Exercise Sheet 13

DIMENSION THEORY, VALUATION RINGS AND DEDEKIND DOMAINS

- 1. Let R be a commutative ring. Show that the n-th symbolic power $\mathfrak{p}^{(n)}$ of a prime ideal $\mathfrak{p} \subset R$ is the smallest \mathfrak{p} -primary ideal containing \mathfrak{p}^n (here $n \ge 1$ is an integer).
- 2. Let (A, \mathfrak{m}) be a Noetherian local ring of dimension d. Let $k := A/\mathfrak{m}$ denote its residue field. Let $f_1, \ldots, f_r \in \mathfrak{m}$. Set $\overline{A} := A/(f_1, \ldots, f_r)$. Let $\overline{\mathfrak{m}} \subset \overline{A}$ denote the image of \mathfrak{m} .
 - (a) Show that $\dim_k(\overline{\mathfrak{m}}/\overline{\mathfrak{m}}^2) \ge \dim(\overline{A}) \ge d r$.
 - (b) Assume that A is regular. Let $\overline{f_1}, \ldots, \overline{f_r} \in \mathfrak{m}/\mathfrak{m}^2$ denote the images of f_1, \ldots, f_r . Show that the following are equivalent:
 - i. \overline{A} is regular of dimension d r.
 - ii. $\overline{f_1}, \ldots, \overline{f_r}$ are linearly independent over k.
- 3. Let k be a field, and denote by $R = k[[X_1, \ldots, X_n]]$ the ring of formal power series in n variables with coefficients in k. Prove that R is a regular, noetherian local ring of dimension n.
- 4. Let R be a Dedekind domain, $\mathfrak{a} \neq 0$ an ideal in R.
 - (a) Show that every ideal in R/\mathfrak{a} is principal.
 - (b) Deduce that any ideal in R can be generated by at most 2 elements.
- 5. Let G be a totally ordered abelian group, k a field. Denote by R the vector space over k with basis $(e_{\alpha})_{0 \leq \alpha \in G}$ (i.e, the vector space of formal k-linear combinations of the elements $e_{\alpha}, 0 \leq \alpha \in G$). Define a product between basis elements by means of the formula $e_{\alpha} \cdot e_{\beta} = e_{\alpha+\beta}$, for every $0 \leq \alpha, \beta \in G$, and extend it by k-linearity to the whole of R. Prove that this operation makes R into a valuation ring with value group G and valuation

$$v\left(\sum_{\alpha} r_{\alpha} e_{\alpha}\right) = \min\{\alpha \in G : r_{\alpha} \neq 0\},\$$

where the r_{α} are elements of the field k.

- 6. Let R be an integral domain. Prove the following statements:
 - (a) R is a valuation ring if and only if, for every pair of ideals $\mathfrak{a}, \mathfrak{b} \subset R$, we have $\mathfrak{a} \subset \mathfrak{b}$ or $\mathfrak{b} \subset \mathfrak{a}$;
 - (b) if R is a valuation ring and $\mathfrak{p} \subset R$ is a prime ideal, then $R_{\mathfrak{p}}$ and R/\mathfrak{p} are both valuation rings.

References

- [1] M.Atiyah, Y.McDonald (1994), Introduction to commutative algebra, Addison-Wesley Publishing Company.
- [2] D.Eisenbud (2004), Commutative Algebra with a View towards Algebraic Geometry, Springer.