The aim of this exercise sheet is to recall the main definitions and properties of representations.

Definition 1. Let G be a group and k be a field. A linear representations of G, defined over k, is a group homomorphism

$$
\rho : G \to \text{GL}(E),
$$

where E is a k-vector space. The dimension of E is called the dimension of ρ, or sometimes its rank, or degree. We will denote it $\text{dim}(\rho)$. If ρ is a finite dimensional representation, we define the character associated to ρ,

$$
\chi_\rho : G \to k \quad g \mapsto \text{Tr}(\rho(g))
$$

Definition 2. Let G be a group and $\rho : G \to \text{GL}(E)$ a k-representation of G

i) We say that a subspace $F \subseteq E$, is said to be stable under ρ if $\rho(g) \cdot F \subseteq F$ for any $g \in G$. Then the k-representation

$$
\rho_F : G \to \text{GL}(F) \quad g \mapsto \rho(g)|_F,
$$

is called subrepresentation of ρ.

ii) We say that ρ is an irreducible representation if $E \neq 0$ and there is no stable subspace of E under ρ, except 0 and E itself.

iii) We say that ρ is semisimple if it can be written as a direct sum of subrepresentation, each of which is irreducible:

$$
\rho \cong \bigoplus_{i \in I} \rho_i.
$$

Definition 3. Let G be a group and k a field. A morphism, or homomorphism, between two k-representation ρ_1 and ρ_2 of G, acting on the vector spaces E_1 and E_2, respectively, is a linear map

$$
\Phi : E_1 \to E_2
$$

such that

$$
\Phi(\rho_1(g)v) = \rho_2(g)\Phi(v) \in E_2,
$$

for any $v \in E_1$ and $g \in G$. Moreover we denote by $\text{Hom}_G(\rho_1, \rho_2)$ the set of homomorphism from ρ_1 to ρ_2. If a morphism Φ is bijective and its inverse, Φ^{-1}, is also a morphism between ρ_1 and ρ_2 then Φ is called isomorphism.
Remark. It is easy to see that $\text{Hom}_G(\rho_1, \rho_2) \subset \text{Hom}(E_1, E_2)$ is a k-vector space.

Exercise 1. Let G be and ρ_1, ρ_2 two k-representations of G, acting on the vector spaces E_1 and E_2.

i) Show that the action

$$
\rho_1 \oplus \rho_2 (g) : E_1 \oplus E_2 \to E_1 \oplus E_2
$$

$$
v \oplus w \mapsto \rho_1(g)v \oplus \rho_2(g)w
$$

is a k-representation of G. Moreover, if ρ_1, ρ_2 are finite dimensional, one has

$$
\chi_{\rho_1 \oplus \rho_2} = \chi_{\rho_1} + \chi_{\rho_2}.
$$

ii) Show that the action

$$
\rho_1 \otimes \rho_2 (g) : E_1 \otimes E_2 \to E_1 \otimes E_2
$$

$$
v \otimes w \mapsto \rho_1(g)v \otimes \rho_2(g)w
$$

is a k-representation of G. Moreover, if ρ_1, ρ_2 are finite dimensional, show that one has

$$
\chi_{\rho_1 \otimes \rho_2} = \chi_{\rho_1} \cdot \chi_{\rho_2}.
$$

iii) Let E_1' be the dual space of E_1. Show that the action

$$
\hat{\rho}_1(g) : E_1' \to E_1'
$$

$$
v \mapsto \lambda(v) \mapsto v \mapsto \lambda(\rho_1(g)^{-1})v
$$

is a k-representation of G. Moreover, if ρ_1 is finite dimensional, show that for any $g \in G$ one has

$$
\chi_{\hat{\rho}_1}(g) = \chi_{\rho_1}(g^{-1}).
$$

iv) Show that the action

$$
\rho(g) : \text{Hom}(E_1, E_2) \to \text{Hom}(E_1, E_2)
$$

$$
\Phi \mapsto \rho_2(g)\Phi \rho_1(g^{-1})
$$

is a k-representation of G and $\rho \cong \hat{\rho}_1 \otimes \rho_2$ if ρ_2 is finite dimensional. Furthermore one has

$$
\text{Hom}(E_1, E_2)^G = \text{Hom}_G(\rho_1, \rho_2).
$$

Show that for any $g \in G$ one has

$$
\chi_\rho(g) = \chi_{\rho_1}(g^{-1}) \cdot \chi_{\rho_2}(g),
$$

if ρ_1, ρ_2 are finite dimensional.

Exercise 2. The Goal of this exercise is to prove Schur’s Lemma:

Lemma 1 (Schur’s Lemma I,II). Let G be a group, and let k be an algebraically closed field.

i) If ρ_1 and ρ_2 are irreducible k-representations of G which are not isomorphic, then

$$
\text{Hom}_G(\rho_1, \rho_2) = 0.
$$
ii) If \(\rho_1 \) and \(\rho_2 \) are finite-dimensional isomorphic irreducible \(k \)-representations of \(G \), then
\[
\dim(\text{Hom}_G(\rho_1, \rho_2)) = 1,
\]
and in fact if \(\rho \) is a finite-dimensional irreducible \(k \)-representation of \(G \) then
\[
\text{Hom}_G(\rho, \rho) = k \text{Id}_\rho,
\]

iii) Conversely, if \(\rho \) is a finite-dimensional semisimple \(k \)-representation of \(G \) such that \(\dim(\text{Hom}_G(\rho, \rho)) = 1 \), it follows that \(\rho \) is irreducible.

Proceed as follows

i) Let \(\pi, \rho \) two \(k \)-representation of \(G \) and assume that \(\pi \) irreducible. Show that if \(\Phi \in \text{Hom}_G(\pi, \rho) \), then either \(\Phi \) is injective or \(\Phi = 0 \). Similarly show that, if \(\Phi \in \text{Hom}_G(\rho, \pi) \), then either \(\Phi \) is surjective or \(\Phi = 0 \). Use this to prove the first part of Schur’s Lemma.

ii) For the second part we may assume without loss of generalities that \(\rho_1 = \rho_2 \). Show that, if \(\Phi \in \text{Hom}_G(\rho_1, \rho_1) \), then there exists \(\lambda \in k \) such that \(\Phi - \lambda \text{Id} \) is not injective. Use this to prove the second part of Schur’s Lemma.

iii) Let \(\rho \) be a finite-dimensional, semisimple \(k \)-representation of \(G \) such that \(\dim_G(\text{Hom}_G(\rho, \rho)) = 1 \). Let \(F \subset E \) be a subrepresentation and \(F_1 \) a complementary subrepresentation, so that \(E = F \oplus F_1 \). Show that
\[
\Phi : F \oplus F_1 \rightarrow F, \quad v \oplus w \mapsto v,
\]
is in \(\text{Hom}_G(\rho, \rho) \). Use this to prove part (iii) of Schur’s Lemma.

Exercise 3. Let \(V_m \) be the vector space of polynomials in \(\mathbb{C}[X, Y] \) which are homogeneous of degree \(m \). Consider the \(\mathbb{C} \)-representation
\[
\rho_m : \text{SL}_2(\mathbb{C}) \rightarrow \text{GL}(V_m)
\]
defined as follows: for any \(f \in V_m \) and any
\[
g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{C}),
\]
we define
\[
(\rho_m(g)f)(X, Y) := f(aX + cY, bX + dY).
\]
The goal of this exercise is to show that \(\rho_m \) is an irreducible representation.

i) Show that \(\{X^iY^{m-i}\}_{i=0}^m \) is a basis for \(V_m \) and that \(\dim(V_m) = m + 1 \).

ii) Consider the subgroup \(T \subset \text{SL}_2(\mathbb{C}) \), defined as
\[
T := \{ t(\lambda) := \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} : \lambda \in \mathbb{C}^\times \}.
\]
Show that for any \(t(\lambda) \in T \) and any \(e_i := X^iY^{m-i} \), one has
\[
\rho_m(t(\lambda))e_i = \lambda^{2i-m} e_i.
\]
iii) Let \(0 \subseteq F \subset V_m \) be a subspace of \(V_m \) stable under \(\rho_m \). Show that there exists \(0 \leq i \leq m \) such that \(e_i \in F \).

iv) Show that, for any \(i = 0, ..., m \) one has

\[
\rho_m \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right) e_i = \sum_{j=i}^{m-1} \binom{m-i}{j-i} e_j,
\]

and deduce that if \(e_i \in F \), then \(e_j \in F \) for any \(j \geq i \).

v) Using the action of the matrix

\[
\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix},
\]

show that if \(e_i \in F \), then \(e_j \in F \) for any \(j \geq i \). Conclude the exercise.

Exercise 4. For this exercise assume the following fact

Proposition 2 (Semisimplicity criterion.). Let \(G \) be a group, and let \(k \) be a field. A \(k \)-representation

\[
\rho : G \to \text{GL}(E),
\]

of \(G \) is semisimple if and only if, for any subrepresentation \(F_1 \subset E \) of \(\rho \), there exists a complementary subrepresentation, i.e. a \(G \)-stable subspace \(F_2 \subset E \) such that

\[
E = F_1 \oplus F_2.
\]

The goal of the exercise is to prove the following

Theorem 3 (Maschke’s Theorem). Let \(G \) a finite group and let \(k \) be a field with characteristic not dividing \(|G|\). Then any \(k \)-representation

\[
\rho : G \to \text{GL}(E),
\]

is semisimple.

Proceed as follows:

i) Let \(F \subset E \) be a subrepresentation of \(\rho \). Let \(P_0 \in \text{Hom}(E, E) \) be a projection of \(E \) onto \(F \), i.e. \(P_0(E) = F \) and \(P_0|_F = \text{Id}_F \). Show that

\[
P := \frac{1}{|G|} \sum_{g \in G} g \cdot P_0 \in \text{Hom}_G(E, E),
\]

where \(g \cdot P_0(v) := \rho(g)P_0(\rho(g^{-1})v) \) for any \(g \in G \) and any \(v \in E \).

ii) Show that \(P \) is a projection of \(E \) onto \(F \) and that \(\text{Ker}(P) \) is a complementary subrepresentation of \(F \).

iii) Conclude.
Exercise 5. Let G a finite group and let k be a field with characteristic not dividing $|G|$. Prove that for any k-representation

$$\rho : G \to \text{GL}(E),$$

the map

$$P : \frac{1}{|G|} \sum_{g \in G} \rho(g) : E \to E$$

is a projection with image equal to E^G, the space of invariants of G. Moreover, if E is finite dimensional, we have

$$\dim(E^G) = \frac{1}{|G|} \sum_{g \in G} \chi_\rho(g).$$

Exercise 6. Let G a finite group and let k be an algebraically closed field with characteristic not dividing $|G|$. Use the previous exercise and Schur’s lemma to show that:

i) if ρ_1, ρ_2 are two finite-dimensional irreducible k-representations of G, one has

$$\frac{1}{|G|} \sum_{g \in G} \chi_{\rho_1}(g)\chi_{\rho_2}(g^{-1}) = \begin{cases} 0 & \text{if } \rho_1 \text{ is not isomorphic to } \rho_2, \\ 1 & \text{otherwise}, \end{cases}$$

ii) a finite-dimensional k-representation ρ is irreducible if and only if

$$\frac{1}{|G|} \sum_{g \in G} \chi_{\rho_1}(g)\chi_{\rho_1}(g^{-1}) = 1.$$

iii) Let π, ρ two representations and assume π irreducible, show that

$$\frac{1}{|G|} \sum_{g \in G} \chi_\rho(g)\chi_\pi(g^{-1}) = \dim(\text{Hom}_G(\pi, \rho)) =: n_\pi(\rho),$$

and deduce

$$\rho \cong \bigoplus_{\pi \in \text{irr}} n_\pi(\rho) \pi.$$

Exercise 7. Let $d \geq 2$, and consider the representation

$$\rho : S_d \to \text{GL}(\mathbb{C}^d),$$

where S_d is the d-Symmetric Group.

i) Show that the subspace

$$H := \left\{ \sum_{i=1}^d a_ie_i : \sum_{i=1}^d a_i = 0 \right\}$$

is S_d-stable under the action of S_d. Conclude that ρ is not irreducible.

ii) Show that the subrepresentation ρ_H (see Definition 2 part (i)) is irreducible. Hint: First observe that for an unitary representation $\chi_\rho(g^{-1}) = \overline{\chi_\rho(g)}$. Then consider χ_ρ and compute

$$\frac{1}{|G|} \sum_{g \in G} \chi_\rho(g), \quad \frac{1}{|G|} \sum_{g \in G} |\chi_\rho(g)|^2.$$

Finally, prove that $\chi_{\rho_H}(g) = \chi_\rho(g) - 1$ and conclude.