
n—oo (p"/n)
[Hint: p" = 3 4 acn @Na = nN, < p. Notice that Ny < p? and d < n/2 for
d < n. Use this to estimate %zd|n,d<n dN4 and conclude]

=1.

Solution:

(a) A monic polynomial of degree 1 in I, can be written as X + a for a € F,,.
This is an irreducible polynomial for each a € I, so that

N1 =p.

In degree 2, we see that there are p? monic polynomials (corresponding to
the choices of coefficients aj,as in the expression X2 + a; X + ay). Among
those, there are the non-irreducible polynomials, which can all written as
(X —b1)(X —bs) in a unique way up to switching b; and bs, so that there are

P+ (g’) = ’% non-irreducible monic polynomials of degree 2. Hence
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(b)

Fix an algebraic closure F, of F,. As seen in class, for each m € Z-; there
exists a unique subfield of F, containing p™ elements, that is,

Fpm ={y € F, - ¢ =y}

In particular, F,» is the set of roots of X?" — X and since its cardinality is
equal to the degree of the polynomial and the polynomials X — o € ) are
coprime, we know that

X" -X= ] X-a).

OéEFpn

For every a € F,» we know that deg(irr(a, F,)) = [Fp(a) : F]|[Fpn : F,] = n,
so that X — a divides the product of all monic irreducible polynomials whose
degree divides n. As the polynomials X — « are pairwise coprime in [Fy», we
obtain that

X" -X= ] XxX-a)| 11 f.

aElF,n f€EF,[X] irr. monic
deg(f)|n

Conversely, let f € F,[X] be a monic irreducible polynomial of degree d|n.
Let # € F, be a root of f, so that f = irr(z,F,) and [F,(z) : F,] = d, which
implies that Card(F,(x)) = p®. Hence F,(z) = F,« and in particular ' =z
Write n = df for £ € N. Since p" = (p?)*, we see that zF" is obtained by
repeatedly raising « to the p?-th power for ¢ times, so that #?" = x. Hence
r is a root of XP" — X, which implies that f = irr(z,F,) divides X?" — X.
By arbitrarity of f and since two distinct irreducible monic polynomials in
[F,[X] must be coprime, we obtain that

I rx"-x
f€F,[X] irr. monic
deg(f)In

Since the two polynomials are associated in F,[X| and both monic, they must
coincide.

This follows immediately from part (b), by comparing the degrees. Indeed,

prmdeg(X” - X)=deg| [ fl=2( X dean)

f€FL[X] irr. monic dln  f€Fp[X] irr. monic
deg(f)in des(f)=d

- Zde.

dn



(d) The number of monic polynomials in F, of degree d is p?, so that N; < p?
for all d. If d is a proper divisor of n, then df = n for £ > 2, so that d < n/2.
In particular, the number of proper divisors of n is less than n/2. Hence

0|3

1 In n n
— dN; < ——= - = - p" = —p2. 1
> i< g g =D (1)

By the initial observation and by part (c), we know that p" — > din.d<n ANa =
nN, < p", which divided by p" gives

n 1 nn » n?
og_n_Zdeg_an§:4ﬂ7H—o>°O
pen dn,d<n p p*
and we can conclude that p{f;n — 1 for n — o0.

5. Prove that Q C C is countable.
Solution: First notice that Q is infinite because it contains N.

If «v is an algebraic number, there exists a unique irreducible polynomial f, € Z[X]
(in particular, f is primitive) with positive leading coefficient—it is obtained by
multiplying irr(«, Q) by the greatest common divisor of its coefficients. Thus for
each a € Q there exist unique n, € N and ag,...,as € Zg such that a; >0
and

Jao=a, X" + ... +afX +ag.

Define, for N € N,
XN:Z{CYe@:na<N>Vi:1""’na’ai‘<N}‘

By construction,

U xv=0

Moreover, each Xy has a finite cardinality. Indeed, for a fixed N, there are
N + 1 possible values of n,, for each of which there are no more than (2N + 1)"«
values for the coefficients a; and for each of the finitely many admissible tuples
(Nasag, ..., ap ) which actually gives an irreducible polynomial there are at most

ne roots that can be chosen as initial o« € Q. This implies that Q is a countable
union of finite sets and as such it is countable.



6. Let K be a field and f € K[X] a non-constant polynomial. Let L be a splitting
field of f. Show that [L : K] < deg(f)!.

Solution: We recall the procedure used to prove existence of the splitting field.
Let g be an irreducible factor of f. Then K can be seen as a subfield of K; :=
K[X]/(g) > [X] =: a. In Ly, the image of f is divisible by X —«. By uniqueness of
the splitting field, the splitting field L of f over K is isomorphic as a K-extension
to the splitting field L’ of h = ﬁ over K'. Since deg(h) = deg(f) — 1, we can
work by induction on deg(f), and get
[L:K|=[L:K]=[L": KK, : K]
= deg(g)[L" : K] < deg(f)[L : Ku] < deg(f)(deg(f) — 1)! = deg(f)!

where in the last inequality we supposed that our result works for degree deg(f)—1.
7. (Trace and norm for finite field extensions) Let L/K be a finite field extension.
(a) For x € L, show that the following is a K-linear map:

my: L —> L
yr—zy
(b) Show that the map 7./x : L — Endg (L) sending x — m, is a ring homo-
morphism.

(c¢) Consider the maps

Trpx: L — K (trace map)
x +— Tr(my),
Nygx:L— K (norm map)

x — det(my).

Prove:
e Try/x is K-linear.

o Ny/k(vy) = Npjg(2)Ny/k(y) for all x,y € L and Np/k(x) = 0 if and
only if x = 0.

(d) Given a tower of finite extensions L;/Ly/ K, show that
TrLl/K = TI'L2/K OTI‘LI/L2 .

[Hint: Write down a K-basis of L; starting from a K-basis of Ly and an
Lo-basis of Ly, then evaluate the right-hand side on o € Ly].

(e) Prove that if z € L is such that L = K(z), and
irr(z, K)(X) = X%+ ag X+ + a1 X + ap € K[X],

then Trp/k(z) = —ag_1 and Ny g (z) = (=1)%ag. [Hint: (1,z,...,2% ') is a
K-basis of L.



(f)

Let p be an odd prime number, { = ¢s and K = Q(¢) (see Assignment 11,
Exercise 4). Compute: Trg/q(¢), Nk/g(¢) and N (¢ —1).

Solution:

()

(b)

It is immediate to check K-linearity of each map m,. Indeed, m, is additive
by distributivity of the multiplication with respect to addition, and it respect
scalar multiplication by commutativity of the multiplication in L.

We immediately notice that my = 0 and m; = id;. For z,y,2z € L, we
have my4,(2) = (x + y)z = vz + yz = my(2) + my(z) and my,(2) = (zy)z =
x(yz) = mg(my(2)) = (mgyomy)(2). This means that r/x respects both sum
and multiplication, and we can conclude that it is a ring homomorphism. As
rr/k is not the zero map (since it sends 1 + idy, # 0) and L is a field, the
kernel is equal to (0), so that rp,/x is injective.

First, we prove linearity of Tr k. Let n = [L : K] and fix a K-basis B
for L. Then by basic linear algebra we have a K-linear ring isomorphism
¢ : Endg (L) — M, (K). Also, the trace map tr : M,(K) — K is easily
seen to be K-linear. Then by construction we have that Try x = tro pory/k,
which is K-linear as it is a composition of K-linear maps.

As concerns norm, we have N g = detoy o7y k. Since all the composed
maps respect multiplication, so does Ny /x. Moreover, we have Ny, k(x)=0
if and only if det(m,) = 0, which is equivalent to saying that m, is not an
invertible endomorphism, and this happens precisely when x = 0 (since for
x # 0, me have my-1 = m_").

Let By = (ey,...,ex) be an Lo-basis for Ly, and By = (fi,...,fi) be an
K-basis for L,. As seen in class,

B = <€1f1,€1f2, ey Glfl,egfl, N ,egfl, Ce ,kal, Ce ,ekfl)

is a K-basis for L.
For a € Ly, we can find coefficients \;; € Lo, with 1 < 4,5 < k, so that for

each 7 one has
k
Q- e = E )\ijej.
i=1

Then for each 7, j as above and 1 < s,¢ <1 we can find coefficients ji;j5; € Lo
such that for each 4,5 and s one has

l
)\ij : fs = Zﬂijstft-
t=1

Putting those two equalities together we get, for each ¢ and t as above,

kool
a-eifs = Z Zﬂijstejft

j=1 t=1



Then the matrix correspondent to m, as a Lo-linear map of L, with respect
to the basis By, is

(Mol =" (Nij)igs

so that Trz, /z,(a) = 327, Ais. Moreover, the matrix correspondent to m,, as
a K-linear map of L;, with respect to the basis B, is

(Mol =" (Bijst) (i.5),Git)

where the row index is the couple (i, s) and the column index is the couple
(7,t), and row (column) indexes are ordered with lexicographical order, so

k !
that TI'LI/K(O./) = Zi:l 28:1 Hiiss-
Furthermore, for each 4, j as before, the matrix correspondent to my, , as a
K-linear map of Ly, with respect to the basis By, is

[m)\i,j]LQ/K = T(,UJijst)s,ta

l
so that TrLg/K()\ij) = Zs:l ,U/ijss-
In conclusion, we have

k k
Tep /i (Trnyyra(@) = Trogc (Y Xa) = Y Triy ae(Nis)
=1

i=1
k l

— Z Z Wiiss = TI’Ll/K(Oé)‘

i=1 s=1

Since L & K[X]/(irr(z,Q)) as field extensions of K and (1,z,...,2%71) is a
K-basis of L, we are interested in the matrix M, = (\;;)o<i j<d—1 associated

to m,. For j =0,...,d — 2, we have z - 27 = 2/*! so that we have
1 ifi=j+1 .
/\l]—{o olse. ,fOI']—O,...,d—Q.
Moreover, x - 24 ' = 2% = —ag — a1x — - - - — ag_12%!, so that
Ai(d-1) = —i.

What we have found is

0O 0 ... 0 —ay

1 0 0 —a
M,=10 1

. . 0 —Aaq—2

0 ... 01 —Qg—1

Then we get Trp g (x) = tr(M,) = —aq—1, and using Legendre form for the

determinant on the first row we also obtain Ny /x(z) = det(M,) = (—1)%ao.

7



(f) By Assignment 11, Exercise 4, the minimal polynomial of ¢ is

Xr—1

P, - .
b X -1

By part (e), Trx/g(¢) = —1 and Ng/g(¢) = 1, since p is odd. Notice that
Q(¢) = Q(¢ — 1), so that Irr(¢ — 1,Q) has degree p — 1. Since ¢ — 1 satisfies
G(X) := ¢(X + 1) which is irreducible of degree p — 1, we get

(- 1,0 = XL

whose constant coefficient has been seen in Assignment 11, Exercise 4 to be
equal to p. Then Ny x(( —1) = p.



