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Exercise 1.

i) Let S be the n x n matrix whose (j, k)-th element is ¢(/* where ¢ = e( ) and 0 < j,k <

i)

n—1, 1ie.
1 1 e 1
1 ¢ .. ¢t
S=11 ¢ ... 2
1 ¢t o ¢eD)?

Then 52 = {Si,j}i,j; where

p—1

SZJ_ZCMCI@ ZCkH—j Ze( Z+J)

k=0

Then, by the orthogonality of the additive character we get

{n ifi+j=0 modn,
'7j:

0 otherwise.

Hence, we have

n 0 0 0
0 0 0 n
S2=10 0 n 0],
0On --- 00

as we wanted. It is clear that det(S2) = (—1)*("~Un" (observe that (£1)" =

is odd), thus we get det(S) = +i"(=1)/2pn/2,

Since S is a Vandermonde, matrix we have that

det(S)= [ ("=¢).

0<j<k<n—1
Moreover one has
CF = = 1) = P (D — 1) = (g

and that

=N

—k+j)7

e e(@) - e( _I= ’“) — 2isin((k — §)7/n).

n n

+1 since n



i)

iv)

Hence we conclude

det(S) = pUin=02 T 2sin((k — j)m/2),
0<j<k<n—1

U= Y  j+k

0<j<k<n—1

where

We start proving that

_ m(m+1) - m(m + 1)(2m + 1)
Zt 7, Z S :

Let us start with the first one. Using that
(m4+1)2 =m?+2m +1,
one obtains

(m + 1)* Zl+2t

thus

it: (m+1)m

For the other formula similarly one start from

(m+1)> Zl—l—3t+3t2
t=0

Now we have
1 k—

n—1
v=5
k=1 j=

1n—1
=5 3k -
k=1

=2n((n —1)/2)2

1
Jt+k
1

In particular nY = 1 since 2n|U. Thus
det(S) =" D2 T 2sin((k - j)7/2).
0<j<k<n—1

On the other hand sin((k — j)7/2) > 0, for any 0 < j < k < n — 1. Combining this with
part (i) we conclude
det(S) = i" nn=1)/2n/2,

By definition we have

» K K
Trace(S) = Z(k Z (;) =G(2,1;n).
k=0 k=0

Since the Trace is invariant with respect to a change of basis, one gets
G(2,1;n) = Trace(S) = A1 + -+ + Ay,

where Ay, ..., A, are the eigenvalues of S.



v) Let us consider the matrix S — x 1

n—x 0 0 O

0 -z 0 n

S? ] = 0 0 n 0
0 n --- 0 —zx

Then det(S? — xI) = (n — =) det(TO%O) where Tpo = {t;;} is the minor obtained from

S? — zI removing from S the 0-th column and the 0-th row.

determinant we get
n—1
det(T) = > sng(0) [] tio0)-
ocESy i=1
On the other hand we have that

—z if o(i) =1,
tici)y=4n ifo(i)=n—1,
0 otherwise.
This implies that
n—1
H tio(i) 70
i=1

By the defintion of the

if and only if o = [[,¢;(j, n — j) for some J C {1,..., 21} and moreover

n—1
H ti,a(i) _ 7,LQ\J|(_:L,)n—1—2|J| _ (7”L2)|J|(l'2)(n_1)/2_|J|
=1

in this case. Thus we have

n—1

Z sng(o) H bio(d)

c€Sn i=1

n—1
= Z (—1)l H tio (i)
i1

Jc{1,..,251}

det(T') =

where for any J C {1,..., 251}

oJ = H(])n_])

jeJ



v1)

Thus we have

n—1
det(T) = Z (-1l H Lio (i)
i=1

Jc{1,..., 251y

= Z \J\ H IJI (n=1)/2—=|J]|

Jc{l,.. ,”;1}

— Z H 2l (2)(n=1D/2=1]

Jc{1,.., x5ty =l

— (nzl)/z ((n _gl)/2> (_n2)£($2)(n—1)/2—€

=0
— (1:2 - nZ)(nfl)/2

= (z+n) V2 (g —n)=D/2,

Hence
det(S2 — xI) = —(.T + n)(nfl)/Z(x _ n)(n+1)/2'

For any \; eigenvalue of S, one has
S — N = (S — NI)(S+NI) =0,

then /\? is an eigenvalue of S?. Hence A? is a solution of the polynomial det(S? — zI) =
—(z +n) D2 (g =)D/ e N\ =+ or \j = Fiy/n.

if A1, ..., A, are the eigenvalues of S, then \2,..., \2 are eigenvalues of S?, this implies that
ﬁ —z)|det(S* —xl) = —(z + n)(n_l)/2(;p _ n)(n+1)/2‘
j=1
on the other hand n = deg(p(x)) = deg(det(S2 — 21)), thus
p(t) = —(z +n) D2 (g — p) /2,
This implies that

) n+1 ) 1
G:n=n)="00 ==
thus
n n+1 ‘4 n—1
r+s8=—— U= —-:.
2 7 2

By part (iv) we know that
G(2,1;n) = Z Aj = (r = s)vn+ (t — u)iy/p.
j=1

Let us assume that n =1 mod 4, then since G(2,1;n) = ++/n, it follows that

r—s==1, t—u=0.
If n =3 mod 4, then it follows that

r—s=0, t—u==l1,
since in this case G(2,1;n) = £iy/n.



vii) We know that
det(8) = [[ A = (VA (—v/m)*(i/m)! (—in/m)® = i2+t—un/2.
j=1

On the other hand by part (¢ii) we have

det(S) _ -n(nfl)/an/Z.

Hence ("—1)/2 = j2s+t=u and this is true if and only if

2s+t—u=n(n—1)/2 mod 4.

viit) Let us discuss first the case when n = 1 mod 4. Thanks to part (vii) we deduce 2s =
nin—1)/2=(n—-1)/2 mod 4, i.e. 26 =0 mod 4. Thus
r—s=(n+1)/2—2s mod 4
=n+1)/2—(n—1)/2 mod 4
=1 mod 4,

and this implies r — s = 1. Instead, if n =3 mod 4 we have
2s =(n+1)/2,
thus
t—u=n(n+1)/2—2s mod4

=3n—1)/2—(n+1)/2 mod 4
=1 mod 4,

hence t —u =1.

Exercise 2.
X
i) Since (n1,n2) = 1, the Chinese Remainder Theorem implies that for any a € (Z/(nl TLQ)Z)

X X
there exists an unique pair (a1, az2) € (Z / n12> X (Z / TZQZ) such that
a = ainyg + ainy mod nins.

Thus we have that
nino

Txix2 = Z X1X2(a)e<%)

a='
(a,n1n2)=1

nin2

= Y al@xe@e(?)

a=0
(a,nin2)=1

_ i i xl(a1n2)X2(a2”1)e(ﬂ>€<@)

n n
a1=0 a2=0 1 2
(al,nl)il (az,ng):l

= x1(n2)x2 (nl)Tm Txa2-

5



i1) Let p,q > be two distinct prime numbers. Using the previous point we have
(E) D q (;) (5)‘

T(52)

Moreover it is easy to see that
= G(2,1;pq).

To simplify the notation for any n odd we write G(2,1;n) = €,y/n, where

1 ifn=1 mod4
€n =
i ifn=3 mod 4,

thanks to Exercise 1. Thus we have

o= ()

If p=1 mod 4, then ¢ = pg mod 4. This implies €, = 1 and ¢; = €,,. Hence

<%> (%)) — 1= (-1

The case when p =3 mod 4 is analogue.

Exercise 3, Exercise 4. You can find the solutions of these two exercises in the lecture
notes "Ezponential sums over finite fields, I: elementary methods" pages 19 — 23.



