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Exercise 1.

i) Let S be the n× n matrix whose (j, k)-th element is ζjk where ζ = e
(

1
n

)
and 0 ≤ j, k ≤

n− 1, i.e.

S =


1 1 · · · 1
1 ζ · · · ζn−1

1 ζ2 · · · ζ2(n−1)

. . · · · .

1 ζn−1 · · · ζ(n−1)
2

 .

Then S2 = {si,j}i,j , where

si,j =

p−1∑
k=0

ζkiζkj =

p−1∑
k=0

ζk(i+j) =

p−1∑
k=0

e
(k(i+ j)

n

)
.

Then, by the orthogonality of the additive character we get

si,j =

{
n if i+ j ≡ 0 mod n,

0 otherwise.

Hence, we have

S2 =


n 0 · · · 0 0
0 0 · · · 0 n
0 0 · · · n 0
. . · · · . .
0 n · · · 0 0

 ,

as we wanted. It is clear that det(S2) = (−1)n(n−1)nn (observe that (±1)n = ±1 since n
is odd), thus we get det(S) = ±in(n−1)/2nn/2.

ii) Since S is a Vandermonde, matrix we have that

det(S) =
∏

0≤j<k≤n−1
(ζk − ζj).

Moreover one has

ζk − ζj = ζj(ζk−j − 1) = η2j(η2(k−j) − 1) = ηk+j(ηk−j − η−k+j),

and that
ηk−j − η−k+j = e

(k − j
n

)
− e
(
− j − k

n

)
= 2i sin((k − j)π/n).
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Hence we conclude

det(S) = ηU in(n−1)/2
∏

0≤j<k≤n−1
2 sin((k − j)π/2),

where
U =

∑
0≤j<k≤n−1

j + k.

iii) We start proving that
m∑
t=1

t =
m(m+ 1)

2
,

m∑
t=1

t2 =
m(m+ 1)(2m+ 1)

6
.

Let us start with the first one. Using that

(m+ 1)2 = m2 + 2m+ 1,

one obtains

(m+ 1)2 =
m∑
t=0

1 + 2t,

thus
m∑
t=1

t =
(m+ 1)m

2
.

For the other formula similarly one start from

(m+ 1)3 =
m∑
t=0

1 + 3t+ 3t2.

Now we have

U =
n−1∑
k=1

k−1∑
j=1

j + k

=
1

2

n−1∑
k=1

3k2 − k

= 2n((n− 1)/2)2.

In particular ηU = 1 since 2n|U . Thus

det(S) = in(n−1)/2
∏

0≤j<k≤n−1
2 sin((k − j)π/2).

On the other hand sin((k − j)π/2) > 0, for any 0 ≤ j < k ≤ n− 1. Combining this with
part (i) we conclude

det(S) = in(n−1)/2nn/2.

iv) By definition we have

Trace(S) =
n−1∑
k=0

ζk
2
=

p−1∑
k=0

e
(k2
n

)
= G(2, 1;n).

Since the Trace is invariant with respect to a change of basis, one gets

G(2, 1;n) = Trace(S) = λ1 + · · ·+ λn,

where λ1, ..., λn are the eigenvalues of S.
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v) Let us consider the matrix S2 − xI

S2 − xI =


n− x 0 · · · 0 0
0 −x · · · 0 n
0 0 · · · n 0
. . · · · . .
0 n · · · 0 −x

 .

Then det(S2 − xI) = (n − x) det(T 2
0,0) where T0,0 = {ti,j} is the minor obtained from

S2 − xI removing from S the 0-th column and the 0-th row. By the defintion of the
determinant we get

det(T ) =
∑
σ∈Sn

sng(σ)
n−1∏
i=1

ti,σ(i).

On the other hand we have that

ti,σ(i) =


−x if σ(i) = i,
n if σ(i) = n− i,
0 otherwise.

This implies that
n−1∏
i=1

ti,σ(i) 6= 0

if and only if σ =
∏
j∈J(j, n− j) for some J ⊂ {1, ..., n−12 }, and moreover

n−1∏
i=1

ti,σ(i) = n2|J |(−x)n−1−2|J | = (n2)|J |(x2)(n−1)/2−|J |

in this case. Thus we have

det(T ) =
∑
σ∈Sn

sng(σ)
n−1∏
i=1

ti,σ(i)

=
∑

J⊂{1,...,n−1
2
}

(−1)|J |
n−1∏
i=1

ti,σJ (i),

where for any J ⊂ {1, ..., n−12 }
σJ =

∏
j∈J

(j, n− j).
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Thus we have

det(T ) =
∑

J⊂{1,...,n−1
2
}

(−1)|J |
n−1∏
i=1

ti,σJ (i)

=
∑

J⊂{1,...,n−1
2
}

(−1)|J |
n−1∏
i=1

(n2)|J |(x2)(n−1)/2−|J |

=
∑

J⊂{1,...,n−1
2
}

n−1∏
i=1

(−n2)|J |(x2)(n−1)/2−|J |

=

(n−1)/2∑
`=0

(
(n− 1)/2

`

)
(−n2)`(x2)(n−1)/2−`

= (x2 − n2)(n−1)/2

= (x+ n)(n−1)/2(x− n)(n−1)/2.

Hence
det(S2 − xI) = −(x+ n)(n−1)/2(x− n)(n+1)/2.

For any λj eigenvalue of S, one has

S2 − λ2jI = (S − λjI)(S + λjI) = 0,

then λ2j is an eigenvalue of S2. Hence λ2j is a solution of the polynomial det(S2 − xI) =
−(x+ n)(n−1)/2(x− n)(n+1)/2, i.e λj = ±

√
n or λj = ±i

√
n.

vi) if λ1, ..., λn are the eigenvalues of S, then λ21, ..., λ2n are eigenvalues of S2, this implies that

p(t) :=
n∏
j=1

(λ2j − x)|det(S2 − xI) = −(x+ n)(n−1)/2(x− n)(n+1)/2.

on the other hand n = deg(p(x)) = deg(det(S2 − xI)), thus

p(t) = −(x+ n)(n−1)/2(x− n)(n+1)/2.

This implies that

|{j : λ2j = n}| = n+ 1

2
, |{j : λ2j = −n}| =

n− 1

2
,

thus
r + s =

n+ 1

2
, t+ u =

n− 1

2
.

By part (iv) we know that

G(2, 1;n) =
n∑
j=1

λj = (r − s)
√
n+ (t− u)i√p.

Let us assume that n ≡ 1 mod 4, then since G(2, 1;n) = ±
√
n, it follows that

r − s = ±1, t− u = 0.

If n ≡ 3 mod 4, then it follows that

r − s = 0, t− u = ±1,

since in this case G(2, 1;n) = ±i
√
n.
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vii) We know that

det(S) =

n∏
j=1

λj = (
√
n)r(−

√
n)s(i

√
n)t(−i

√
n)u = i2s+t−unn/2.

On the other hand by part (iii) we have

det(S) = in(n−1)/2nn/2.

Hence in(n−1)/2 = i2s+t−u and this is true if and only if

2s+ t− u ≡ n(n− 1)/2 mod 4.

viii) Let us discuss first the case when n ≡ 1 mod 4. Thanks to part (vii) we deduce 2s =
n(n− 1)/2 = (n− 1)/2 mod 4, i.e. 2s ≡ 0 mod 4. Thus

r − s = (n+ 1)/2− 2s mod 4

= (n+ 1)/2− (n− 1)/2 mod 4

= 1 mod 4,

and this implies r − s = 1. Instead, if n ≡ 3 mod 4 we have

2s = (n+ 1)/2,

thus

t− u = n(n+ 1)/2− 2s mod 4

= 3(n− 1)/2− (n+ 1)/2 mod 4

= 1 mod 4,

hence t− u = 1.

Exercise 2.

i) Since (n1, n2) = 1, the Chinese Remainder Theorem implies that for any a ∈
(
Z/(n1n2)Z

)×
there exists an unique pair (a1, a2) ∈

(
Z/n1Z

)×
×
(
Z/n2Z

)×
such that

a = a1n2 + a1n2 mod n1n2.

Thus we have that

τχ1χ2 =

n1n2∑
a=0

(a,n1n2)=1

χ1χ2(a)e
(a
n

)

=

n1n2∑
a=0

(a,n1n2)=1

χ1(a)χ2(a)e
(a
n

)

=

n1∑
a1=0

(a1,n1)=1

n2∑
a2=0

(a2,n2)=1

χ1(a1n2)χ2(a2n1)e
(a1
n1

)
e
(a2
n2

)
= χ1(n2)χ2(n1)τχ1τχ2 .
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ii) Let p, q > be two distinct prime numbers. Using the previous point we have

τ( ·
pq

) =
(q
p

)(p
q

)
τ( ·

p
)τ( ·

q
).

Moreover it is easy to see that
τ( ·

pq
) = G(2, 1; pq).

To simplify the notation for any n odd we write G(2, 1;n) = εn
√
n, where

εn =

{
1 if n ≡ 1 mod 4

i if n ≡ 3 mod 4,

thanks to Exercise 1. Thus we have

εpq =
(q
p

)(p
q

)
εpεq.

If p ≡ 1 mod 4, then q ≡ pq mod 4. This implies εp = 1 and εq = εpq. Hence(q
p

)(p
q

)
= 1 = (−1)

(p−1)(q−1)
4 .

The case when p ≡ 3 mod 4 is analogue.

Exercise 3, Exercise 4. You can find the solutions of these two exercises in the lecture
notes "Exponential sums over finite fields, I: elementary methods" pages 19− 23.
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