- 1. Does there exist a nontrivial group action of the group $\mathbb{Z}/7\mathbb{Z}$
 - (a) on a set with 6 elements?
 - (b) on a set with 8 elements?
- 2. Let \mathbb{F}_p be the field $\mathbb{Z}/p\mathbb{Z}$.
 - (a) How many monic polynomials of degree 2 with coefficients in \mathbb{F}_p are irreducible over \mathbb{F}_p ?
 - (b) How many monic polynomials of degree 3 with coefficients in \mathbb{F}_p are irreducible over \mathbb{F}_p ?
- 3. Let G be a group of order 12.
 - (a) Must G be abelian?
 - (b) List all possible abelian G of order 12 (up to isomorphism).
- 4. Is the ideal generated by $x^7 + 1$ and $x^5 + 1$ a principal ideal in $\mathbb{F}_2[x]$? If not, why? If so, find a generator.
- 5. How many elements in S_5 have order exactly 6?
- 6. Let d be the smallest index of a proper subgroup of S_8 . What is d? Do there exist two distinct subgroups of S_8 of index d?
- 7. Let G be a finite group. Let H be a subgroup of G which is not normal. Can the index of H be 2? Can the index of H be 3?
- 8. Are the following rings UFDs?
 - (a) $\mathbb{Z}[x]$
 - (b) $(\mathbb{Z}/2\mathbb{Z})[[x]]$
 - (c) $\mathbb{R}[x]/(x^2-1)$
 - (d) $\mathbb{R}[x]/(x^2+1)$

Explain why or why not.

- 9. Which of the following rings are fields?
 - (a) $\mathbb{Z}[x]/(3, x^2 + x + 1)$
 - (b) $\mathbb{Z}[x]/(4, x^2 + x + 1)$
 - (c) $\mathbb{Z}[x]/(2, x^2 + x + 1)$

Explain why or why not.

- 10. What is the automorphism group Aut(G) of the following groups G?
 - (a) $\mathbb{Z}/2\mathbb{Z}$
 - (b) Z/8Z
 - (c) Z
 - (d) S_3
- 11. In the ring $\mathbb{C}[x, y]$, do the following inclusions of ideals hold?
 - (a) $(x-1, y-2) \subset (y^2 4x)$ (b) $(y^2 - 4x) \subset (x-1, y-2)$

Prove your answer.

12. Let $a \in \mathbb{Z}$ be a number which satisfies

$$\bar{a} = 3 \mod 4,$$

 $\bar{a} = \bar{1} \mod 3.$

Does this information suffice to compute $\bar{a} \mod 12$? If so, what is the answer?

- 13. List all subgroups of S_3 . Which of those subgroups are normal?
- 14. Describe all possible homomorphisms
 - (a) $f: S_3 \to \mathbb{Z}/6\mathbb{Z}$
 - (b) $g: \mathbb{Z}/6\mathbb{Z} \to S_3$
- 15. Which of the following statements are true for all groups G of order 56?
 - (a) They contain a subgroup of order 2.
 - (b) They contain a subgroup of order 3.
 - (c) The number of different subgroups of order 8 contained in G is exactly 2.
- 16. In the ring $R = \mathbb{R}[x]$, are the following subsets ideals of R? Prove your answer.
 - (a) $\{f(x) \in R : f(\pi) = 0\}$
 - (b) $\{f(x) \in R : f'(\pi) = 0\}$
 - (c) $\{f(x) \in R : f(i) = 0\}$ (*Note*: we can evaluate a real polynomial at the complex number $i \in \mathbb{C}$)
 - (d) $\{f(x) \in R : f(0) = f(1)\}$
- 17. Compute the conjugate of the group element $a = (3524) \in S_5$ by the element (23). How many elements of S_5 are conjugate to a?

- 18. Let \mathbb{F}_2 be the field with two elements.
 - (a) Show that, for every degree $n \ge 1$, there exists an irreducible polynomial of degree n in $\mathbb{F}_2[x]$.
 - (b) Let $\overline{\mathbb{F}}_2$ be the algebraic closure of \mathbb{F}_2 . Show that $\overline{\mathbb{F}}_2$ is infinite.
- 19. Let A be a module over the ring $\mathbb{C}[x]$. Since $\mathbb{C} \subset \mathbb{C}[x]$, A is a \mathbb{C} -vector space.
 - (a) List all $\mathbb{C}[x]$ -modules A with dim_{$\mathbb{C}} A = 1$, up to isomorphism.</sub>
 - (b) List all $\mathbb{C}[x]$ -modules A with dim_{$\mathbb{C}} A = 2$, up to isomorphism.</sub>
- 20. Does the splitting field over \mathbb{Q} of the polynomial $x^3 2$ have degree 3 over \mathbb{Q} ?