Exercise Sheet 3

SPECTRUM OF A RING, MODULES AND PRIMARY DECOMPOSITION

Let R be a commutative ring, k an algebraically closed field.

1. The spectrum of a commutative ring R is defined as the set

$$\operatorname{Spec}(R) = \{P \subset R : P \text{ is a prime ideal}\}$$

The purpose of this exercise is to show that Spec(R) can be equipped with a topology, called the *Zariski topology*, making it into a compact topological space.

Define a subset $X \subset \operatorname{Spec}(R)$ to be *closed* if it is empty or else if there exists an ideal $\mathfrak{a} \subset R$ such that

$$X = \{ \mathfrak{p} \in \operatorname{Spec}(R) : \mathfrak{a} \subset \mathfrak{p} \} .$$

- (a) Prove that, if $X_1, X_2 \subset \text{Spec}(R)$ are closed, then so is $X_1 \cup X_2$.
- (b) Prove that, if $(X_i)_i$ is a collection of closed subsets of Spec(R), then so is $\bigcap_{i \in I} X_i$.
- (c) Deduce, from the previous two points, that the complements in Spec(R) of closed subsets are the open sets for a topology on Spec(R).
- (d) Let $(X_i)_{i \in I}$ be a collection of closed subsets of $\operatorname{Spec}(R)$ with the finite intersection property, namely such that $\bigcap_{j \in J} X_j \neq \emptyset$ for any finite subset $J \subset I$. Show that this implies $\bigcap_{i \in I} X_i \neq \emptyset$. Deduce that $\operatorname{Spec}(R)$, with the topology defined in (c), is a compact topological space.
- (e) Which condition should an ideal $\mathfrak{p} \subset R$ satisfy for the singleton $\{\mathfrak{p}\} \subset \operatorname{Spec}(R)$ to be closed?
- (f) Show that Spec(R) is a T_0 -space, i.e. for any two distinct points $\mathfrak{p}_1, \mathfrak{p}_2 \in \text{Spec}(R)$ either there exists a neighborhood of \mathfrak{p}_1 not containing \mathfrak{p}_2 or there exists a neighborhood of \mathfrak{p}_2 not containing \mathfrak{p}_1 .
- (g) Is $\operatorname{Spec}(R)$ always a Hausdorff topological space?
- 2. Let A, B be two commutative rings, $\varphi \colon A \to B$ a ring homomorphism. For any ideal $\mathfrak{b} \subset B$, denote the ideal $\varphi^{-1}(\mathfrak{b})$ by $\varphi^*(\mathfrak{b})$.
 - (a) Show that the assignment $\operatorname{Spec}(B) \ni \mathfrak{p} \mapsto \varphi^*(\mathfrak{p})$ gives a well-defined map $\varphi^* \colon \operatorname{Spec}(B) \to \operatorname{Spec}(A)$.

- (b) Prove that φ^* is continuous, where both Spec(A) and Spec(B) are equipped with the Zariski topology.
- (c) Let $\psi: B \to C$ be a ring homomorphism. Show that $(\psi \circ \varphi)^* = \varphi^* \circ \psi^*$. (Hence, in the language of categories, the assignment $R \mapsto \operatorname{Spec}(R)$ defines a *contravariant functor* from the category of commutative rings to the category of topological spaces).
- (d) Assume that φ is surjective. Prove that φ^* is an homeomorphism of Spec(B) onto the closed subset $X_0 = \{ \mathfrak{p} \in \text{Spec}(A) : \ker \varphi \subset \mathfrak{p} \}$ of Spec(A).
- (e) Deduce from the previous point that, for an arbitrary commutative ring A, $\operatorname{Spec}(A)$ and $\operatorname{Spec}(A/\operatorname{nil}(A))$ are naturally homeomorphic, where $\operatorname{nil}(A)$ denotes the nilradical ideal of A.
- (f) Assume that φ is injective. Prove that $\varphi^*(\operatorname{Spec}(B))$ is dense in $\operatorname{Spec}(A)$. More precisely, show that $\varphi^*(\operatorname{Spec}(B))$ is dense in $\operatorname{Spec}(A)$ if and only if $\ker \varphi \subset \operatorname{nil}(A)$.
- 3. In this exercise we examine a connection between the Zariski topology on the spectrum of a ring and the Zariski topology on the affine space k^n (k algebraically closed field). Let $X \subset k^n$ be a variety, and denote by I(X) the ideal of $k[X_1, \ldots, X_n]$ defined by it. The quotient ring

$$P(X) = k[X_1, \dots, X_n]/I$$

is called the *(affine)* coordinate ring of X.

(a) Define P(X) to be the ring of polynomial functions on X, namely

 $\tilde{P}(X) = \{ \varphi \colon X \to k : \exists f \in k[X_1, \dots, X_n] \text{ s.t. } \varphi(x) = f(x) \forall x \in X \},\$

with the obvious addition and multiplication operations. Show that P(X) and $\tilde{P}(X)$ are isomorphic rings.

- (b) For each x ∈ X, denote by m_x the ideal of all f ∈ P(X) such that f(x) = 0. Show that it is a maximal ideal in P(X).
 Hint: in the one-to-one correspondence between affine varieties in kⁿ and radical ideals of k[X₁,...,X_n], prove that, for any variety X ⊂ kⁿ, I(X) is a maximal ideal whenever X = {P} is a singleton.
- (c) Given an arbitrary commutative ring R, we define

$$Max(R) = \{ \mathfrak{p} \in Spec(R) : \mathfrak{p} \text{ is a maximal ideal} \};$$

Max(R) is called the maximal spectrum of R.

In the previous point, we have thus defined a map $\mu: X \to Max(P(X))$. Prove that μ is injective.

- (d) Using the weak form of the Hilbert Nullstellensatz, prove that the map μ is surjective.
- (e) Suppose now that $X = k^n$, so that $P(X) \simeq k[X_1, \ldots, X_n]$. Show that the map μ is continuous with respect to the Zariski topologies on k^n and on $Max(k[X_1, \ldots, X_n])$. Is μ an homeomorphism onto its image?
- 4. Let $(M_i)_{i \in I}$ be a collection of modules over the commutative ring R. Denote by $\bigoplus_{i \in I} M_i$ their direct sum, and by $\prod_{i \in I} M_i$ their product. For any $j \in I$, denote by $\pi_j \colon \prod_{i \in I} M_i \to M_j$ the canonical (linear) projection onto the *j*-th factor, and by $\eta_j \colon M_j \to \bigoplus_{i \in I} M_i$ the injective linear map defined by

$$(\eta_j(x))_i = \begin{cases} x & \text{if } i = j ; \\ 0 & \text{if } i \neq j . \end{cases}$$

- (a) Prove the universal property of the product: for any *R*-module *N* and any collection $(\varphi_i)_{i \in I}$ of linear maps $\varphi_i \colon N \to M_i$, there exists a unique linear map $\varphi \colon N \to \prod_{i \in I} M_i$ such that $\pi_j \circ \varphi = \varphi_j$ for all $j \in I$.
- (b) Prove the universal property of the direct sum: for any *R*-module *P* and any collection $(\psi_i)_{i \in I}$ of linear maps $\psi_i \colon M_i \to P$, there exists a unique linear map $\psi \colon \bigoplus_{i \in I} M_i \to P$ such that $\psi \circ \eta_j = \psi_j$ for all $j \in I$.
- (c) Let $(N_j)_{j \in J}$ be another collection of *R*-modules. Use the previous two points to prove that there exists a canonical linear isomorphism

$$\operatorname{Hom}\left(\bigoplus_{i\in I} M_i, \prod_{j\in J} N_j\right) \to \prod_{(i,j)\in I\times J} \operatorname{Hom}(M_i, N_j) \ .$$

5. In this exercise we discuss the notion of *direct limits of modules*.

Let (I, \leq) be a directed set, i.e. a partially ordered set with the property that for all $\alpha, \beta \in I$ there exists $\gamma \in I$ with $\alpha \leq \gamma$ and $\beta \leq \gamma$. Let $(M_i)_{i \in I}$ be a collection of *R*-modules, and assume that we are given, for each $i \leq j \in I$, an *R*-module morphism $\mu_{ij} \colon M_i \to M_j$ such that:

- $\mu_{ii}: M_i \to M_i$ is the identity map for all $i \in I$;
- $\mu_{ik} = \mu_{jk} \circ \mu_{ij}$ for all $i \leq j \leq k \in I$.

The modules $(M_i)_{i \in I}$ together with the collection $(\mu_{ij})_{i \leq j \in I}$ form a so-called *direct* system of modules.

Denote by C the direct sum of all modules $M_i, i \in I$ and identify each factor M_i with its isomorphic image in C. Let D be the submodule of C generated by the set $\{x_i - \mu_{ij}(x_i) : x_i \in M_i, i \leq j \in I\}$. Let M = C/D, and let $\mu : C \to M$ be the canonical projection map. Denote by μ_i the restriction of μ to M_i The module Mis called the *direct limit* of the direct system, and it is denoted by $M = \lim_{i \to M} M_i$.

- (a) Prove that $\mu_i = \mu_j \circ \mu_{ij}$ for all $i \leq j \in I$.
- (b) Show that every element of M can be written in the form $\mu_i(x_i)$ for some $i \in I$ and some $x_i \in M_i$.
- (c) Show that, if $\mu_i(x_i) = 0$ for some $x_i \in M_i$ and some $i \in I$, then there exists $j \ge i$ such that $\mu_{ij}(x_i) = 0$.
- (d) Prove the universal property of the direct limit: for any *R*-module *N* and any collection $(\varphi_i)_{i \in I}$ of *R*-linear maps $\varphi_i \colon M_i \to N$ such that $\varphi_i = \varphi_j \circ \mu_{ij}$ for all $i \leq j \in I$, there exists a unique *R*-linear map $\varphi \colon M \to N$ such that $\varphi_i = \varphi \circ \mu_i$ for all $i \in I$.

References

[1] M.Atiyah, Y.McDonald (1994), *Introduction to commutative algebra*, Addison-Wesley Publishing Company.