D-MATH HS 2018 Prof. Emmanuel Kowalski
Exponential sums over Finite Fields. Exercise Sheet 1

January 11, 2019

Exercise 1.

i) Let us write
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Now, thanks to the orthogonality of additive characters, we have
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and so we get the result.
i1) As in the part (i7) of the previous exercise, developing the product we have
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Using now a change of variables (s,t) = (z +y,z —y), G(2, h;p) becomes
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where in the last step we use, again, the orthogonality of the additive characters (assuming
h,4 #0 mod p).

i7i) First observe that G(2,0;p) = p. Combining part (i) and part (i7) we get:
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iv)

The same argument works for s > 3 getting:

|Nos(a,p)| = p*~' + O(p2).

Exercise 2.

i)

i)

i)

Using the same argument as in exercise 2 we get

|N272((l,p)‘ =p + O(p)7

but this do not lead to an asymptotic formula for | N2 2(a,p)| because the remainder term
has the same size as the main one.

Because [, is the finite field with p elements, any a € I}’ satisfies aP~!' =1lie anyae€ Fy
is a zero of the polynomial f(x) = zP~! — 1, so one has

flx)=aPt —1= H (z —a).

a€lFy
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Moreover a € F) is a square modulo p if and only if AT = 1, i.e. a is a zero of the

polynomial g(z) = 2" — 1. On the other hand it is clear that g|f and this implies that
g has % distinct zeros in [F,. Now observing that

X :={2? : 2 € F,} = |{root of g}| U {0},

one obtains that | X| = %. To conclude it is enough to observe that Y, is just the set
—X shifted by a.

Using the Inclusion—Exclusion principle we have
X UYal = [X] + Yl = X 0 Yal.
It is clear that | X UY,| <pso
pZ X UYe| = [X]+[¥a] = X NYa| = p+1—[XNYal,

and then
X NY,| > 1.

Exercise 3.

i)

i)

If 22 +y? = 0 and 2,y # 0 then (zy~!)? = —1. It is a well known fact that —1 is a square
modulo p if and only if p =1 mod 4. Thanks to that it is clear that N2(0,p) = {(0,0)}
if p=3 mod 4. Instead, if p=1 mod 4 we get

Nas(0,p) = {(, i) : 0 € B} U{(0,0)},
where we are denoting by ¢ a square root of —1 in IF,,.

Let a,b € F; and consider a~1b. By the previous exercise there exist h, k € F, such that
h? + k* = a~'b. Consider the change of variables (z,y) = (ha + ky, kx — hy). For all
(z,y) € FIQ,, one has

(hx + ky)? + (ha — ky)® = (B* + k) (2® + ¢*) = a~'b(a® + ¢).

Then it is clear that Im(N2 2(a,p)) C N2 2(b, p) and because the map we are considering is
injective we conclude that |Na(a,p)| < |Na2(b,p)|. Repeating this argument starting with
ab—! gives the inequality in the other direction.



ii1) Using the previous part we have

= [F3l = > [(N22(a.p)| = [(N22(0,p)| + [(N2(L,p)|(p — 1).

aclFy
Inserting the possible values of [ N2 2(0,p)| we get the result.
Exercise 4.

i) Let us denote by F*¢ the set of d-powers in F*. A charcter of order d ovver F* can be
seen as a character over F* /F*?. Then (i) is just the orthogonal relation for characters
over F* /F*4,

i7) Using (i), we rewrite

Glain) = Y e(5) - (X xe)

z€F, x:x4=1
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then the result follows since |7,| = /p for any multiplicative character x # 1.
i19) If p#1 mod d then any element in F), is a d-power. Thus

Gldhip) =Y e (M) -y (zh>
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Then

p ifh=0,
G(d, h;p) =
( p) { 0 otherwise.

Exercise 5

As in Exercise 1 we have the equality

Nstanl = 3 3 Gl hiye( =)
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Then the result is a direct consequence of Exercise 4.

Exercise 5.
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Let N > 0, and let us denote N’ the larges integer such that pN’ < N, then
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0<n<p 0<n<N-—pN’

= Y x(n),
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where in the first step we used the periodicity of x and in the second one the fact that x
is a non-trivial character. The results than follows since 0 < N — pN’ < p.

It is enough to observe that
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as we wanted.

For 0 < a < p this is just a geometric series, then we have
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p

thus

From part (iii) we have



Then using (1) we have

< 3v/plogp,
as we wanted.
v) One repeats the same argument observing that
h? h h? + aah
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Exercise 6.
In the following we denote by || - || the norm in R? and by

BFH(0) := {(z,y) € RS : [|(2,2)[| < 7}

the quarter of the circle centered in 0 of radius r in the first quadrant. We start finding an
asymptotic formula for

Ny (X)) :=[{(a,b) € N*: a® + b < X}|.
We can rewrite this as

Ny (X) :=|{(a,b) € N?: (a,b) € B (0)}].

VX
The points (a,b) € N? are in one to one correspondence with squares Sap = [a,a+1)x[b,b+1).
Moreover is it clear that S, N B\J;i( ) # 0 if and only if (a,b) € BF(O) Indeed, if (a,b) €
B\J;%(O) then of course Sa,bﬁB:;ir( ) # 0. Let us do the other direction: if (¢, d) € S, ,NB"; Jr(0)7

then by definition ||(c,d)|| < v/X. On the other hand one has that ||(a,b)

thus (a,b) € B\J;% (0). We can conclude that

| < l(e:d]l < \ﬁ

Ny +(X) 2 = [{(a,b) € N*: (a,0) € B2 (0)}
=[{(a,b) € N*: 5., N BIL(0) # 0}

= Area( U Sa7b) .

SapNB L (0)20



We claim that
BYE (0)c U Sap C BTE  (0).

VX2 VX+v2
SapNB AT (0)£0
Let (c,d) € B2 _(0), then there exists (a,b) € N? such that (¢,d) € Sup. Then S,5 N

VX2
B;%(O) # 0 since (c,d) € Bj/%_\/i(o) C B\J;%(O)' Thus (¢,d) € Usa,mej%(O);é@ Sap. Let

(c,d) € S, for some (a,b) such that S, N B\J;%(O) # (). Then
(e, d)]| < [l )| + ll(a = ¢;b = d)|| < VX + V2.
Hence, we conclude

Area(BTE _(0)) < Ny 1 (X) < Area(B\J;%+\/§(O)),

and then -
Np (X)) = X + O(VX).

Using the symmetries of the circle we finally get

N(X) =7X + O(VX).



