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Exercise 1.

i) Let us write

1

p

∑
h∈Fp

G(2, h; p)3e

(
−ah
p

)
=

1

p

∑
h∈Fp

( ∑
x∈Fp

e

(
x2h

p

))3
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=
1
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∑
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∑
x∈Fp

∑
y∈Fp

∑
z∈Fp

e

(
h(x2 + x2 + x2 − a)

p

)

=
1

p

∑
x∈Fp

∑
y∈Fp

∑
z∈Fp

∑
h∈Fp

e

(
h(x2 + x2 + x2 − a)

p

)
.

Now, thanks to the orthogonality of additive characters, we have

∑
h∈Fp

e

(
h(x2 + x2 + x2 − a)

p

)
=

{
0 if x2 + x2 + x2 − a 6= 0

p if x2 + x2 + x2 − a = 0,

and so we get the result.

ii) As in the part (ii) of the previous exercise, developing the product we have

|G(2, h; p)|2 =
∑
x∈Fp

∑
y∈Fp

e

(
x2h

p

)
e

(
− y2h

p

)
=
∑
x∈Fp

∑
y∈Fp

e

(
(x2 − y2)h

p

)
.

Using now a change of variables (s, t) = (x+ y, x− y), G(2, h; p) becomes

|G(2, h; p)|2 =
∑
s∈Fp

∑
t∈Fp

e

(
4sth

p

)
= p,

where in the last step we use, again, the orthogonality of the additive characters (assuming
h, 4 6= 0 mod p).

iii) First observe that G(2, 0; p) = p. Combining part (i) and part (ii) we get:

N2,3(a, p) = p2 +
1

p

∑
h∈F×p

G(2, h; p)3e

(
−ah
p

)
= p2 +O(p

3
2 ).
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iv) The same argument works for s ≥ 3 getting:

|N2,s(a, p)| = ps−1 +O(p
s
2 ).

Exercise 2.

i) Using the same argument as in exercise 2 we get

|N2,2(a, p)| = p+O(p),

but this do not lead to an asymptotic formula for |N2,2(a, p)| because the remainder term
has the same size as the main one.

ii) Because Fp is the finite field with p elements, any a ∈ F×p satisfies ap−1 = 1 i.e. any a ∈ F×p
is a zero of the polynomial f(x) = xp−1 − 1, so one has

f(x) = xp−1 − 1 =
∏
a∈F×p

(x− a).

Moreover a ∈ F×p is a square modulo p if and only if a
p−1
2 = 1, i.e. a is a zero of the

polynomial g(x) = x
p−1
2 − 1. On the other hand it is clear that g|f and this implies that

g has p−1
2 distinct zeros in Fp. Now observing that

X := {x2 : x ∈ Fp} = |{root of g}| ∪ {0},

one obtains that |X| = p+1
2 . To conclude it is enough to observe that Ya is just the set

−X shifted by a.

iii) Using the Inclusion–Exclusion principle we have

|X ∪ Ya| = |X|+ |Ya| − |X ∩ Ya|.

It is clear that |X ∪ Ya| ≤ p so

p ≥ |X ∪ Ya| = |X|+ |Ya| − |X ∩ Ya| = p+ 1− |X ∩ Ya|,

and then
|X ∩ Ya| ≥ 1.

Exercise 3.

i) If x2 + y2 = 0 and x, y 6= 0 then (xy−1)2 = −1. It is a well known fact that −1 is a square
modulo p if and only if p ≡ 1 mod 4. Thanks to that it is clear that N2(0, p) = {(0, 0)}
if p ≡ 3 mod 4. Instead, if p ≡ 1 mod 4 we get

N2,2(0, p) = {(x,±ix) : x ∈ F×p } ∪ {(0, 0)},

where we are denoting by i a square root of −1 in Fp.

ii) Let a, b ∈ F×p and consider a−1b. By the previous exercise there exist h, k ∈ Fp such that
h2 + k2 = a−1b. Consider the change of variables (x, y) = (hx + ky, kx − hy). For all
(x, y) ∈ F2

p, one has

(hx+ ky)2 + (hx− ky)2 = (h2 + k2)(x2 + y2) = a−1b(x2 + y2).

Then it is clear that Im(N2,2(a, p)) ⊂ N2,2(b, p) and because the map we are considering is
injective we conclude that |N2(a, p)| ≤ |N2(b, p)|. Repeating this argument starting with
ab−1 gives the inequality in the other direction.
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iii) Using the previous part we have

p2 = |F2
p| =

∑
a∈Fp

|(N2,2(a, p)| = |(N2,2(0, p)|+ |(N2(1, p)|(p− 1).

Inserting the possible values of |N2,2(0, p)| we get the result.

Exercise 4.

i) Let us denote by F×d the set of d-powers in F×. A charcter of order d ovver F× can be
seen as a character over F×/F×d. Then (i) is just the orthogonal relation for characters
over F×/F×d.

ii) Using (i), we rewrite

G(d, h; p) =
∑
z∈Fp

e
(zh
p

)
·
( ∑
χ:χd=1

χ(z)
)

=
∑

χ:χd=1
χ 6=1

∑
z∈Fp

e
(zh
p

)
χ(z)

=
∑

χ:χd=1
χ 6=1

χ(h)τχ

then the result follows since |τχ| =
√
p for any multiplicative character χ 6= 1.

iii) If p 6≡ 1 mod d then any element in Fp is a d-power. Thus

G(d, h; p) =
∑
x∈Fp

e
(xdh
p

)
=
∑
z∈Fp

e
(zh
p

)
.

Then

G(d, h; p) =

{
p if h = 0,
0 otherwise.

Exercise 5

As in Exercise 1 we have the equality

|Nk,s(a, p)| =
1

p

∑
h∈Fp

G(k, h; p)se

(
−ah
p

)

= ps−1 +
1

p

∑
h∈F×p

G(k, h; p)se

(
−ah
p

)
.

Then the result is a direct consequence of Exercise 4.

Exercise 5.
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i) Let N > 0, and let us denote N ′ the larges integer such that pN ′ ≤ N , then∑
n≤N

χ(n) =
∑
n≤pN ′

χ(n) +
∑

pN ′≤n≤N
χ(n)

= N ′
∑

0≤n≤p
χ(n) +

∑
0≤n≤N−pN ′

χ(n)

=
∑

0≤n≤N−pN ′
χ(n),

where in the first step we used the periodicity of χ and in the second one the fact that χ
is a non-trivial character. The results than follows since 0 ≤ N − pN ′ ≤ p.

ii) It is enough to observe that

1

p

∑
a∈Fp

e
(a(h− n)

p

)
=

{
1 if h = n,
0 otherwise.

iii) We have ∑
n≤N

χ(n) =
∑
h∈Fp

χ(h) ·
(1
p

∑
n≤N

∑
a∈Fp

e
(a(h− n)

p

))
=

1

p

∑
h∈Fp

∑
n≤N

∑
a∈Fp

e
(ah
p

)
e
(
− an

p

)
χ(h)

=
1

p

∑
a∈Fp

∑
n≤N

e
(
− an

p

) ∑
h∈Fp

e
(ah
p

)
χ(h)

=
1

p

∑
a∈F×p

∑
n≤N

e
(
− an

p

)
χ(a)τχ,

as we wanted.

iv) For 0 < a < p this is just a geometric series, then we have

∑
n≤N

e
(
− an

p

)
=

1− e
(
− a(N+1)

p

)
1− e

(
− a

p

) .

On the other hand for 0 < a < p we have∣∣∣1− e(− a

p

)∣∣∣ ≥ a

p
,

thus ∣∣∣ ∑
n≤N

e
(
− an

p

)∣∣∣ ≤ 2p

a
. (1)

From part (iii) we have ∑
n≤N

χ(n) =
τχ
p

∑
a∈F×p

χ(a)
∑
n≤N

e
(
− an

p

)
,
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Then using (1) we have ∣∣∣ ∑
n≤N

χ(n)
∣∣∣ ≤ √p

p

∑
a∈F×p

∣∣∣ ∑
n≤N

e
(
− an

p

)∣∣∣
≤ 1
√
p

∑
0<a<p

p

a

≤ 3
√
p log p,

as we wanted.

v) One repeats the same argument observing that

∑
h∈Fp

e
(h2α+ ah

p

)
=
∑
h∈Fp

e
(α(h2 + aαh)

p

)
=
∑
h∈Fp

e
(α(h2 + aαh+ (a2α)2 − (a2α)2)

p

)
= e
(−(a2)2)

p

) ∑
h∈Fp

e
(α(h+ a2α)2

p

)
= e
(−(a2)2)

p

)
G(2, α; p).

Exercise 6.

In the following we denote by || · || the norm in R2 and by

B+,+
r (0) := {(x, y) ∈ R2

≥0 : ||(x, z)|| ≤ r}

the quarter of the circle centered in 0 of radius r in the first quadrant. We start finding an
asymptotic formula for

N+,+(X) := |{(a, b) ∈ N2 : a2 + b2 ≤ X}|.

We can rewrite this as

N+,+(X) := |{(a, b) ∈ N2 : (a, b) ∈ B+,+√
X
(0)}|.

The points (a, b) ∈ N2 are in one to one correspondence with squares Sa,b := [a, a+1)× [b, b+1).
Moreover is it clear that Sa,b ∩ B+,+√

X
(0) 6= ∅ if and only if (a, b) ∈ B+,+√

X
(0). Indeed, if (a, b) ∈

B+,+√
X
(0) then of course Sa,b∩B+,+√

X
(0) 6= ∅. Let us do the other direction: if (c, d) ∈ Sa,b∩B+,+√

X
(0),

then by definition ||(c, d)|| ≤
√
X. On the other hand one has that ||(a, b)|| ≤ ||(c, d)|| ≤

√
X,

thus (a, b) ∈ B+,+√
X
(0). We can conclude that

N+,+(X) : = |{(a, b) ∈ N2 : (a, b) ∈ B+,+√
X
(0)}|

= |{(a, b) ∈ N2 : Sa,b ∩B+,+√
X
(0) 6= ∅}|

= Area
( ⋃
Sa,b∩B+,+√

X
(0)6=∅

Sa,b

)
.
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We claim that
B+,+√

X−
√
2
(0) ⊂

⋃
Sa,b∩B+,+√

X
(0)6=∅

Sa,b ⊂ B+,+√
X+
√
2
(0).

Let (c, d) ∈ B+,+√
X−
√
2
(0), then there exists (a, b) ∈ N2 such that (c, d) ∈ Sa,b. Then Sa,b ∩

B+,+√
X
(0) 6= ∅ since (c, d) ∈ B+,+√

X−
√
2
(0) ⊂ B+,+√

X
(0). Thus (c, d) ∈

⋃
Sa,b∩B+,+√

X
(0)6=∅ Sa,b. Let

(c, d) ∈ Sa,b for some (a, b) such that Sa,b ∩B+,+√
X
(0) 6= ∅. Then

||(c, d)|| ≤ ||(a, b)||+ ||(a− c, b− d)|| ≤
√
X +

√
2.

Hence, we conclude

Area(B+,+√
X−
√
2
(0)) ≤ N+,+(X) ≤ Area(B+,+√

X+
√
2
(0)),

and then
N+,+(X) =

π

4
X +O(

√
X).

Using the symmetries of the circle we finally get

N(X) = πX +O(
√
X).
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