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Solutions to problem set 4

1. The space RP™ can be seen as the quotient space of S™/(x ~ —z). This is equivalent to
saying that RP™ is obtained from the unit disk D™ by identifying antipodal points on the
boundary 0D". But 9D™ = S"~! and hence D" with antipodal points identified is RP" 1.
Thus RP" is obtained from RP"~! by attaching a n-cell, where the attaching map fa,, is
the quotient projection S"~! — RP"~!. This shows that RP™ has a CW complex structure
with exactly one k-cell ai for every k = 0,...,n. We need to compute the degree of the map

ff)ak Pay,_q

Sk—l K R.Pk_l i RPk—l/RPk—2 — Sk—l ,

where p,,_, : RP¥~1 — RP*~1/RP*~2 is the map that collapses R*~1\ ay_; = RP¥"2 to a
point. Notice that the map p,, , © faq, is @ homeomorphism when restricted to each com-
ponent of S¥~1\ $¥=2 and one homeomorphism is obtained from the other by precomposing
with the antipodal map of S¥~!. The degree of the antipodal map S*~! — Sk=1 is (—1)*
and thus the degree of the map pa,_, faa, : S¥1 — S*1is

0, k odd,

deg(pak—lfaak) =1+ (71)]C =
2, k even

The corresponding Zs-degree are obtained by reducing modulo 2, and hence

deng (pak—l faak) =0

for all k =1,...,n. The cellular chain complex with Zs-coefficients is therefore

O—>Z2£>ZQE>ZQE>Z22>O

with non-zero chain groups exactly in degrees 0,...,n, and thus we obtain

ZQ, k:07...,n,

Hy(RP"; Zs) =
0 otherwise.

Note that in general H,(RP™;Zs) has more non-vanishing components than H,(RP™;Z); in
particular, H,(RP™;Z3) # H.(RP™;,Z) ® Zs.

2. We view T2 = I?/ ~ as the quotient space of the cube I® under the relation that identifies
opposite faces of the boundary. From this description, one sees that 7% has a CW complex
structure with one 0-cell a (any of the corner points—note that these get identified under
I3 — T3), three 1-cells by, by, by (the line segments on the coordinate axes), three 2-cells
c1, c2, c3 (the squares in the coordinate planes), and one 3-cell d (all of I3); in all these cases
the attaching maps is given by restriction of the quotient map I® — T3,

The corresponding cellular chain complex is
022723 2,73 % 7 50

with linear maps 0; which we now compute. We have 0; = 0 since the attaching maps
fo, - I — (T%)©) = {a} take both boundary points 0,1 € I to the same point (cf. the remark



3.

4.

in Bredon after Theorem 10.3). We also have 9, = 0, since all maps py, fac, : 01> — S* have
degree 0 (by the same argument as for the standard CW complex structure of the 2-torus;
see Bredon example 10.5).

As for 03, consider any of the maps p., foq : I° — S?. Note that there are two opposite
faces of OI® in whose interiors this map restricts to a homeomorphism, and that the map
collapes the rest of OI° to a point in S2. The degree of p,, faq is hence the sum of the two
local degrees at any two points ¢, ¢’ in the two first-mentioned faces which get mapped to the
same point in 7. Now note that the restrictions of p., faq to these faces are obtained from
one another by precomposing with an orientation-reversing map (for orientations induced
from an orientation of 9I2); therefore the sum of these local degrees vanishes. It follows that
also 03 = 0.

Summing up, we obtain

zZ, i=0,3,
Hi(TB)g{W i=1,2

(a) One possible CW complex structure has two 0-cells a;,as (the north and south poles),
two 1-cells b1,bs (the line segment mentioned in the description of X and another
segment on the sphere connecting the poles), and one 2-cell ¢. We then have

deg(pa, fon;) =1, deg(pa, fov,) = —1

for j = 1,2, supposing that the attaching maps fy, : I — X are such that both
map 0 € 9 to a; and 1 € 9I to ay (cf. the remark in Bredon after Theorem 10.3).
Moreover, we have

deg(py, foc) =0

for j = 1,2, as both maps py, fo. are null-homotopic. The cellular chain complex is

therefore
-1 -1

0-72%72 272 0, 81<1 .

> 72 > 72
Both the kernel and the cokernel of 9; are 1-dimensional, and therefore

Z, k=0,1,2,

0 otherwise.

Hk(X)N{

(Note that there is an even simpler CW complex structure for X with exactly one k-cell
for k=0,1,2.)

(b) X ~ S?v S implies H.(X) = H.(S?V ') = H,(S?) & H.(S'); hence Hy(X) =
H,(X) =Z and Hyo(X) = 0, from which the result above follows by the definition of
reduced homology.

Alternatively: Excising a neighbourhood of the point joining the two spheres yields
H.(X)= H,(D? 0D?) @ H,(I,0I) from which the result above again follows easily.

We assume wlog that p and ¢ are coprime (otherwise divide by their greatest common
divisor), which implies that there exist integers a, b such that ap —bg = 1. Hence the matrix

a q
\I] =
<b p)
lies in SL(2,7Z) and therefore induces a homeomorphism ¢ : T? — T2 of T? = R?/Z2. Note
that U—! € SL(2,Z) takes the line given by pz = qy to the line given by z = 0, because ¥



takes (0,1) to (q,p) (and these vectors generate the two lines). Therefore 1) ~! takes C to the
curve C’ that’s the image of z = 0 under R? — T2 and which is the 1-cell of the standard
CW complex structure on T2. Thus 72/C has a CW complex structure with one cell ay,
in dimensions k = 0,1, 2, and the corresponding cellular differential vanishes (by the same
reasons as for T?). Therefore

Z, k=0,1,2

0 otherwise.

Hy(T?/C) = {

. We view S! x S! as I?/ ~, the quotient obtained by identifying opposite points on the
boundary of 9I? as indicated in the figure below. We endow it with the corresponding
obvious CW complex structure with one 0O-cell, two 1-cells, and one 2-cell and arrange this
to be such that the subspace S! V S! that gets collapsed is the union of the two closed
1-cells. Moreover, we equip S with the obvious CW complex structure with one 0-cell and
one 2-cell, arranging that the 0-cell is the point to which S' v S! gets collapsed.

Our quotient map g : S' x S' — S2 is cellular in this identification. Denoting the 2-cell
of S' x S! by o and the 2-cell of S? by 7, the map ga : C.(S* x S') — C.(S?) induced
by g on cellular chains takes o — ga(o) = 7 because deg(gr ) = 1 for the relevant map
gr.o : 5% — S? (see Bredon chapter IV. 11). The induced map g. : H2(S* x S*) x Hy(S?) is
hence the identity, and therefore ¢ is not null-homotopic.

Let now f : 8?2 — S' x S' be a map in the other direction. Consider the covering map
q:R? — S x S* (obtained by identifying S x S* = R?/Z?). As 71(S?) is trivial, f can be
lifted to a map to R2, i.e., there exists a map f: 52 — R? such that g o f: f. Since R? is
contractible, fis null-homotopic, and hence so is f.

. As discussed in class, RP™ has a CW complex structure with exactly one k-cell for every
k=0,...,n. Therefore RP™/RP™ has a CW complex structure with one 0-cell ag and one

k-cell ay for every k =m +1,...,n. As in the case RP™, we have
0, k odd,

deg(Pay_, foa,) = 14 (=1)*
2, k even.

Thus the cellular chain complex C,(RP™/RP™) has one copy of Z in degrees k = 0 and k =
m+1,...,n, and the cellular differential Cj,(RP"/RP™) — Cj_1(RP"/RP™) is 1 + (—1)k
for all k =m + 2,...,n and vanishes in all other cases. The homology is therefore

Z, k=0

Z, k=m+1(if m+1iseven),

Hp(RP"/RP™) =< 7Z, k=n (if nis odd),

Zo, m+1<k<nandk odd,

0, otherwise.




