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Solutions to problem set 4

1. The space RPn can be seen as the quotient space of Sn/(x ∼ −x). This is equivalent to

saying that RPn is obtained from the unit disk Dn by identifying antipodal points on the

boundary ∂Dn. But ∂Dn ∼= Sn−1 and hence ∂Dn with antipodal points identified is RPn−1.

Thus RPn is obtained from RPn−1 by attaching a n-cell, where the attaching map f∂ak is

the quotient projection Sn−1 → RPn−1. This shows that RPn has a CW complex structure

with exactly one k-cell ak for every k = 0, . . . , n. We need to compute the degree of the map

Sk−1
f∂ak // RP k−1

pak−1 // RP k−1/RP k−2 = Sk−1 ,

where pak−1
: RP k−1 → RP k−1/RP k−2 is the map that collapses Rk−1 \ ak−1 = RP k−2 to a

point. Notice that the map pak−1
◦ f∂ak is a homeomorphism when restricted to each com-

ponent of Sk−1 \Sk−2 and one homeomorphism is obtained from the other by precomposing

with the antipodal map of Sk−1. The degree of the antipodal map Sk−1 → Sk−1 is (−1)k

and thus the degree of the map pak−1
f∂ak : Sk−1 → Sk−1 is

deg(pak−1
f∂ak) = 1 + (−1)k =

{
0, k odd,

2, k even

The corresponding Z2-degree are obtained by reducing modulo 2, and hence

degZ2
(pak−1

f∂ak) = 0

for all k = 1, . . . , n. The cellular chain complex with Z2-coefficients is therefore

0→ Z2
0−→ Z2

0−→ . . .Z2
0−→ Z2

0−→ 0

with non-zero chain groups exactly in degrees 0, . . . , n, and thus we obtain

Hk(RPn;Z2) ∼=

{
Z2, k = 0, . . . , n,

0 otherwise.

Note that in general H∗(RPn;Z2) has more non-vanishing components than H∗(RPn;Z); in

particular, H∗(RPn;Z2) 6= H∗(RPn;Z)⊗ Z2.

2. We view T 3 = I3/ ∼ as the quotient space of the cube I3 under the relation that identifies

opposite faces of the boundary. From this description, one sees that T 3 has a CW complex

structure with one 0-cell a (any of the corner points—note that these get identified under

I3 → T 3), three 1-cells b1, b2, b3 (the line segments on the coordinate axes), three 2-cells

c1, c2, c3 (the squares in the coordinate planes), and one 3-cell d (all of I3); in all these cases

the attaching maps is given by restriction of the quotient map I3 → T 3.

The corresponding cellular chain complex is

0→ Z ∂3−→ Z3 ∂2−→ Z3 ∂1−→ Z→ 0

with linear maps ∂i which we now compute. We have ∂1 = 0 since the attaching maps

fbi : I → (T 3)(0) = {a} take both boundary points 0, 1 ∈ I to the same point (cf. the remark
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in Bredon after Theorem 10.3). We also have ∂2 = 0, since all maps pbif∂cj : ∂I2 → S1 have

degree 0 (by the same argument as for the standard CW complex structure of the 2-torus;

see Bredon example 10.5).

As for ∂3, consider any of the maps pcif∂d : ∂I3 → S2. Note that there are two opposite

faces of ∂I3 in whose interiors this map restricts to a homeomorphism, and that the map

collapes the rest of ∂I3 to a point in S2. The degree of pcif∂d is hence the sum of the two

local degrees at any two points q, q′ in the two first-mentioned faces which get mapped to the

same point in T 3. Now note that the restrictions of pcif∂d to these faces are obtained from

one another by precomposing with an orientation-reversing map (for orientations induced

from an orientation of ∂I3); therefore the sum of these local degrees vanishes. It follows that

also ∂3 = 0.

Summing up, we obtain

Hi(T
3) ∼=

{
Z, i = 0, 3,

Z3, i = 1, 2.

3. (a) One possible CW complex structure has two 0-cells a1, a2 (the north and south poles),

two 1-cells b1, b2 (the line segment mentioned in the description of X and another

segment on the sphere connecting the poles), and one 2-cell c. We then have

deg(pa2f∂bj ) = 1, deg(pa1f∂bj ) = −1

for j = 1, 2, supposing that the attaching maps fbj : I → X(0) are such that both

map 0 ∈ ∂I to a1 and 1 ∈ ∂I to a2 (cf. the remark in Bredon after Theorem 10.3).

Moreover, we have

deg(pbjf∂c) = 0

for j = 1, 2, as both maps pbjf∂c are null-homotopic. The cellular chain complex is

therefore

0→ Z 0−→ Z2 ∂1−→ Z2 → 0, ∂1 =

(
−1 −1

1 1

)
: Z2 → Z2.

Both the kernel and the cokernel of ∂1 are 1-dimensional, and therefore

Hk(X) ∼=

{
Z, k = 0, 1, 2,

0 otherwise.

(Note that there is an even simpler CW complex structure for X with exactly one k-cell

for k = 0, 1, 2.)

(b) X ' S2 ∨ S1 implies H̃∗(X) = H̃∗(S
2 ∨ S1) ∼= H̃∗(S

2) ⊕ H̃∗(S
1); hence H̃2(X) =

H̃1(X) = Z and H̃0(X) = 0, from which the result above follows by the definition of

reduced homology.

Alternatively: Excising a neighbourhood of the point joining the two spheres yields

H̃∗(X) ∼= H∗(D
2, ∂D2)⊕H∗(I, ∂I) from which the result above again follows easily.

4. We assume wlog that p and q are coprime (otherwise divide by their greatest common

divisor), which implies that there exist integers a, b such that ap− bq = 1. Hence the matrix

Ψ =

(
a q

b p

)
lies in SL(2,Z) and therefore induces a homeomorphism ψ : T 2 → T 2 of T 2 = R2/Z2. Note

that Ψ−1 ∈ SL(2,Z) takes the line given by px = qy to the line given by x = 0, because Ψ
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takes (0, 1) to (q, p) (and these vectors generate the two lines). Therefore ψ−1 takes C to the

curve C ′ that’s the image of x = 0 under R2 → T 2 and which is the 1-cell of the standard

CW complex structure on T 2. Thus T 2/C has a CW complex structure with one cell ak
in dimensions k = 0, 1, 2, and the corresponding cellular differential vanishes (by the same

reasons as for T 2). Therefore

Hk(T 2/C) ∼=

{
Z, k = 0, 1, 2

0 otherwise.

5. We view S1 × S1 as I2/ ∼, the quotient obtained by identifying opposite points on the

boundary of ∂I2 as indicated in the figure below. We endow it with the corresponding

obvious CW complex structure with one 0-cell, two 1-cells, and one 2-cell and arrange this

to be such that the subspace S1 ∨ S1 that gets collapsed is the union of the two closed

1-cells. Moreover, we equip S2 with the obvious CW complex structure with one 0-cell and

one 2-cell, arranging that the 0-cell is the point to which S1 ∨ S1 gets collapsed.

Our quotient map g : S1 × S1 → S2 is cellular in this identification. Denoting the 2-cell

of S1 × S1 by σ and the 2-cell of S2 by τ , the map g∆ : C∗(S
1 × S1) → C∗(S

2) induced

by g on cellular chains takes σ 7→ g∆(σ) = τ because deg(gτ,σ) = 1 for the relevant map

gτ,σ : S2 → S2 (see Bredon chapter IV. 11). The induced map g∗ : H2(S1 × S1)×H2(S2) is

hence the identity, and therefore g is not null-homotopic.

Let now f : S2 → S1 × S1 be a map in the other direction. Consider the covering map

q : R2 → S1 × S1 (obtained by identifying S1 × S1 = R2/Z2). As π1(S2) is trivial, f can be

lifted to a map to R2, i.e., there exists a map f̃ : S2 → R2 such that q ◦ f̃ = f . Since R2 is

contractible, f̃ is null-homotopic, and hence so is f .

6. As discussed in class, RPn has a CW complex structure with exactly one k-cell for every

k = 0, . . . , n. Therefore RPn/RPm has a CW complex structure with one 0-cell a0 and one

k-cell ak for every k = m+ 1, . . . , n. As in the case RPn, we have

deg(pak−1
f∂ak) = 1 + (−1)k

{
0, k odd,

2, k even.

Thus the cellular chain complex C∗(RPn/RPm) has one copy of Z in degrees k = 0 and k =

m+ 1, . . . , n, and the cellular differential Ck(RPn/RPm)→ Ck−1(RPn/RPm) is 1 + (−1)k

for all k = m+ 2, . . . , n and vanishes in all other cases. The homology is therefore

Hk(RPn/RPm) ∼=



Z, k = 0

Z, k = m+ 1 (if m+ 1 is even),

Z, k = n (if n is odd),

Z2, m+ 1 ≤ k < n and k odd,

0, otherwise.
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