Exercise 1. Let \(n \) be an odd integer. The goal of this exercise is to prove that

\[
G(2, 1; n) = \begin{cases}
\sqrt{n} & \text{if } n \equiv 1 \mod 4, \\
i\sqrt{n} & \text{if } n \equiv 3 \mod 4.
\end{cases}
\]

proceed stepwise as follows:

i) Let \(S \) be the \(n \times n \) matrix whose \((j, k)\)-th element is \(\zeta^{jk} \) where \(\zeta = e\left(\frac{1}{2n}\right) \) and \(0 \leq j, k \leq n - 1 \), i.e.

\[
S = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
1 & \zeta & \cdots & \zeta^{n-1} \\
1 & \zeta^2 & \cdots & \zeta^{2(n-1)} \\
& \ddots & \ddots & \ddots \\
1 & \zeta^{n-1} & \cdots & \zeta^{(n-1)^2}
\end{pmatrix}.
\]

Show that

\[
S^2 = \begin{pmatrix}
n & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & n \\
0 & 0 & \cdots & n & 0 \\
& \ddots & \ddots & \ddots & \ddots \\
0 & n & \cdots & 0 & 0
\end{pmatrix}
\]

and conclude that \(\det(S) = \pm i^{n(n-1)/2} n^{n/2} \).

ii) Show that

\[
\det(S) = \prod_{0 \leq j < k \leq n-1} (\zeta^k - \zeta^j) = \eta^U \prod_{0 \leq j < k \leq n-1} (\eta^{k-j} - \eta^{-k+j}) = \eta^U \frac{i^{n(n-1)/2}}{n} \prod_{0 \leq j < k \leq n-1} 2 \sin((k-j)\pi/n),
\]

where \(\eta = e\left(\frac{1}{2n}\right) \) and

\[
U := \sum_{0 \leq j < k \leq n-1} j + k.
\]

Hint: Observe that \(S \) is a Vandermonde matrix and that

\[
\zeta^k - \zeta^j = \eta^{j+k} (\eta^{k-j} - \eta^{-k+j}) = \eta^{j+k} 2i \sin((k-j)\pi/n).
\]

iii) Prove that \(U = 2n((n-1)/2)^2 \) and conclude that \(\det(S) = i^{n(n-1)/2} n^{n/2} \).
iv) Show that
\[G(2, 1; n) = \text{Trace}(S) = \lambda_1 + \cdots + \lambda_n, \]
where \(\lambda_1, \ldots, \lambda_n \) are the eigenvalues of \(S \).

v) Show that
\[\det(S^2 - xI) = -(x - n)^{(n+1)/2}(x - n)^{(n-1)/2} \]
and conclude that for any \(j = 1, \ldots, n \) one has
\[\lambda_j = \pm \sqrt{n} \text{ or } \pm i \sqrt{n}. \]

vi) Suppose that \(\sqrt{n} \) occurs \(r \) times, \(-\sqrt{n} \) occurs \(s \) times, \(i\sqrt{n} \) occurs \(t \) times and \(\sqrt{n} \) occurs \(u \). Show that
\[r + s = \frac{n + 1}{2}, \quad t + u = \frac{n - 1}{2} \]
and that
\[\begin{cases} r - s = \pm 1, & t = u \text{ if } n \equiv 1 \mod 4, \\ r = s, & t - u = \pm 1 \text{ if } n \equiv 3 \mod 4. \end{cases} \]

vii) Show that
\[\det(S) = i^{2s + t - u} n^{\frac{5}{2}} \]
and use part (iii) to conclude that
\[2s + t - u \equiv n(n - 1)/2 \mod 4. \]

viii) Conclude.

Exercise 2. In this exercise we are going to prove the law of quadratic reciprocity: let \(p, q \) two distinct odd prime number, then one has:
\[\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = (-1)^{(p-1)(q-1)/4}. \]
Proceed as follows:

i) Let \(n_1, n_2 \) be two coprime integer, \(\chi_1 \) a multiplicative character of \((\mathbb{Z}/n_1\mathbb{Z})^\times\) and \(\chi_2 \) a multiplicative character of \((\mathbb{Z}/n_2\mathbb{Z})^\times\). Show that
\[\tau_{\chi_1 \chi_2} = \chi_1(n_2)\chi_2(n_1)\tau_{\chi_1} \tau_{\chi_2}. \]

ii) Conclude using Exercise 1.

Exercise 3. Let \(\psi, \eta \) be two additive character over \(\mathbb{F}_q \), one define the Kloosterman sum associated to \(\psi \) and \(\eta \) as
\[S(\psi, \eta) := \sum_{x \in \mathbb{F}_q^\times} \psi(x)\eta(\overline{x}), \]
where \(\overline{x} \) denotes the inverse of \(x \) in \(\mathbb{F}_q \). Our goal is to show that
\[|S(\psi, \eta)| < 2q^{3/4}, \]
the so called Kloosterman’s Bound.
i) Show that for any $b \in \mathbb{F}_q^*$, one has

$$S(\psi, \eta) = S(\psi_b, \eta_b),$$

where $\psi_b(x) := \psi(bx)$ and $\eta_b(x) := \eta(bx)$. Conclude that

$$|S(\psi, \eta)| \leq \left(\frac{M_{k,q}}{q-1} \right)^{1/2k},$$

for any $k \geq 2$, where

$$M_{k,q} := \sum_{\psi, \eta \neq 1} |S(\psi, \eta)|^{2k}.$$

ii) Show that

$$M_{k,q} = q^2 N_{k,q} - 2(q - 1) - (q - 1)^{2k},$$

where $N_{k,q}$ is the number of solution over \mathbb{F}_q of the system

$$\begin{align*}
x_1 + \ldots + x_k &= y_1 + \ldots + y_k, \\
\bar{x}_1 + \ldots + \bar{x}_k &= \bar{y}_1 + \ldots + \bar{y}_k.
\end{align*}$$

iii) Prove that $M_{0,q} = (q - 1)^2$ and $M_{1,q} = (q^2 - q - 1)(q - 1)$.

iv) For any $a, b \in \mathbb{F}_q^*$ consider the system

$$\begin{cases}
x_1 + x_2 = a, \\
\bar{x}_1 + \bar{x}_2 = b.
\end{cases} \quad (1)$$

Show that (1) has an unique pair of solution if and only if $b = a^2/4$. Moreover show that

$$|\{(a, b) \in \mathbb{F}_q^* \times \mathbb{F}_q^* : (1) \text{ has two distinct pairs of solutions}\}| = (q - 1)(q - 3).$$

Conclude that the contribution of the solution of (x_1, x_2, y_1, y_2) of the system

$$\begin{align*}
x_1 + x_2 &= y_1 + y_2, \\
\bar{x}_1 + \bar{x}_2 &= \bar{y}_1 + \bar{y}_2,
\end{align*}$$

with $x_1 + x_2 \neq 0$ is given by $2(q - 1)(q - 3) + q - 1$.

v) Show that the contribution of the solution of (x_1, x_2, y_1, y_2) of the system

$$\begin{align*}
x_1 + x_2 &= y_1 + y_2, \\
\bar{x}_1 + \bar{x}_2 &= \bar{y}_1 + \bar{y}_2,
\end{align*}$$

with $x_1 + x_2 = 0$ is given by $(q - 1)^2$ and conclude that

$$N_{2,q} = 3(q - 1)(q - 2).$$

vi) Compute $M_{2,q}$ and conclude the exercise.
Exercise 4. Same notation of Exercise 3.

(i) Show that
\[M_{2,q} \leq (\max_{\psi,\eta} |S(\psi, \eta)|^2) M_{1,q}. \]

(ii) Deduce that there exist ψ, η non-trivial characters such that
\[|S(\psi, \eta)|^2 \geq 2q - 2. \]

Conclude that the Weil’s Bound
\[|S(\psi, \eta)| \leq 2\sqrt{q} \]
is sharp.