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Exercise 1 Let p1, p2 be two f-adic representation modulo p. By definition of a trace
function attached to an f-adic representation modulo p, to solve the exercise it is enough to
check that

(VieW) =V oV,

when z is a singular point for p; and an unramified point for po. Let vy € VII”” and let vy € VQI“',
then for any g € I, we have

p1 ® p2(g)(v1 @ v2) = p1(g)(v1) ® p2(g)(v2) = v1 @ V2.

Hence (V; ® Va)'* D V" @ Vif=. Let w € (Vi @ Va)%=, then we can write w as

n
E V1,5 @ €2
Jj=1

where vy ; € V; for any j and {ez1,...,e2,} is a basis for V5. Then for any g € I,,one has
n n
p1® pa(g)(w) =D p1(9)(v1,;) ® pa(g)(eas) = D pr(g)(v1,) @ ea
=1 j=1

where the last step follows from the fact that VQII = V&4 since x is an unramified point for po.
Then

n

> (w15 = pr(g)(v1)) ®ea; = 0.

j=1
Thus
v1; — p1(g)(v1,;) =0,

for any j and this implies that vy ; € Vllz for any j. Hence w € Vllz ® VQII as we wanted.

Exercise 2. We discuss just

Zw(x—i—a:rg) aGFqX, ZX($)¢($+$_1)7GGF;7 X # 1,

z€F, z€Fq

the others are analogues.



i) We know that the function 1 (x + az?) is the trace function attached to the Artin-Schreier
sheaf Ly 7473y We know from the lectures that Ly qr3) is irreducible and not geo-
metrically trivial. Moreover rank(Lyryqrs)) = 1, sing(Ly(r4qars)) = {00} and if a # 0
then Swanoo (Ly(r4473)) = 3. An application of the Euler-Poincaré formula leads to

—ht = rank(Lyr4q73)) — SWaleo (Ly(14ar3)) = —2-
Thus the Riemann Hypothesis over finite fields implies that

) Z ¢(:r—|—aac3)) <2\/p

z€lFy
for any a € F.
i7) First recall that:

a) The function ¢ (x + az~!) is the trace function attached to the Artin-Schreier sheaf
Lyrrar-1)- We know from the lectures that L7171y is irreducible and not geo-
metrically trivial. Moreover rank(Ly,p4qr-1)) = 1 and if @ # 0 then sing(Ly (74 qr-1)) =

10,00}, Swaneo (Ly(rtar-1)) = 1, Swang(Lyriqr-1y) = 1 and dropy(Ly(rpar-1)) =
1.

b) The function x(z) is the trace function attached to the Kummer sheaf £, (7). We
know from the lectures that if x # 1 then L, () is irreducible and not geometri-
cally trivial. Moreover rank(Ly 7)) = 1, sing(Ly (1)) = {0, 00}, Swanee(Ly (7)) = 0,
Swang(Ly (7)) = 0 and dropy(Ly (7)) = 1.

¢) If p1, pa are two f-adic representation modulo p then rank(p; ®p2) = rank(p;) rank(p2)
and sing(p1 ® p2) C sing(p1) U sing(p2). Moreover for any singular point = we have
that Swan,(p1 ® p2) < rank(p;) rank(p2)(Swan,(p1) + Swan,(p2)).

Let us consider G := Lypyqr-1) ® Ly(r). Than rank(G) = 1, moreover G is not geomet-
rically trivial since Ly iq7-1) Zgeom Ly(r) (indeed, Ly yqr-1y is wild ramified in 0, 00
while £,y is tame everywhere). On the other hand combining (a), (b) and (c) we get

sing(G) C {0,00}, Swang(G),Swan(G) <1, dropy(G) = 1.
Applying the Euler-Poincaré formula one gets
—h! = rank(G) — dropy(G) — Swang(G) — Swane,(G) = —2.

Thus the Riemann Hypothesis over finite fields implies that

] 3 X(@)(e +az Y| < 25

z€lf,
for any a € F and x # 1.
Exercise 3.

i) The Euler-Poincaré formula tells us that

R — ' + h? = rank(p) — Z drop,(p) — Z Swan, (p).

z€ly 2€FgU{c0}



If p is unramified everywhere then for any = € F, U {oo} one has
drop, (p) = Swan,(p) = 0.

Moreover we know from the lecture that for a geometrically irreducible ¢-adic representa-
tion modulo p one has that

-0 2= {1, if p is geometrically trivial,

0 otherwise.

Hence, one gets
—h! 4+ h? = rank(p) > 0.

This implies that h! = 0, h? =1, i.e. p is geometrically irreducible.

i1) First of all, we claim that without loss of generality we may assume that x = oco: we can
replace p with v*p where ~ is the Mobius transformation

Y

LY ——
Ty yr—1 —1

Indeed, one has that sing(y*p) = v~ (sing(p)) = {7} (z)} = {oc}. Moreover p is geomet-
rically trivial if and only if v*p is geometrically trivial and this proves the claim. Now,
let p be an f-adic representation modulo p unramified on AE} and tame at co. One starts
again with the Euler-Poincaré formula getting

h® — h! 4 h? = rank(p) — Z drop,(p) — Z Swang(p).
z€Fq z€F U{o0}

For any x € AFq one has
drop,(p) = Swan,(p) =0,

Moreover Swan(p) = 0, since p is tame at oo. Hence, one obtains
—h! 4+ h? = rank(p) > 0.
Using the same argument as in part (i) we conclude the exercise.
Exercise 4.

i) One has that for any z € Y
Y N Bejo(x) = {z},

where B¢ () :={y € E: ||z —y[| < &/2}. Indeed if y € Be/o() and [ly|| = 1, then
§/2 2 [l —yll = llz]l + llyll = 2{z, y) = 2 = 2(x, y),
which means
<x7y> > 1 _§/47
thus y ¢ Y. Now observe that

. a(Bep@)nSY)
V1= 21= 2 Gwney

zeY zeY



i)

i)

where S” = {e € E : |le|| = 1} and p is the n — 1 dimensional Lebesgue measure. On the
other hand p(Bg/z(x) NS"™) =: v > 0 is independent on z and

S 1(Bejale) 08") = (| Bejalw) n8") < (8" < oo,

zeY €Y

since Bgjo(x) N Beo(y) =0 for x,y € Y with x # y. Then we conclude that

1(S")

vl <22«
Y

as we wanted.

Let us consider the space £ = CP. Consider the set
To = {p: p is a geometrically irreducible ¢-adic representation with ¢(p) < C'},

with the equivalence relation p; ~ p2 if and only if p1 =geom p2. For any equivalence class
[p] of trace functions we associate a vector in E in the following way: pick p € [p], and

define
1

Ylp] = m (tp(®))zer,-

Notice that |lv,|| = 1 independently of the choice of p in [p]. Let [p1], [p2] be two different
classes, then

(i, v, 1) = z;pele tpy (T)tpy () 10C*
ol o2l = S T @) X e, @)~ 12

thanks to the Riemann Hypothesis over finite fields and the Katz’s criterion for irreducibil-
ity. Thus for p large enough

10C4
2
and we can apply part (i) to the set To/ ~.

<1

For any [p] € To/ ~ and any n > 1 we define
1
Vo] i= (tp(x;n))2eF m-
L S L |

Then for any [p1], [p2] two different classes, one gets

ZIGFpn toy (xS n)tm (z5m) 10C*

(Vipyn]> Vipaim]) = = '
[erin]> Vlpain] ZxE]FPn |tp(x;m)|? x ngppn tom(z)> — p*"

Thus for n large enough

10C*
p2n
and we can apply part (i) to the set To/ ~.

<1



Exercise 5. One has that

— Z ’ Z Y(Tr(ax + z~ ‘ 2n Z Z (Tr(ax + 2~ ))¢(—Tr(ay+y_1))

aE]Fp G]FX a€lFy 4 yEF
1
= 2 v(T Zw Tr(a(x - y)))
z,y€F ) aclp
= —_ p_n

where the last step follows from the orthogonality relation of the additive characters. Then the
Kloosterman sheaf, K/s, is irreducible thank to Katz’s criterion for irreducibility.

Exercise 6.

i) One has that

> Kiy(a pREGaple(2) = 5 3 Y0 3 o Hemtle s by

z€F, zCFp 1 scFY f,geFy
_ 1t Z Z (T+S—f g) Ze<x(c+ars—bfg)>
p p
r ,s€EF, f,g€F, z€F),
P P ’
rsE]F f,gEIF>< z€F,
ars#—c
where the last step follows from the fact that if a¥s = —c, then
—xbfa
> () =0
z€lf), p

since bfg # 0. Now we change the variable t = a75 thus we obtain

ZKlgmx;p)Kls(bx;me(f):; DD (”‘m‘ f—g);ze<w<0+tp—w)

€l teF,\{0,—c} reF X f,gF) ot
_ 1 T+ atr —f—yq
p tewp% —c} EF:X ( ) f’gze]:% e( D )
fg=b/(c+t)
_ L r+ atr 1 S+ fole+t)
tEFp\z{;v—c}< Z ( >) " (\/ﬁ f,g%zf 6( P )
fg=bc+t
= 2 Kb(t’p)KlQ(tj )
teF\{0,—c}

as we wanted.

i) Since

S K () = 3 K ()0 (o).

z€lf, teF,\{0,—c} ttc



it is enough to check that v;K/ls 2Zgeom v; /Ll2 unless a = b and ¢ = 0, where 7, and ;.
are the Moebius transformations

a
A t— .
Ya +’ Tb,c t+c

Assume first ¢ = 0 and a # b, then

> K (5 ,p)K]g( p) = Z 353 (ac+am— _bty)

teFy teIFX z€F) yeFy
t(ax — by
SDIDIIC=0 L PCly
z€F, yeFy teFy

Using the orthogonal relation of the additive character we get

> K (§i0) 0 (31) =5 = (55 + & (1)

teFy xe]l“,f yeFy zeFy
y#xba
z(1 + ba
— 2 Y () (- Y+ X ()
xGIFX yEIF .CBG]F;;
yF#zba
Now we have that
z(1 + ba)
> (M)
z€Fy P

since we are assuming a # b. Moreover one has that

1 x xba 2
—72 Z Y :726— l+el— ) ) =—-
£ DAL )0 ()
;é:(;ba
thanks to the fact that a # b. Thus if a # b and ¢ = 0 we get
> Kig(ax; p)Kls(basp) = —1 — ]29-

x€lFp

Assume now ¢ # 0, then sing(7;/Cl2) = {0,00} while sing(v; Jl2) = {—c,00}. Then
Yalkla Zgeom ’Y;’CICEQ since sing(yxKCl2) # sing(yl’:ychég) if ¢ #£ 0. Applying the Riemann
Hypothesis over finite fields one gets

b * *
> Kh (Fip) Kho (j75p) < 5e(riKe)e(v K6)* V.
teF,\{0,—c}
Since c(7;K¢2) = (3 Kla) = c¢(KL2), one gets
b
Z Kls (t ,p) Kl, (t e p) < 5C(IC€2)4\/]3,
teF,\{0,—c}

as we wanted.



Exercise 7.

i)

i)

i)

Let p1 and ps be two geometrically irreducible ¢-adic sheaf modulo p, both of which are
ramified at most at 0 and co, and both of which are tamely ramified everywhere. Moreover
assume that p; Zgeom p2- Applying the the Euler-Poincaré formula one gets

h? — h! + h? = rank(p; ® p2) — dropy(p1 ® p2).

We know from the lecture that h® = 0 and that h? = 0 since p; and po are two geometrically
irreducible f-adic sheaf modulo p and p1 2gecom p2. Thus

—h! = rank(p1 ® p2) — dropy(p1 ® p2).
On the other hand dropg(p1 ® p2) < rank(p; ® p2) by definition of the drop. Hence,
—h' > 0;
which implies k' = 0 and this conclude the proof of (7).

Let p be a geometrically irreducible ¢-adic sheaf modulo p, which is ramified at most at
0 and oo, and tamely ramified everywhere. By contradiction, assume that p 2 £, (1) for
any multiplicative character x. Then for any n > 1 and any z € F)) one would have that

D S DIR
X

yelry

= Z to(y; n)pil Z x(@)x(y)
X

yeFy

_ pil SO tolysm)x(@)x(y)

yeFy X
1 S
= HZX(UC) Z tp(y;n)x(y)
X yng
= 07

where in the last step we used part (i) since p 2 L, (r) for any multiplicative character x
and L, () is ramified only at 0 and co and it is tame everywhere. Now this would implies

that
> ftplasn))* =0

ZEFZ,n

for any n > 1 and this is not possible since the Riemann Hypothesis over finite fields tells
us that
‘ > Jtplan))? —p\ < c(p)p"?,

$€Fpn

for any geometrically irreducible ¢-adic representation modulo p.

It is enough to take the Artin-Schreier sheaf Ly ) for some non trivial additive character
Y. Indeed, Ly ) is geometrically irreducible and sing(Lyr)) = {oo}. But we know that
L1y Zgeom Ly(r) for any multiplicative character x since L) is wild ramified at oo
while £, (7) is tame everywhere.



Exercise 8. One starts proving the following: let p; and p2 be two geometrically irreducible ¢-
adic sheaf modulo p, both of which are ramified at most at co with Swana,(p1), Swans(p2) < 1.
Moreover assume that p1 Zgeom p2. Then

D tp(@)tp () = 0.

€l

As usual, one starts with the Euler-Poincaré formula getting
RO —ht 4+ K% = rank(p; ® p2) — Swanse(p1 & p2).

We know from the lecture that h° = 0 and that h? = 0 since p; and ps are two geometrically
irreducible /-adic sheaf modulo p and p1 Zgeom p2. Thus

—hl = rank(p; ® pa) — Swans(p1 ® p2).
Let us bound Swans(p1 ® p2). In the lectures we have seen that
Swan (p1 ® p2) < rank(p; ® p2)Aso(p1 @ p2),
where Ao (p1 ® p2) is the maximal breaks of p; ® pa at co. Moreover we know that
Aso(p1 @ p2) < max(Aso(p1), Aso(p2))-

On the other hand
Aso(p1); Ass(p2) < 1

since Swane (p1), Swans (p2) < 1. Hence
Swane, (p1 ® p2) < rank(p; ® p2).
Inserting this in the Euler-Poincaré formula one gets
—h' >0,

which implies h' = 0. Hence

Z tp) (x>tp1 (x) =0,

z€lF,

as we wanted. To conclude the exercise it is enough to use the same argument as in Exercise 7
replacing the multiplicative characters by the additive ones.



