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Exercise 1 Let ρ1, ρ2 be two `-adic representation modulo p. By definition of a trace
function attached to an `-adic representation modulo p, to solve the exercise it is enough to
check that

(V1 ⊗ V2)Ix = V Ix
1 ⊗ V

Ix
2

when x is a singular point for ρ1 and an unramified point for ρ2. Let v1 ∈ V Ix
1 and let v2 ∈ V Ix

2 ,
then for any g ∈ Ix we have

ρ1 ⊗ ρ2(g)(v1 ⊗ v2) = ρ1(g)(v1)⊗ ρ2(g)(v2) = v1 ⊗ v2.

Hence (V1 ⊗ V2)Ix ⊇ V Ix
1 ⊗ V

Ix
2 . Let w ∈ (V1 ⊗ V2)Ix , then we can write w as

n∑
j=1

v1,j ⊗ e2,j

where v1,j ∈ V1 for any j and {e2,1, ..., e2,n} is a basis for V2. Then for any g ∈ Ix,one has

ρ1 ⊗ ρ2(g)(w) =
n∑
j=1

ρ1(g)(v1,j)⊗ ρ2(g)(e2,j) =
n∑
j=1

ρ1(g)(v1,j)⊗ e2,j

where the last step follows from the fact that V Ix
2 = V2 since x is an unramified point for ρ2.

Then
n∑
j=1

(v1,j − ρ1(g)(v1,j))⊗ e2,j = 0.

Thus
v1,j − ρ1(g)(v1,j) = 0,

for any j and this implies that v1,j ∈ V Ix
1 for any j. Hence w ∈ V Ix

1 ⊗ V
Ix
2 as we wanted.

Exercise 2. We discuss just∑
x∈Fq

ψ(x+ ax3) a ∈ F×q ,
∑
x∈Fq

χ(x)ψ(x+ x−1), a ∈ F×q , χ 6= 1,

the others are analogues.
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i) We know that the function ψ(x+ax3) is the trace function attached to the Artin-Schreier
sheaf Lψ(T+aT 3). We know from the lectures that Lψ(T+aT 3) is irreducible and not geo-
metrically trivial. Moreover rank(Lψ(T+aT 3)) = 1, sing(Lψ(T+aT 3)) = {∞} and if a 6= 0
then Swan∞(Lψ(T+aT 3)) = 3. An application of the Euler-Poincaré formula leads to

−h1 = rank(Lψ(T+aT 3))− Swan∞(Lψ(T+aT 3)) = −2.

Thus the Riemann Hypothesis over finite fields implies that∣∣∣ ∑
x∈Fq

ψ(x+ ax3)
∣∣∣ ≤ 2

√
p

for any a ∈ F×q .

ii) First recall that:

a) The function ψ(x + ax−1) is the trace function attached to the Artin-Schreier sheaf
Lψ(T+aT−1). We know from the lectures that Lψ(T+aT−1) is irreducible and not geo-
metrically trivial. Moreover rank(Lψ(T+aT−1)) = 1 and if a 6= 0 then sing(Lψ(T+aT−1)) =
{0,∞}, Swan∞(Lψ(T+aT−1)) = 1, Swan0(Lψ(T+aT−1)) = 1 and drop0(Lψ(T+aT−1)) =
1.

b) The function χ(x) is the trace function attached to the Kummer sheaf Lχ(T ). We
know from the lectures that if χ 6= 1 then Lχ(T ) is irreducible and not geometri-
cally trivial. Moreover rank(Lχ(T )) = 1, sing(Lχ(T )) = {0,∞}, Swan∞(Lχ(T )) = 0,
Swan0(Lχ(T )) = 0 and drop0(Lχ(T )) = 1.

c) If ρ1, ρ2 are two `-adic representation modulo p then rank(ρ1⊗ρ2) = rank(ρ1) rank(ρ2)
and sing(ρ1 ⊗ ρ2) ⊂ sing(ρ1) ∪ sing(ρ2). Moreover for any singular point x we have
that Swanx(ρ1 ⊗ ρ2) ≤ rank(ρ1) rank(ρ2)(Swanx(ρ1) + Swanx(ρ2)).

Let us consider G := Lψ(T+aT−1) ⊗ Lχ(T ). Than rank(G) = 1, moreover G is not geomet-
rically trivial since Lψ(T+aT−1) �geom Lχ(T ) (indeed, Lψ(T+aT−1) is wild ramified in 0,∞
while Lχ(T ) is tame everywhere). On the other hand combining (a), (b) and (c) we get

sing(G) ⊂ {0,∞}, Swan0(G),Swan∞(G) ≤ 1, drop0(G) = 1.

Applying the Euler-Poincaré formula one gets

−h1 = rank(G)− drop0(G)− Swan0(G)− Swan∞(G) = −2.

Thus the Riemann Hypothesis over finite fields implies that∣∣∣ ∑
x∈Fq

χ(x)ψ(x+ ax−1)
∣∣∣ ≤ 2

√
p

for any a ∈ F×q and χ 6= 1.

Exercise 3.

i) The Euler-Poincaré formula tells us that

h0 − h1 + h2 = rank(ρ)−
∑
x∈Fq

dropx(ρ)−
∑

x∈Fq∪{∞}

Swanx(ρ).
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If ρ is unramified everywhere then for any x ∈ Fq ∪ {∞} one has

dropx(ρ) = Swanx(ρ) = 0.

Moreover we know from the lecture that for a geometrically irreducible `-adic representa-
tion modulo p one has that

h0 = 0, h2 =

{
1, if ρ is geometrically trivial,
0 otherwise.

Hence, one gets
−h1 + h2 = rank(ρ) > 0.

This implies that h1 = 0, h2 = 1, i.e. ρ is geometrically irreducible.

ii) First of all, we claim that without loss of generality we may assume that x = ∞: we can
replace ρ with γ∗ρ where γ is the Möbius transformation

γ : y 7→ y

yx−1 − 1
.

Indeed, one has that sing(γ∗ρ) = γ−1(sing(ρ)) = {γ−1(x)} = {∞}. Moreover ρ is geomet-
rically trivial if and only if γ∗ρ is geometrically trivial and this proves the claim. Now,
let ρ be an `-adic representation modulo p unramified on AFq and tame at ∞. One starts
again with the Euler-Poincaré formula getting

h0 − h1 + h2 = rank(ρ)−
∑
x∈Fq

dropx(ρ)−
∑

x∈Fq∪{∞}

Swanx(ρ).

For any x ∈ AFq one has
dropx(ρ) = Swanx(ρ) = 0,

Moreover Swan∞(ρ) = 0, since ρ is tame at ∞. Hence, one obtains

−h1 + h2 = rank(ρ) > 0.

Using the same argument as in part (i) we conclude the exercise.

Exercise 4.

i) One has that for any x ∈ Y
Y ∩Bξ/2(x) = {x},

where Bξ/2(x) := {y ∈ E : ‖x− y‖ ≤ ξ/2}. Indeed if y ∈ Bξ/2(x) and ‖y‖ = 1, then

ξ/2 ≥ ‖x− y‖ = ‖x‖+ ‖y‖ − 2〈x, y〉 = 2− 2〈x, y〉,

which means
〈x, y〉 ≥ 1− ξ/4,

thus y /∈ Y . Now observe that

|Y | =
∑
x∈Y

1 =
∑
x∈Y

µ(Bξ/2(x) ∩ Sn)
µ(Bξ/2(x) ∩ Sn)

,
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where Sn = {e ∈ E : ‖e‖ = 1} and µ is the n− 1 dimensional Lebesgue measure. On the
other hand µ(Bξ/2(x) ∩ Sn) =: γ > 0 is independent on x and∑

x∈Y
µ(Bξ/2(x) ∩ Sn) = µ

( ⋃
x∈Y

Bξ/2(x) ∩ Sn
)
≤ µ(Sn) <∞,

since Bξ/2(x) ∩Bξ/2(y) = ∅ for x, y ∈ Y with x 6= y. Then we conclude that

|Y | ≤ µ(Sn)
γ

<∞

as we wanted.

ii) Let us consider the space E = Cp. Consider the set

TC := {ρ : ρ is a geometrically irreducible `-adic representation with c(ρ) ≤ C},

with the equivalence relation ρ1 ∼ ρ2 if and only if ρ1 ∼=geom ρ2. For any equivalence class
[ρ] of trace functions we associate a vector in E in the following way: pick ρ ∈ [ρ], and
define

v[ρ] :=
1∑

x∈Fp |tρ(x)|2
(tρ(x))x∈Fp .

Notice that ‖v[ρ]‖ = 1 independently of the choice of ρ in [ρ]. Let [ρ1], [ρ2] be two different
classes, then

〈v[ρ1], v[ρ2]〉 =
∑

x∈Fp tρ1(x)tρ2(x)∑
x∈Fp |tρ(x)|2 ×

∑
x∈Fp |tρ(x)|2

≤ 10C4

p2

thanks to the Riemann Hypothesis over finite fields and the Katz’s criterion for irreducibil-
ity. Thus for p large enough

10C4

p2
< 1

and we can apply part (i) to the set TC/ ∼.

iii) For any [ρ] ∈ TC/ ∼ and any n ≥ 1 we define

v[ρ;n] :=
1∑

x∈Fpn |tρ(x;n)|
2
(tρ(x;n))x∈Fpn .

Then for any [ρ1], [ρ2] two different classes, one gets

〈v[ρ1;n], v[ρ2;n]〉 =
∑

x∈Fpn tρ1(x;n)tρ2(x;n)∑
x∈Fpn |tρ(x;n)|

2 ×
∑

x∈Fpn |tρ;n(x)|
2
≤ 10C4

p2n
.

Thus for n large enough
10C4

p2n
< 1

and we can apply part (i) to the set TC/ ∼.
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Exercise 5. One has that

1

pn

∑
a∈Fp

1

pn

∣∣∣ ∑
x∈F×p

ψ(Tr(ax+ x−1))
∣∣∣2 = 1

p2n

∑
a∈Fp

∑
x,y∈F×p

ψ(Tr(ax+ x−1))ψ(−Tr(ay + y−1))

=
1

pn

∑
x,y∈F×p

ψ(Tr(x−1 − y−1)) 1

pn

∑
a∈Fp

ψ(Tr(a(x− y)))

= 1− p−n

where the last step follows from the orthogonality relation of the additive characters. Then the
Kloosterman sheaf, K`2, is irreducible thank to Katz’s criterion for irreducibility.

Exercise 6.

i) One has that

∑
x∈Fp

Kl3(ax; p)Kl3(bx; p)e
(cx
p

)
=

1

p2

∑
x∈Fp

∑
r,s∈F×p

∑
f,g∈F×p

e
(r + s− f − g + x(c+ ars− bfg)

p

)

=
1

p

∑
r,s∈F×p

∑
f,g∈F×p

e
(r + s− f − g

p

)1
p

∑
x∈Fp

e
(x(c+ ars− bfg)

p

)

=
1

p

∑
r,s∈F×p
ars6=−c

∑
f,g∈F×p

e
(r + s− f − g

p

)1
p

∑
x∈Fp

e
(x(c+ ars− bfg)

p

)
,

where the last step follows from the fact that if ars = −c, then∑
x∈Fp

e
(−xbfg

p

)
= 0,

since bfg 6= 0. Now we change the variable t = ars thus we obtain∑
x∈Fp

Kl3(ax; p)Kl3(bx; p)e
(cx
p

)
=

1

p

∑
t∈Fp\{0,−c}

∑
r∈F×p

∑
f,g∈F×p

e
(r + atr − f − g

p

)1
p

∑
x∈Fp

e
(x(c+ t− bfg)

p

)

=
1

p

∑
t∈Fp\{0,−c}

∑
r∈F×p

e
(r + atr

p

) ∑
f,g∈F×p

fg=b/(c+t)

e
(−f − g

p

)

=
∑

t∈Fp\{0,−c}

( 1
√
p

∑
r∈F×p

e
(r + atr

p

))
×
( 1
√
p

∑
f,g∈F×p
fg=bc+t

e
(f + fb(c+ t)

p

)

=
∑

t∈Fp\{0,−c}

Kl2

(a
t
; p
)
Kl2

( b

t+ c
; p
)
,

as we wanted.

i) Since ∑
x∈Fp

Kl3(ax; p)Kl3(bx; p)e
(cx
p

)
=

∑
t∈Fp\{0,−c}

Kl2

(a
t
; p
)
Kl2

( b

t+ c
; p
)
,
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it is enough to check that γ∗aK`2 �geom γ∗b,cK`2 unless a = b and c = 0, where γa and γb,c
are the Möebius transformations

γa : t 7→
a

t
, γb,c : t 7→

b

t+ c
.

Assume first c = 0 and a 6= b, then∑
t∈F×p

Kl2

(a
t
; p
)
Kl2

(b
t
; p
)
=

1

p

∑
t∈F×p

∑
x∈F×p

∑
y∈F×p

e
(x+ atx− y − bty

p

)

=
∑
x∈F×p

∑
y∈F×p

e
(x− y

p

)1
p

∑
t∈F×p

e
( t(ax− by)

p

)
Using the orthogonal relation of the additive character we get∑

t∈F×p

Kl2

(a
t
; p
)
Kl2

(b
t
; p
)
= −1

p

∑
x∈F×p

∑
y∈F×p
y 6=xba

e
(x− y

p

)
+
∑
x∈F×p

e
(x(1 + ba)

p

)

= −1

p

∑
x∈F×p

e
(x
p

) ∑
y∈F×p
y 6=xba

e
(
− y

p

)
+
∑
x∈F×p

e
(x(1 + ba)

p

)

Now we have that ∑
x∈F×p

e
(x(1 + ba)

p

)
= −1

since we are assuming a 6= b. Moreover one has that

−1

p

∑
x∈F×p

e
(x
p

) ∑
y∈F×p
y 6=xba

e
(
− y

p

)
=

1

p

∑
x∈F×p

e
(x
p

)(
1 + e

(xba
p

))
= −2

p

thanks to the fact that a 6= b. Thus if a 6= b and c = 0 we get∑
x∈Fp

Kl3(ax; p)Kl3(bx; p) = −1−
2

p
.

Assume now c 6= 0, then sing(γ∗aK`2) = {0,∞} while sing(γ∗b,cK`2) = {−c,∞}. Then
γ∗aK`2 �geom γ∗b,cK`2 since sing(γ∗aK`2) 6= sing(γ∗b,cK`2) if c 6= 0. Applying the Riemann
Hypothesis over finite fields one gets∑

t∈Fp\{0,−c}

Kl2

(a
t
; p
)
Kl2

( b

t+ c
; p
)
≤ 5c(γ∗aK`2)2c(γ∗b,cK`2)2

√
p.

Since c(γ∗aK`2) = c(γ∗b,cK`2) = c(K`2), one gets

∑
t∈Fp\{0,−c}

Kl2

(a
t
; p
)
Kl2

( b

t+ c
; p
)
≤ 5c(K`2)4

√
p,

as we wanted.
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Exercise 7.

i) Let ρ1 and ρ2 be two geometrically irreducible `-adic sheaf modulo p, both of which are
ramified at most at 0 and∞, and both of which are tamely ramified everywhere. Moreover
assume that ρ1 �geom ρ2. Applying the the Euler-Poincaré formula one gets

h0 − h1 + h2 = rank(ρ1 ⊗ ρ2)− drop0(ρ1 ⊗ ρ2).

We know from the lecture that h0 = 0 and that h2 = 0 since ρ1 and ρ2 are two geometrically
irreducible `-adic sheaf modulo p and ρ1 �geom ρ2. Thus

−h1 = rank(ρ1 ⊗ ρ2)− drop0(ρ1 ⊗ ρ2).

On the other hand drop0(ρ1 ⊗ ρ2) ≤ rank(ρ1 ⊗ ρ2) by definition of the drop. Hence,

−h1 ≥ 0;

which implies h1 = 0 and this conclude the proof of (i).

ii) Let ρ be a geometrically irreducible `-adic sheaf modulo p, which is ramified at most at
0 and ∞, and tamely ramified everywhere. By contradiction, assume that ρ � Lχ(T ) for
any multiplicative character χ. Then for any n ≥ 1 and any x ∈ Fnp one would have that

tρ(x;n) =
∑
y∈Fnp

tρ(y;n)
1

p− 1

∑
χ

χ(xy−1)

=
∑
y∈Fnp

tρ(y;n)
1

p− 1

∑
χ

χ(x)χ(y)

=
1

p− 1

∑
y∈Fnp

∑
χ

tρ(y;n)χ(x)χ(y)

=
1

p− 1

∑
χ

χ(x)
∑
y∈Fnp

tρ(y;n)χ(y)

= 0,

where in the last step we used part (i) since ρ � Lχ(T ) for any multiplicative character χ
and Lχ(T ) is ramified only at 0 and ∞ and it is tame everywhere. Now this would implies
that ∑

x∈Fpn
|tρ(x;n)|2 = 0

for any n ≥ 1 and this is not possible since the Riemann Hypothesis over finite fields tells
us that ∣∣∣ ∑

x∈Fpn
|tρ(x;n)|2 − p

∣∣∣ ≤ c(ρ)pn/2,
for any geometrically irreducible `-adic representation modulo p.

iii) It is enough to take the Artin-Schreier sheaf Lψ(T ) for some non trivial additive character
ψ. Indeed, Lψ(T ) is geometrically irreducible and sing(Lψ(T )) = {∞}. But we know that
Lψ(T ) �geom Lχ(T ) for any multiplicative character χ since Lψ(T ) is wild ramified at ∞
while Lχ(T ) is tame everywhere.
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Exercise 8. One starts proving the following: let ρ1 and ρ2 be two geometrically irreducible `-
adic sheaf modulo p, both of which are ramified at most at∞ with Swan∞(ρ1),Swan∞(ρ2) ≤ 1.
Moreover assume that ρ1 �geom ρ2. Then∑

x∈Fp

tρ1(x)tρ1(x) = 0.

As usual, one starts with the Euler-Poincaré formula getting

h0 − h1 + h2 = rank(ρ1 ⊗ ρ2)− Swan∞(ρ1 ⊗ ρ2).

We know from the lecture that h0 = 0 and that h2 = 0 since ρ1 and ρ2 are two geometrically
irreducible `-adic sheaf modulo p and ρ1 �geom ρ2. Thus

−h1 = rank(ρ1 ⊗ ρ2)− Swan∞(ρ1 ⊗ ρ2).

Let us bound Swan∞(ρ1 ⊗ ρ2). In the lectures we have seen that

Swan∞(ρ1 ⊗ ρ2) ≤ rank(ρ1 ⊗ ρ2)λ∞(ρ1 ⊗ ρ2),

where λ∞(ρ1 ⊗ ρ2) is the maximal breaks of ρ1 ⊗ ρ2 at ∞. Moreover we know that

λ∞(ρ1 ⊗ ρ2) ≤ max(λ∞(ρ1), λ∞(ρ2)).

On the other hand
λ∞(ρ1), λ∞(ρ2) ≤ 1

since Swan∞(ρ1),Swan∞(ρ2) ≤ 1. Hence

Swan∞(ρ1 ⊗ ρ2) ≤ rank(ρ1 ⊗ ρ2).

Inserting this in the Euler-Poincaré formula one gets

−h1 ≥ 0,

which implies h1 = 0. Hence ∑
x∈Fp

tρ1(x)tρ1(x) = 0,

as we wanted. To conclude the exercise it is enough to use the same argument as in Exercise 7
replacing the multiplicative characters by the additive ones.
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