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SPECTRUM OF A RING, MODULES AND PRIMARY DECOMPOSITION

Let R be a commutative ring, k an algebraically closed field.

1. The spectrum of a commutative ring R is defined as the set
Spec(R) ={P C R : P is a prime ideal}

The purpose of this exercise is to show that Spec(R) can be equipped with a
topology, called the Zariski topology, making it into a compact topological space.

Define a subset X C Spec(R) to be closed if it is empty or else if there exists an
ideal a C R such that
X ={p e Spec(R) :aCp}.

(a) Prove that, if X, Xs C Spec(R) are closed, then so is X; U Xo.

(b) Prove that, if (X;); is a collection of closed subsets of Spec(R), then so is
mie] X;.

(c¢) Deduce, from the previous two points, that the complements in Spec(R) of
closed subsets are the open sets for a topology on Spec(R).

(d) Let (X;)ier be a collection of closed subsets of Spec(R) with the finite inter-
section property, namely such that s Xj # & for any finite subset J C I.
Show that this implies (,.; X; # @.

Deduce that Spec(R), with the topology defined in (c¢), is a compact topo-
logical space.

(e) Which condition should an ideal p C R satisfy for the singleton
{p} C Spec(R) to be closed?

(f) Show that Spec(R) is a Ty-space, i.e. for any two distinct points pi,ps €
Spec(R) either there exists a neighborhood of p; not containing py or there
exists a neighborhood of py not containing p;.

(g) Is Spec(R) always a Hausdorff topological space?

2. Let A, B be two commutative rings, ¢: A — B a ring homomorphism. For any
ideal b C B, denote the ideal o ~'(b) by ¢*(b).

(a) Show that the assignment Spec(B) 3> p — ¢*(p) gives a well-defined map
©*: Spec(B) — Spec(A).



(b) Prove that ¢* is continuous, where both Spec(A) and Spec(B) are equipped
with the Zariski topology.
(c¢) Let ¢p: B — C be a ring homomorphism. Show that (¢ o ¢)* = ¢* o ¢)*.

(Hence, in the language of categories, the assignment R — Spec(R) defines a
contravariant functor from the category of commutative rings to the category
of topological spaces).

(d) Assume that ¢ is surjective. Prove that ¢* is an homeomorphism of Spec(B)
onto the closed subset Xy = {p € Spec(A) : ker ¢ C p} of Spec(A).

(e) Deduce from the previous point that, for an arbitrary commutative ring A,
Spec(A) and Spec(A/nil(A)) are naturally homeomorphic, where nil(A) de-
notes the nilradical ideal of A.

(f) Assume that ¢ is injective. Prove that ¢*(Spec(B)) is dense in Spec(A).

More precisely, show that ¢*(Spec(B)) is dense in Spec(A) if and only if
ker ¢ C nil(A).

3. In this exercise we examine a connection between the Zariski topology on the spec-
trum of a ring and the Zariski topology on the affine space k" (k algebraically closed
field). Let X C k™ be a variety, and denote by I(X) the ideal of k[X7,..., X,]
defined by it. The quotient ring

P(X)=k[Xy,..., X,]/I
is called the (affine) coordinate ring of X.

(a) Define P(X) to be the ring of polynomial functions on X, namely
PX)={p: X =2 k:3fecklX,...,X,]st. p)=flx)Vzec X},

with the obvious addition and multiplication operations. Show that P(X)
and P(X) are isomorphic rings.

(b) For each z € X, denote by m, the ideal of all f € P(X) such that f(z) = 0.
Show that it is a maximal ideal in P(X).

Hint: in the one-to-one correspondence between affine varieties in k™ and
radical ideals of k[ X1, ..., X,|, prove that, for any variety X C k™, I(X) is
a mazimal ideal whenever X = {P} is a singleton.

(c) Given an arbitrary commutative ring R, we define
Max(R) = {p € Spec(R) : p is a maximal ideal} ;

Max(R) is called the mazimal spectrum of R.

In the previous point, we have thus defined a map pu: X — Max(P(X)).
Prove that p is injective.



(d) Using the weak form of the Hilbert Nullstellensatz, prove that the map p is
surjective.

(e) Suppose now that X = k™, so that P(X) ~ k[X,...,X,]. Show that the
map p is continuous with respect to the Zariski topologies on k™ and on
Max(k[X71, ..., X,]). Is p an homeomorphism onto its image?

4. Let (M;);er be a collection of modules over the commutative ring R. Denote by
P,c; M; their direct sum, and by [],.; M; their product. For any j € I, denote
by m;: [L;,e; Ms — M; the canonical (linear) projection onto the j-th factor, and
by 1;: M; — @, M; the injective linear map defined by

x ifi=7;
0 ifij.

(a) Prove the wuniversal property of the product: for any R-module N and any
collection (g;)ies of linear maps ¢;: N — M;, there exists a unique linear

map ¢: N — [[ M, such that m; 0 p = ¢; for all j € I.
icl

(j(z))i = {

(b) Prove the universal property of the direct sum: for any R-module P and any
collection (1););e; of linear maps v;: M; — P, there exists a unique linear
map ¢: @,.; M; — P such that ¢ on; =1); for all j € I.

(c) Let (Nj);es be another collection of R-modules. Use the previous two points
to prove that there exists a canonical linear isomorphism

Hom(@Mi,HNj>—> [[ Hom(d;, Ny).

iel jed (i) eIxJ

5. In this exercise we discuss the notion of direct limits of modules.

Let (I, <) be a directed set, i.e. a partially ordered set with the property that for
all a, f € I there exists v € I with o < 7y and § < . Let (M;);er be a collection
of R-modules, and assume that we are given, for each ¢+ < 5 € I, an R-module
morphism ¢;;: M; — M such that:

® ;. M; — M, is the identity map for all ¢ € I;

® [l = i, 0 i forall e < j < ke l.
The modules (M;);er together with the collection (p;;)i<jer form a so-called direct
system of modules.

Denote by C' the direct sum of all modules M;, 7 € I and identify each factor M;
with its isomorphic image in C. Let D be the submodule of C' generated by the
set {x; — pij(z;) 1w, € My,i < jel}. Let M =C/D, and let u: C'— M be the
canonical projection map. Denote by p; the restriction of p to M; The module M
is called the direct limit of the direct system, and it is denoted by M = h_r)n M.
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(a) Prove that p; = pu; 0 p;; for all i < j € 1.

(b) Show that every element of M can be written in the form p;(x;) for some
1 € I and some x; € M,;.

(c) Show that, if p;(z;) = 0 for some x; € M; and some i € I, then there exists
j 2 7 such that /Lz](fl,’z) = 0.

(d) Prove the universal property of the direct limit: for any R-module N and
any collection (¢;);er of R-linear maps ¢;: M; — N such that ¢; = p; o u;;
for all « < 7 € I, there exists a unique R-linear map ¢: M — N such that
p;=popu; foralliel.
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