Solutions Sheet 10

Completions of rings and modules

Let R be a commutative ring, k an algebraically closed field.

- (a) Fix a prime p≥ 2. For every integer n≥ 1, define a injective morphism of groups α_n: Z/pZ → Z/pⁿZ by setting α_n(1) = pⁿ⁻¹mod pⁿZ. Let M denote the direct sum of countably many copies of Z/pZ, and N = ⊕_{n≥1} Z/pⁿZ. Both M and N are considered naturally as Z-modules in what follows. Prove that the p-adic completion of M (i.e. the completion with respect to the descending filtration of submodules (pⁿM)_n) is M itself, but the completion of M with respect to the topology induced by the p-adic topology on N is the direct product ∏_{n≥1} Z/pZ (here M clearly injects into N by means of the direct sum of all maps α_n, hence the induced topology on M is the subspace topology).
 - (b) Deduce from the previous point that p-adic completion is *not* a right-exact functor on the category of all \mathbb{Z} -modules.

Solution.

(a) We obviously have pM = 0, hence the inverse system defining the *p*-adic completion of M is just $\cdots \to M \xrightarrow{\text{id}} M \xrightarrow{\text{id}} M$; the associated inverse limit is clearly isomorphic to M itself.

On the other hand, for every integer $n \ge 1$, we have $p^n N = \bigoplus_{j>n} p^n \mathbb{Z}/p^j \mathbb{Z}$. As $\operatorname{Im}(\alpha_j) = p^{j-1} \mathbb{Z}/p^j \mathbb{Z} \subset p^n \mathbb{Z}/p^j \mathbb{Z}$ as long as j > n, we deduce that $\alpha_j^{-1}(p^n \mathbb{Z}/p^j \mathbb{Z})$ is $\mathbb{Z}/p\mathbb{Z}$ if j > n, and 0 otherwise. Thus the filtration on M induced by the *p*-adic topology on N is given by

$$(M_n)_{n\in\mathbb{N}} = \left(\bigoplus_{j>n} (\mathbb{Z}/p\mathbb{Z})_j\right)_{n\in\mathbb{N}},$$

where $(\mathbb{Z}/p\mathbb{Z})_j$ denotes the *j*-th factor in the direct sum defining *M*. Therefore $M/M_n \simeq \bigoplus_{j=1}^n (\mathbb{Z}/p\mathbb{Z})_j$. Associating to each (equivalence class of) coherent sequence $[(\xi_n)_n] \in \varprojlim M/M_n$ the sequence of its components $\pi_n(\xi_n)$ (where $\pi_n \colon M/M_n \to \mathbb{Z}/\mathbb{Z}$ is the projection map) defines an isomorphism $\lim M/M_n \simeq \prod_{n \ge 1} \mathbb{Z}/p\mathbb{Z}$.

- (b) Consider the short exact sequence $0 \to M \xrightarrow{\alpha} N \to N/\alpha(M) \to 0$. Taking *p*-adic completions, we obtain a sequence $0 \to \hat{M} = M \to \hat{N} \to N/\alpha(M) \to 0$; since $M \neq \prod_n \mathbb{Z}/p\mathbb{Z}$, this sequence is not exact at \hat{N} , hence *p*-adic completion is not a right-exact functor.
- 2. Let R be a noetherian ring, $\mathfrak{a} \subset R$ an ideal, \hat{R} the \mathfrak{a} -adic completion of R. For any $x \in R$, denote by \hat{x} its image in \hat{R} .
 - (a) Prove that \hat{x} is not a zero-divisor in \hat{R} whenever x is not a zero-divisor in R.
 - (b) Does the previous point imply that \hat{R} is an integral domain provided that R is an integral domain? (*Hint: prove that the completion of* R *with respect to the product of two coprime ideals is isomorphic to the direct product of the completions with respect to each ideal separately.*)

Solution.

- (a) Let $x \in R$ be a nonzerodivisor. Thus multiplication by x in R is injective, i.e. the sequence $0 \to R \xrightarrow{x} R$ is exact. Applying (10.3) in [1], we get that the corresponding sequence $0 \to \hat{R} \to \hat{R}$ is exact, where the induced map on the right-hand side is multiplication by \hat{x} , so that \hat{x} is a nonzerodivisor in \hat{R} .
- (b) Let $\mathfrak{a}, \mathfrak{b} \subset R$ be two coprime ideals; since all powers $\mathfrak{a}^n, \mathfrak{b}^n$ remain coprime (being coprime is equivalent to say that there is no prime ideal containing the sum of the two ideals, then use the fact that if $\mathfrak{a}^n \subset \mathfrak{p}$ for some prime ideal \mathfrak{p} , then $\mathfrak{a} \subset \mathfrak{p}$), by the Chinese remainder theorem we get that the map $R/(\mathfrak{ab})^n \to R/\mathfrak{a}^n \times R/\mathfrak{b}^n$ is an isomorphism, for all $n \ge 1$. This isomorphism carries over to the inverse limit (taken on both sides), so that the completion $\hat{R}_{\mathfrak{ab}}$ is isomorphic to the direct product $\hat{R}_{\mathfrak{a}} \times \hat{R}_{\mathfrak{b}}$ which is not an integral domain. If we take R to be an integral domain, such as \mathbb{Z} , we deduce that the completion of an integral domain is not necessarily integral.
- 3. Let R be a noetherian ring, $\mathfrak{a} \subset R$ an ideal. Prove that \mathfrak{a} is contained in the Jacobson radical of R if and only if every maximal ideal of R is closed for the \mathfrak{a} -adic topology on R (a noetherian topological ring in which the topology is defined by an ideal contained in the Jacobson radical is called a *Zariski ring*).

Solution. It suffices to show that a maximal ideal $\mathfrak{m} \subset R$ is closed in the \mathfrak{a} -adic topology if and only if $\mathfrak{a} \subset \mathfrak{m}$.

Assume first that $\mathfrak{a} \subset \mathfrak{m}$, and let $x \notin \mathfrak{m}$; then, for every integer $n \ge 1$, the open neighborhood $x + \mathfrak{a}^n \subset x + \mathfrak{m}$ of x is disjoint from \mathfrak{m} . Hence the complement of \mathfrak{m} is \mathfrak{a} -adically open, which implies that \mathfrak{m} is closed.

Conversely, if $\mathfrak{a} \not\subseteq \mathfrak{m}$, any element of $\mathfrak{a} \smallsetminus \mathfrak{m}$ projects onto a unit in the field R/\mathfrak{m} ; therefore, there exists an element $x \in \mathfrak{a}$ such that $x \equiv 1 \mod \mathfrak{m}$. Then $x^n \in \mathfrak{a}^n$ and $x^n \equiv 1 \mod \mathfrak{m}$, so that $1 - x^n \in (1 + \mathfrak{a}^n) \cap \mathfrak{m}$ for all $n \ge 1$, despite the fact that $1 \notin \mathfrak{m}$. This concludes the proof that \mathfrak{m} is not closed.

- 4. Let R be a noetherian ring, $\mathfrak{a} \subset R$ an ideal. Denote by \hat{R} the \mathfrak{a} -adic completion of R. Prove that the following two conditions are equivalent:
 - (a) R is a Zariski ring (see previous exercise for the terminology);
 - (b) for any finitely generated *R*-module *M*, the canonical map $M \to \hat{M}$ is injective (where \hat{M} denotes the completion of *M* with respect to the **a**-stable filtration $(\mathfrak{a}^n M)_n$).

(*Hint: use the Krull intersection theorem, more precisely its corollary given in Corollary* 10.19 *in* [1], and the previous exercise.)

Solution. $[(a) \Longrightarrow (b)]$ Assume that R is a Zariski ring, whose topology is defined by the ideal \mathfrak{a} contained in the Jacobson radical of R, and let M be a finitely generated R-module. By Corollary 10.19 in [1], we have that $\bigcap_n \mathfrak{a}^n M = 0$. Sinc the latter is precisely the kernel of the canonical map $M \to \hat{M}$, this shows that this map is injective.

 $[(b) \implies (a)]$ If \mathfrak{a} is not contained in the Jacobson radical of R, there exists a maximal ideal $\mathfrak{m} \notin V(\mathfrak{a})$. By the previous exercise, \mathfrak{m} is not closed for the \mathfrak{a} -adic topology on R, which implies that $\{0\}$ is not closed in the finitely generated R-module $M = R/\mathfrak{m}$. Thus $\{0\}$ cannot be the kernel of the continuous homomorphism $M \to \hat{M}$, which achieves the proof.

- 5. The aim of this exercise is to prove another version of Hensel's lemma: let R be a local ring with maximal ideal $\mathfrak{m} \subset R$, and assume that R is complete with respect to its \mathfrak{m} -adic filtration. For any polynomial $f(X) \in R[X]$, denote by $\overline{f}(X)$ its reduction modulo \mathfrak{m} , so that $\overline{f}(X) \in (R/\mathfrak{m})[X]$. Assume that f(X) is monic of degree n and there exist coprime monic polynomials $\overline{g}(X), \overline{h}(X) \in (R/\mathfrak{m})[X]$ of degrees r, n r respectively with $\overline{f} = \overline{g}\overline{h}$. Then there are monic polynomials $g, h \in R[X]$ such that $\overline{g}, \overline{h}$ are their respective reductions modulo \mathfrak{m} and f = gh.
 - (a) Assume inductively that we have constructed $g_k, h_k \in R[X]$ with $g_k h_k f \in \mathfrak{m}^k R[X]$. Use the fact that \bar{g} and \bar{h} are coprime to find $\bar{a}_p, \bar{b}_p \in (R/\mathfrak{m})[X]$ of degree $\leq n r, r$ respectively, such that $X^p = \bar{a}_p \bar{g}_k + \bar{b}_p \bar{h}_k$ in $(R/\mathfrak{m})[X]$, where p is an integer between 1 and n.
 - (b) Use completeness of R to show that the sequences $(g_k)_k$ and $(h_k)_k$ converge to some polynomials $g, h \in R[X]$. Prove that g, h thus defined verify the conclusion of Hensel's lemma.

Solution.

(a) Given ḡ, h̄ ∈ (R/m)[X] satisfying the assumption, choose representatives for all the non-vanishing coefficients of both (pick 1 as representative of 1 + m). This defines two monic polynomials g₁, h₁ ∈ R[X] of degree r, n − r

respectively with $\bar{g}_1 = \bar{g}$ and $\bar{h}_1 = \bar{h}$. Since by hypothesis $\bar{f} = \bar{g}\bar{h} = g_1\bar{h}_1$, we have that $f \equiv g_1h_1$ modulo $\mathfrak{m}R[X]$.

Now assume inductively that g_k and h_k have been constructed with the requested properties. We shall show how to construct g_{k+1}, h_{k+1} . Since \bar{g}, \bar{h} are coprime, Bezout's theorem ensures the existence of polynomials $\alpha, \beta \in R[X]$ such that

$$1 \equiv \alpha g_k + \beta h_k \mod \mathfrak{m} R[X] \tag{1}$$

. The inductive hypothesis is that $f - g_k h_k \in \mathfrak{m}^k R[X]$; multiplying (1) by $f - g_k h_k$ we find that

$$f - g_k h_k \equiv (f - g_k h_k) \alpha g_k + (f - g_k h_k) \beta h_k \mod \mathfrak{m}^{k+1} R[X] .$$

We now aim to replace the polynomials $(f - g_k h_k)\alpha$ and $(f - g_k h_k)\beta$ with polynomials of degree strictly less than r, n - r (respectively). Since h_k is monic, the division algorithm in R[X] produces $\gamma, \varepsilon \in R[X]$ such that deg $\varepsilon < n - r$ and $(f - g_k h_k)\alpha = \gamma h_k + \varepsilon$. Since $(f - g_k h_k)\alpha \in \mathfrak{m}^k R[X]$, we have $0 \equiv \gamma h_k + \varepsilon$ modulo $\mathfrak{m}^k R[X]$; as h_k is monic, it has degree n - r also in the ring $(R/\mathfrak{m}^k)[X]$, so that uniqueness of the division algorithm in $(R/\mathfrak{m}^k)[X]$ forces $\gamma, \varepsilon \in \mathfrak{m}^k R[X]$. Therefore,

$$f - g_k h_k \equiv \varepsilon g_k + \delta h_k \mod \mathfrak{m}^{k+1} R[X]$$

where $\delta = \gamma g_k + (f - g_k h_k) \beta \in \mathfrak{m}^k R[X]$. Since both $f - g_k h_k$ and εg_k have degree $\langle n,$ so does δh_k , which implies that deg $\delta \langle r$. We thus see that the polynomials $g_{k+1} = g_k + \delta$ and $h_{k+1} = h_k + \varepsilon$ are monic of degree r, n-r and satisfy $f \equiv g_{k+1} h_{k+1}$ modulo $\mathfrak{m}^{k+1} R[X], \overline{f_{k+1}} = \overline{f}, \overline{g_{k+1}} = \overline{g}$.

For the purpose of the following point, let us also remark that g_{k+1} and h_{k+1} are the unique polynomials satisfying the previous properties (this can be proved by induction on k).

(b) If $1 \leq i < j$, then $f - g_j h_j \in \mathfrak{m}^j R[X] \subset \mathfrak{m}^i R[X]$, so that $f \equiv g_j h_j$ modulo $\mathfrak{m}^i R[X]$. By the uniqueness claim in the previous point, this forces $g_i \equiv g_j$ and $f_i \equiv f_j$ modulo $\mathfrak{m}^i R[X]$. This shows that the sequence of coefficients are Cauchy in R (for the \mathfrak{m} -adic topology), hence by completeness they converge, defining two polynomials g, h of degree r and n - r respectively. Using convergence of the coefficients and the fact that $\bar{g}_k = \bar{g}, \bar{h}_k = \bar{h}$ for all $k \geq 1$, we deduce that \bar{g} and \bar{h} are the reductions modulo \mathfrak{m} of g and h.

It remains to prove that f = gh. First, an easy computation shows that the coefficients of $g_k h_k$ converge (in R) towards the corresponding coefficients of gh. Since every coefficient of $f - g_k h_k$ belongs to \mathfrak{m}^k by construction, this shows that every coefficient of f - gh is in \mathfrak{m}^k . As k is arbitrary, all the coefficients of f - gh are in $\bigcap_k \mathfrak{m}^k = 0$, where the last equality follows from the assumption on R together with Corollary 10.19 in [1]. The proof is concluded. 6. Prove the following corollary of Hensel's lemma: let k be a field, f(T, X) a polynomial in two variables with coefficients in k, and assume that $a \in k$ is a simple root of the polynomial $f(0, X) \in k[X]$. Then there exists a unique power series $X(T) \in k[[T]]$ such that X(0) = a and f(T, X(T)) = 0 identically in k[[T]].

(Hint: apply Hensel's lemma as stated in [2], Theorem 7.3, to R = k[[T]] and $\mathfrak{m} = (T)$.)

Solution. Let R = k[[T]], which is complete with respect to the maximal ideal $\mathfrak{m} = (T)$. We can see the polynomial f(T, X) as a polynomial $\tilde{f}(X)$ in the variable X with coefficients in R. The assumption that $a \in k$ is a simple root of $f(0, X) \in k[X]$ means precisely that $\tilde{f}(a) \equiv 0$ modulo \mathfrak{m} . Hensel's lemma (as stated in Theorem 7.3, [2]) gives that there exists a unique element $X(T) \in R$ such that $\tilde{f}(X(T)) = 0$ and $X(T) \equiv a$ modulo \mathfrak{m} . Spelling out this two conditions, this means that f(T, X(T)) = 0 identically in k[[T]] and X(0) = a.

References

- [1] M.Atiyah, Y.McDonald (1994), *Introduction to commutative algebra*, Addison-Wesley Publishing Company.
- [2] D.Eisenbud (2004), Commutative Algebra with a View towards Algebraic Geometry, Springer.