
D-MATH Commutative Algebra HS 2018
Prof. Paul Nelson

Solutions sheet 1

Radical ideals, local rings and affine varieties

Important: all exercises in the present sheet assume familiarity with the contents
of the first chapter of [1].

Let A be a commutative ring, k an algebraically closed field.

1. (From the lecture) Let I ⊂ A be a subset such that AI ⊂ I, i.e. xy ∈ I for all
x ∈ A and y ∈ I. Is it true that I is an ideal?

2. Let p ⊂ A be a proper ideal. Show that the following are equivalent:

(a) p is a prime ideal;

(b) if a, b ⊂ A are ideals in A such that ab ⊂ p, then either a ⊂ p or b ⊂ p.

3. Consider the non-commutative ring Mn(R) of square n × n matrices with real
entries. Find a counterexample to show that the sum of two nilpotent elements
need not be nilpotent.

(Hence, if the ring is not commutative, the set of nilpotent elements is not neces-
sarily an ideal.)

4. Let A be an integral domain with a finite number of elements. Show that A is a
field. Deduce that in a finite commutative ring A every prime ideal is maximal.

5. * Let a ⊂ A be an ideal. Show that its radical r(a) is an ideal. Furthermore,
prove that:

(a) a ⊂ r(a);

(b) r(a) = r(r(a));

(c) r(ab) = r(a ∩ b) = r(a) ∩ r(b);

(d) r(a) = (1)⇐⇒ a = (1);

(e) r(a + b) = r(r(a) + r(b));
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(f) if p ⊂ A is a prime ideal, then r(pk) = p for all integer k > 0.

Solution. Let a ⊂ A be an ideal. Recall that its radical is defined as

r(a) = {x ∈ A : xn ∈ a for some integer n > 0} .

Let x, y ∈ r(a), then there are integers n,m > 0 such that xn ∈ a and ym ∈ a.
Now the bynomial theorem gives

(x+ y)n+m =
n+m∑
k=0

(
n+m

k

)
xkyn+m−k ;

in each term of the sum above, necessarily we must have that either the exponent
of x is > n or the exponent of y is > m. In both cases, a being an ideal, we have
that xkyn+m−k ∈ a for all 0 6 k 6 n+m, which gives that (x+ y)n+m ∈ a, hence
x + y ∈ r(a). If x ∈ a and a ∈ A, then there exists an integer n > 0 such that
xn ∈ a. Commutativity of multiplication gives that (ax)n = anxn ∈ a, since a is
an ideal. Therefore ax ∈ r(a). The proof that r(a) is an ideal is thus concluded.

(a) Let x ∈ a, then in particular xn ∈ a for n = 1, so that x ∈ r(a).

(b) The previous point already gives r(a) ⊂ r(r(a)). Let x ∈ r(r(a)); then there
exists an integer n > 0 such that xn ∈ r(a). This in turns assures the exis-
tence of an integer m > 0 such that xnm = (xn)m ∈ a, whence x ∈ r(a).

(c) First, ab ⊂ a ∩ b gives r(ab) ⊂ r(a ∩ b). To conclude, we will show that
r(a ∩ b) ⊂ r(a) ∩ r(b) and r(a) ∩ r(b) ⊂ r(ab).

Let x ∈ r(a ∩ b), so that xn ∈ a ∩ b for some integer n > 0. This means that
xn ∈ a and xn ∈ b, hence x ∈ r(a) and x ∈ r(b).

Let now x ∈ r(a) ∩ r(b); we have xn ∈ a and xm ∈ b for some integers
n,m > 0. This implies that xnxm = xn+m ∈ ab, giving x ∈ r(ab).

(d) If a = (1) = A, then A ⊃ r(a) ⊃ a = A, where the second inclusion is given
by point (a). This gives r(a) = A = (1).

Conversely, assume that r(a) = (1). It suffices to show that 1 ∈ a. Now
1 ∈ r(a), hence for a certain positive integer we have 1 = 1n ∈ a.

(e) Clearly a+b ⊂ r(a)+r(b) as a consequence of point (a). This yields r(a+b) ⊂
r(r(a) + r(b)).

Conversely, let x ∈ r(r(a) + r(b)). Then xn ∈ r(a) + r(b) for some integer
n > 0; this means that xn = y + z with ym ∈ a and zp ∈ b for some integers
m, p > 0. Then xn(m+p) = (xn)m+p ∈ a + b by the binomial theorem and the
fact that a and b are ideals, thus x ∈ r(a + b).
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(f) Assume that p ⊂ A is a prime ideal, and fix an integer k > 0. Then part
(c) gives r(pk) = r(p) (by induction on k). Since any prime ideal is radical,
r(p) = p.

6. Prove that every prime ideal is radical. Find a counterexample to show that the
converse is not true.

7. Let n > 0 be a positive integer. Find the unique positive integer m such that
r((n)) = (m).

(Recall that, given an element a ∈ A, the notation (a) stands for the principal
ideal in A generated by a.)

8. * Consider the polynomial ring A[X]. Let f =
∑n

i=0 aiX
i ∈ A[X] be a polynomial.

Prove that:

(a) f is a unit in A[X] if and only if a0 is a unit in A and a1, . . . , an are nilpotent.

(b) f is nilpotent if and only if a0, . . . , an are nilpotent.

(c) f is a zero-divisor if and only if there exists a 6= 0 in A such that af = 0.

Solution.

(a) Assume first that f is a unit in A[X], i.e. there exists g ∈ A[X] such that
fg = 1. Equalling the zero-order coefficients of this two polynomials, we get

that a0b0 = 1 in A where g =
m∑
i=0

biX
i, which means that a0 is invertible in

A.

We claim that ar+1
n bm−r = 0 for all 0 6 r 6 m, and we prove this by

induction on r. We already know that anbm = 0, since anbm is the higher-
order coefficient of the polynomial fg. Now assume that ar

′+1
n bm−r′ = 0 for

all r′ < r. Then

0 = arn

( ∑
i+j=n+m−r

aibj

)
= ar+1

n bm−r +
∑

aia
n−i
n am−jn bj (1)

where the last sum runs over all pairs (i, j) such that i+ j = n+m− r and
j > m − r. By induction hypothesis, each term of this sum vanishes, hence
equality (1) reduces to 0 = ar+1

n bm−r, which is precisely what we wanted.

In particular, we get that am+1
n b0 = 0. Since we know that b0 is a unit in A,

this shows that an is nilpotent in A.

To conclude the proof, we show that f−anXn is a unit, so that we inductively
deduce from the previous argument that a1, . . . , an−1 are nilpotent. We shall
prove more generally that if x, y ∈ R are elements of a commutative ring R
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such that x is a unit and y is nilpotent (say xl = 0 for some l > 0), then
their sum x+ y is again a unit. Since x+ y = x(1 + x−1y) and x−1y is again
nilpotent, it suffices to show that 1−a is a unit whenever a is nilpotent. Now

(1− a)(1 + a+ · · ·+ an) = 1− an+1 = 0

for n sufficiently large, so that 1− a is a unit.

If you now assume that a0 is a unit and a1, . . . , an are nilpotent, then applying
inductively the previous argument (namely that adding a nilpotent element
to a unit yields a unit) it can be shown that f is a unit in A[X].

(b) If a0, . . . , an are nilpotent, then so is f , since f ∈ (a0, . . . , an) (the ideal of
A[X] generated by a0, . . . , an) and since we know that the set of nilpotent
elements is an ideal.

Conversely, if f is nilpotent in A[X], then it is immediate to see that a0 is
nilpotent in A (by developing the power fm). Hence f − a0 is nilpotent. By
repeating the argument, we deduce that a1 is nilpotent in A, and inductively
we get the same for all coefficients of f .

(c) It is evident that if such an a ∈ A exists, then f is by definition a zero-divisor
in A[X].

Assume now that f is a zero-divisor, so that by definition there exists g =∑m
j=0 bjX

j 6= 0 ∈ A[X] such that fg = 0. Without loss of generality, we may
take g to be of lowest degree amongst all non-zero polynomials that annihilate
f . We may write g = Xsg′, where s > 0 is an integer and g′ ∈ A[X] has non-
vanishing constant term. Hence 0 = Xsfg′. This clearly can hold if and only
if fg′ = 0, therefore by our assumption g = g′ and so g has non-vanishing
constant term, i.e. b0 6= 0. We claim that b0f = 0, which will achieve the
proof. This will follow from the fact that an−rg = 0 for all 0 6 r 6 n, an
assertion that we now prove by induction.

We know that anbm = 0 (it is the coefficient of highest degree of fg). Hence
ang has degree strictly lower than g and still annihilates f . By our assumtpion
on g, ang = 0.

Assume that an−rg = 0 for all 0 6 r < r0. We prove that this holds also for
r0. Notice that

0 = fg =
n∑

i=0

aigX
i =

n−r0∑
i=0

aigX
i

the last equality holding by induction hypothesis. Thus an−r0bm = 0, whence
an−r0g is a polynomial annihilating f with degree strictly smaller that g.
Again, this forces an−r0g = 0. The proof is completed.

4



9. * Prove that, in the ring A[X], the Jacobson ideal is equal to the nilradical. (Hint:
use parts (a) and (b) of Exercise 8 and Proposition 1.9 of [1].)

Solution. In any commutative ring R, the nilradical ideal is contained in the
Jacobson ideal (since every maximal ideal is prime). We need to show the reverse
inclusion in the case R = A[X] for some commutative ring A. Now let f ∈ J(A[X])
be in the Jacobson of A[X]; then 1 + x · f is a unit in A[X] by Proposition 1.9
of [1]. Exercise 8(a) gives that all coefficients of x · f are nilpotent in A. But the
coefficients of x · f are precisely the same coefficients of f , hence f is nilpotent by
Exercise 8(b). Therefore f is in the nipotent ideal of A[X].

10. Let A[[X]] denote the ring of formal power series f =
∑∞

n=0 anX
n with coefficients

in A. Show that:

(a) f is a unit in A[[X]] if and only if a0 is a unit in A;

(b) if f is nilpotent, then an is nilpotent for all n > 0. Is the converse also true?;

(c) f belongs to the Jacobson radical of A[[X]] if and only if a0 belongs to the
Jacobson radical of A.

11. * Fix an element x0 ∈ Rn. Denote by U := {U ⊂ Rn open : x0 ∈ U} the set of
open neighborhoods of x0, and define the set

S := {(U, f) : U ∈ U , f : U → R continuous} .

We define an equivalence relation on S as follows: two elements (U, f), (V, g) ∈ S
are equivalent if there is an open neighborhood W ⊂ U ∩ V of x0 such that
f |W = g|W . We denote by R the set of equivalence classes. It is called the ring of
germs of continuous functions. Prove that R is a local ring.

Solution. Define a map ϕ : R → R by setting ϕ([U, f ]) = f(x0). It is straightfor-
ward to check that the map is well-defined and it is a ring homomorphism. Define
I = kerϕ. Then I is an ideal in R, and since R/I ' R is a field, I is a maximal
ideal. We claim that it is the unique maximal ideal of R (which shows that R is a
local ring by definition). By Proposition 1.6 i) in [1] it suffices to show that each
[(U, f)] ∈ Rr I is invertible in R.

Assume thus that ([U, f ]) ∈ R is such that f(x0) 6= 0. Since f is continuous, there
exists an open neighborhood V of x0 in Rn such that f(x) 6= 0 for all x ∈ V . Hence
on V the function f−1 is well-defined and continuous. This gives that [(V, f−1)] is
an inverse in R of [(U, f)].

12. *Given a subset T ⊂ kn, we say that T is an algebraic set (or, as in the lecture, a
variety) if there exists a set S ⊂ k[X1, . . . , Xn] such that T = Z(S).
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(a) Prove that the set of all algebraic sets in kn is closed under finite unions and
arbitrary intersections. Deduce that the set

τ = {V ⊂ kn : kn r V is an algebraic set}

is the set of open sets for a topology on kn, which will be henceforth called
the Zariski topology on kn.

(b) Describe the Zariski topology on an algebraically closed field k.

(c) Prove that the Zariski topology on Cn is strictly coarser than the euclidean
topology.

Solution.

(a) The empty set ∅ ⊂ kn is an algebraic set, for example ∅ = Z({1}). If
T1 = Z(S1) and T2 = Z(S2) are algebraic sets, then T1 ∪ T2 = Z(S1S2),
where

S1S2 = {f1f2 : f1 ∈ S1, f2 ∈ S2} ,

hence T1 ∪ T2 is an algebraic set. Hence the set of all algebraic sets is closed
under finite unions.

The whole space kn is an algebraic set, since kn = Z({0}). If Ti = Z(Si) is
an algebraic set for all i ∈ I, then

⋂
i∈I Ti = Z(

⋃
i∈I Si), which shows that⋂

i∈I Ti is also an algebraic set. We have thus shown that the set of algebraic
sets is also closed under arbitrary intersections.

We conclude that the set τ of all complements of algebraic sets is closed under
arbitrary unions and finite intersections. This makes it into the set of open
sets for a topology on kn.

(b) If k is an algebraically closed field, then every non-invertible polynomial f ∈

k[X] factors into linear terms: f = a0
deg(f)∏
i=1

(X − ai), with a1, . . . , adeg(f) ∈ k.

Hence V (f) = {a1, . . . , adeg(f)}. Since any proper algebraic set is the set of
common zeros of a finite number of non-constant polynomials, it is clear that
any algebraic set is finite. Conversely, if {a0, . . . , an} ⊂ k is a finite set, then
it is precisely the zero-set of the polynomial f = (X − a0) · · · (X − an).

We have thus shown that closed sets are precisely finite sets together with
the whole set k. Therefore the Zariski topology on k is precisely the cofinite
topology.

(c) Let Z ⊂ Cn be Zariski-closed set, i.e. an algebraic set. Then there exists a
finite set S ⊂ C[X1, . . . , Xn] such that

Z = {P ∈ Cn : f(P ) = 0 for all P ∈ S} =
⋂
f∈S

V (f) .

6



Now each set V (f) is closed for the euclidean topology, since it is the inverse
image of the closed set {0} ⊂ R under a polynomial (hence continuous for
the euclidean topology) function. Since arbitrary intersections of closed sets
are closed, this shows that Z is closed for the euclidean topology. We have
thus shown that the Zariski topology is coarser than the euclidean topology.

We shall now prove that it is strictly coarser, namely that we can find a set
A ⊂ Cn which is closed for the euclidean topology but not for the Zariski
topology. Consider A = Z × {0}n−1 as a subset of Cn. It is clearly a closed
set for the euclidean topology. For the purpose of contradiction, assume that
there exists a finite, non-empty set S = {f1, . . . , fm} ⊂ C[X1, . . . , Xn] such
that A = V (S). For all 1 6 i 6 m, fi is a polynomial in n complex variables
such that fi(p, 0, . . . , 0) = 0 for all p ∈ Z. Hence fi = f ′i + gi where f ′i is
a polynomial in C[X1] such that f ′i(p) = 0 for all Z. This forces f ′i = 0.
Therefore fi vanishes on C×{0}n−1. This clearly contradicts the assumption
that A = V (S).

13. Let X ⊂ kn be a subset. Define

I(X) = {f ∈ k[X1, . . . , Xn] : f(P ) = 0 for all P ∈ X} .

Show that I(X) is an ideal in k[X1, . . . , Xn] and that it is radical.

14. * Let X,X ′ ⊂ kn and S, S ′ ⊂ k[X1, . . . , Xn] be subsets. Show the following
inclusions (see exercise 13 for notation):

(a) X ⊂ Z(S) ⇐⇒ S ⊂ I(X);

(b) Z(S ∪ S ′) = Z(S) ∩ Z(S ′);

(c) I(X ∪X ′) = I(X) ∩ I(X ′);

(d) S ⊂ S ′ =⇒ Z(S) ⊃ Z(S ′);

(e) X ⊂ X ′ =⇒ I(X) ⊃ I(X ′);

(f) S ⊂ I(Z(S)) and X ⊂ Z(I(X));

(g) Z(S) = Z(I(Z(S))) and I(X) = I(Z(I(X))).

Solutions.

(a) Assume that X ⊂ Z(S), which means that for all P ∈ X, f(P ) = 0 for all
f ∈ S. This is clearly equivalent to say that S ⊂ I(X).

7



(b) A point P ∈ kn is in Z(S ∪ S ′) if and only if f(P ) = 0 for all P ∈ S ∪ S ′,
hence if and only if f(P ) = 0 for all P ∈ S and g(P ) = 0 for all g ∈ S ′. This
is equivalent to P ∈ Z(S) ∩ Z(S ′).

(c) We can argue in the same fashion as in part (c).

(d) Assume that S ⊂ S ′ and let P ∈ Z(S ′). Then, for all f ∈ S ′, f(P ) = 0.
In particular, for all f ∈ S, f(P ) = 0, hence P ∈ Z(S), so that Z(S) ⊃ Z(S ′).

(e) It is completely analogous to part (d).

(f) Assume that f ∈ S and let P ∈ Z(S). Then by definition of Z(S) we have
f(P ) = 0. Hence f vanishes on all points in Z(S), which by definition means
that f ∈ I(Z(S)). The second inclusion is proved in a similar manner.

(g) Part (f) gives the inclusion Z(S) ⊂ Z(I(Z(S))). Moreover, S ⊂ I(Z(S))
(again by part (f)); part (d) thus gives Z(S) ⊃ Z(I(Z(S))). The same
argument applies to the second equality in (g).
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