Exercise Sheet 10

Completions of rings and modules

Let R be a commutative ring, k an algebraically closed field.

- (a) Fix a prime p≥ 2. For every integer n≥ 1, define a injective morphism of groups α_n: Z/pZ → Z/pⁿZ by setting α_n(1) = pⁿ⁻¹mod pⁿZ. Let M denote the direct sum of countably many copies of Z/pZ, and N = ⊕_{n≥1}Z/pⁿZ. Both M and N are considered naturally as Z-modules in what follows. Prove that the p-adic completion of M (i.e. the completion with respect to the descending filtration of submodules (pⁿM)_n) is M itself, but the completion of M with respect to the topology induced by the p-adic topology on N is the direct product ∏_{n≥1}Z/pZ (here M clearly injects into M by means of the direct sum of all maps α_n, hence the induced topology on M is the subspace topology).
 - (b) Deduce from the previous point that p-adic completion is not a right-exact functor on the category of all \mathbb{Z} -modules.
- 2. Let R be a noetherian ring, $\mathfrak{a} \subset R$ an ideal, R the \mathfrak{a} -adic completion of R. For any $x \in R$, denote by \hat{x} its image in \hat{R} .
 - (a) Prove that \hat{x} is not a zero-divisor in \hat{R} whenever x is not a zero-divisor in R.
 - (b) Does the previous point imply that \hat{R} is an integral domain provided that R is an integral domain? (*Hint: prove that the completion of* R with respect to the product of two coprime ideals is isomorphic to the direct product of the completions with respect to each ideal separately.)
- 3. Let R be a noetherian ring, $\mathfrak{a} \subset R$ an ideal. Prove that \mathfrak{a} is contained in the Jacobson radical of R if and only if every maximal ideal of R is closed for the \mathfrak{a} -adic topology on R (a noetherian topological ring in which the topology is defined by an ideal contained in the Jacobson radical is called a *Zariski ring*).
- 4. Let R be a noetherian ring, $\mathfrak{a} \subset R$ an ideal. Denote by R the \mathfrak{a} -adic completion of R. Prove that the following two conditions are equivalent:
 - (a) R is a Zariski ring (see previous exercise for the terminology);
 - (b) for any finitely generated *R*-module *M*, the canonical map $M \to \hat{M}$ is injective (where \hat{M} denotes the completion of *M* with respect to the *a*-stable filtration $(\mathfrak{a}^n M)_n$).

(*Hint: use the Krull intersection theorem, more precisely its corollary given in Corollary* 10.19 *in* [1], and the previous exercise.)

- 5. The aim of this exercise is to prove another version of Hensel's lemma: let R be a local ring with maximal ideal $\mathfrak{m} \subset R$, and assume that R is complete with respect to its \mathfrak{m} -adic filtration. For any polynomial $f(X) \in R[X]$, denote by $\overline{f}(X)$ its reduction modulo \mathfrak{m} , so that $\overline{f}(X) \in (R/\mathfrak{m})[X]$. Assume that f(X) is monic of degrees n and there exist coprime monic polynomials $\overline{g}(X), \overline{h}(X) \in (R/\mathfrak{m})[X]$ of degrees r, n r respectively with $\overline{f} = \overline{g}\overline{h}$. Then there are monic polynomials $g, h \in R[X]$ such that $\overline{g}, \overline{h}$ are their respective reductions modulo \mathfrak{m} and f = gh.
 - (a) Assume inductively that we have constructed $g_k, h_k \in R[X]$ with $g_k h_k f \in \mathfrak{m}^k R[X]$. Use the fact that \bar{g} and \bar{h} are coprime to find $\bar{a}_p, \bar{b}_p \in (R/\mathfrak{m})[X]$ of degree $\leq n r, r$ respectively, such that $X^p = \bar{a}_p \bar{g}_k + \bar{b}_p \bar{h}_k$ in $(R/\mathfrak{m})[X]$, where p is an integer between 1 and n.
 - (b) Use completeness of R to show that the sequences $(g_k)_k$ and $(h_k)_k$ converge to some polynomials $g, h \in R[X]$. Prove that g, h thus defined verify the conclusion of Hensel's lemma.
- 6. Prove the following corollary of Hensel's lemma: let k be a field, f(T, X) a polynomial in two variables with coefficients in k, and assume that $a \in k$ is a simple root of the polynomial $f(0, X) \in k[X]$. Then there exists a unique power series $X(T) \in k[[T]]$ such that X(0) = a and f(T, X(T)) = 0 identically in k[[T]].

(Hint: apply Hensel's lemma as stated in [2], Theorem 7.3, to R = k[[T]] and $\mathfrak{m} = (T)$.)

References

- [1] M.Atiyah, Y.McDonald (1994), *Introduction to commutative algebra*, Addison-Wesley Publishing Company.
- [2] D.Eisenbud (2004), Commutative Algebra with a View towards Algebraic Geometry, Springer.