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Solutions Sheet 10

Completions of rings and modules

Let R be a commutative ring, k an algebraically closed field.

1. (a) Fix a prime p ⩾ 2. For every integer n ⩾ 1, define a injective morphism of
groups αn : Z/pZ → Z/pnZ by setting αn(1) = pn−1mod pnZ. Let M denote
the direct sum of countably many copies of Z/pZ, and N =

⊕
n⩾1 Z/pnZ.

Both M and N are considered naturally as Z-modules in what follows.

Prove that the p-adic completion ofM (i.e. the completion with respect to the
descending filtration of submodules (pnM)n) is M itself, but the completion
of M with respect to the topology induced by the p-adic topology on N is
the direct product

∏
n⩾1 Z/pZ (here M clearly injects into N by means of the

direct sum of all maps αn, hence the induced topology on M is the subspace
topology).

(b) Deduce from the previous point that p-adic completion is not a right-exact
functor on the category of all Z-modules.

Solution.

(a) We obviously have pM = 0, hence the inverse system defining the p-adic

completion of M is just · · · → M
id→ M

id→ M ; the associated inverse limit is
clearly isomorphic to M itself.

On the other hand, for every integer n ⩾ 1, we have pnN =
⊕

j>n p
nZ/pjZ.

As Im(αj) = pj−1Z/pjZ ⊂ pnZ/pjZ as long as j > n, we deduce that
α−1j (pnZ/pjZ) is Z/pZ if j > n, and 0 otherwise. Thus the filtration on
M induced by the p-adic topology on N is given by

(Mn)n∈N =

(⊕
j>n

(Z/pZ)j
)

n∈N
,

where (Z/pZ)j denotes the j-th factor in the direct sum defining M . There-
fore M/Mn ≃

⊕n
j=1(Z/pZ)j. Associating to each (equivalence class of) co-

herent sequence [(ξn)n] ∈ lim
←−

M/Mn the sequence of its components πn(ξn)

(where πn : M/Mn → Z/Z is the projection map) defines an isomorphism
lim
←−

M/Mn ≃
∏

n⩾1 Z/pZ.
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(b) Consider the short exact sequence 0 → M
α→ N → N/α(M) → 0. Taking p-

adic completions, we obtain a sequence 0 → M̂ = M → N̂ → ̂N/α(M) → 0;
sinceM ̸=

∏
n Z/pZ, this sequence is not exact at N̂ , hence p-adic completion

is not a right-exact functor.

2. Let R be a noetherian ring, a ⊂ R an ideal, R̂ the a-adic completion of R. For
any x ∈ R, denote by x̂ its image in R̂.

(a) Prove that x̂ is not a zero-divisor in R̂ whenever x is not a zero-divisor in R.

(b) Does the previous point imply that R̂ is an integral domain provided that R
is an integral domain? (Hint: prove that the completion of R with respect to
the product of two coprime ideals is isomorphic to the direct product of the
completions with respect to each ideal separately.)

Solution.

(a) Let x ∈ R be a nonzerodivisor. Thus multiplication by x in R is injective,
i.e. the sequence 0 → R

x→ R is exact. Applying (10.3) in [1], we get that
the corresponding sequence 0 → R̂ → R̂ is exact, where the induced map on
the right-hand side is multiplication by x̂, so that x̂ is a nonzerodivisor in R̂.

(b) Let a, b ⊂ R be two coprime ideals; since all powers an, bn remain coprime
(being coprime is equivalent to say that there is no prime ideal containing
the sum of the two ideals, then use the fact that if an ⊂ p for some prime
ideal p, then a ⊂ p), by the Chinese remainder theorem we get that the map
R/(ab)n → R/an×R/bn is an isomorphism, for all n ⩾ 1. This isomorphism
carries over to the inverse limit (taken on both sides), so that the completion
R̂ab is isomorphic to the direct product R̂a × R̂b which is not an integral
domain. If we take R to be an integral domain, such as Z, we deduce that
the completion of an integral domain is not necessarily integral.

3. Let R be a noetherian ring, a ⊂ R an ideal. Prove that a is contained in the
Jacobson radical of R if and only if every maximal ideal of R is closed for the a-
adic topology on R (a noetherian topological ring in which the topology is defined
by an ideal contained in the Jacobson radical is called a Zariski ring).

Solution. It suffices to show that a maximal ideal m ⊂ R is closed in the a-adic
topology if and only if a ⊂ m.

Assume first that a ⊂ m, and let x /∈ m; then, for every integer n ⩾ 1, the open
neighborhood x+ an ⊂ x+m of x is disjoint from m. Hence the complement of m
is a-adically open, which implies that m is closed.

Conversely, if a ⊈ m, any element of a∖m projects onto a unit in the field R/m;
therefore, there exists an element x ∈ a such that x ≡ 1 modulo m. Then xn ∈ an

and xn ≡ 1 modulo m, so that 1− xn ∈ (1+ an)∩m for all n ⩾ 1, despite the fact
that 1 /∈ m. This concludes the proof that m is not closed.
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4. Let R be a noetherian ring, a ⊂ R an ideal. Denote by R̂ the a-adic completion
of R. Prove that the following two conditions are equivalent:

(a) R is a Zariski ring (see previous exercise for the terminology);

(b) for any finitely generated R-module M , the canonical map M → M̂ is in-
jective (where M̂ denotes the completion of M with respect to the a-stable
filtration (anM)n).

(Hint: use the Krull intersection theorem, more precisely its corollary given in
Corollary 10.19 in [1], and the previous exercise.)

Solution. [(a) =⇒ (b)] Assume that R is a Zariski ring, whose topology is defined
by the ideal a contained in the Jacobson radical of R, and let M be a finitely
generated R-module. By Corollary 10.19 in [1], we have that

∩
n a

nM = 0. Sinc

the latter is precisely the kernel of the canonical map M → M̂ , this shows that
this map is injective.

[(b) =⇒ (a)] If a is not contained in the Jacobson radical of R, there exists a
maximal ideal m /∈ V (a). By the previous exercise, m is not closed for the a-
adic topology on R, which implies that {0} is not closed in the finitely generated
R-module M = R/m. Thus {0} cannot be the kernel of the continuous homomor-
phism M → M̂ , which achieves the proof.

5. The aim of this exercise is to prove another version of Hensel’s lemma: let R
be a local ring with maximal ideal m ⊂ R, and assume that R is complete with
respect to its m-adic filtration. For any polynomial f(X) ∈ R[X], denote by f̄(X)
its reduction modulo m, so that f̄(X) ∈ (R/m)[X]. Assume that f(X) is monic
of degree n and there exist coprime monic polynomials ḡ(X), h̄(X) ∈ (R/m)[X]
of degrees r, n − r respectively with f̄ = ḡh̄. Then there are monic polynomials
g, h ∈ R[X] such that ḡ, h̄ are their respective reductions modulo m and f = gh.

(a) Assume inductively that we have constructed gk, hk ∈ R[X] with gkhk − f ∈
mkR[X]. Use the fact that ḡ and h̄ are coprime to find āp, b̄p ∈ (R/m)[X]
of degree ⩽ n − r, r respectively, such that Xp = āpḡk + b̄ph̄k in (R/m)[X],
where p is an integer between 1 and n.

(b) Use completeness of R to show that the sequences (gk)k and (hk)k converge
to some polynomials g, h ∈ R[X]. Prove that g, h thus defined verify the
conclusion of Hensel’s lemma.

Solution.

(a) Given ḡ, h̄ ∈ (R/m)[X] satisfying the assumption, choose representatives for
all the non-vanishing coefficients of both (pick 1 as representative of 1 +
m). This defines two monic polynomials g1, h1 ∈ R[X] of degree r, n − r
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respectively with ḡ1 = ḡ and h̄1 = h̄. Since by hypothesis f̄ = ḡh̄ = ¯g1h1, we
have that f ≡ g1h1 modulo mR[X].

Now assume inductively that gk amd hk have been constructed with the
requested properties. We shall show how to construct gk+1, hk+1. Since ḡ, h̄
are coprime, Bezout’s theorem ensures the existence of polynomials α, β ∈
R[X] such that

1 ≡ αgk + βhk mod mR[X] (1)

. The inductive hypothesis is that f − gkhk ∈ mkR[X]; multiplying (1) by
f − gkhk we find that

f − gkhk ≡ (f − gkhk)αgk + (f − gkhk)βhk mod mk+1R[X] .

We now aim to replace the polynomials (f − gkhk)α and (f − gkhk)β with
polynomials of degree strictly less than r, n − r (respectively). Since hk is
monic, the division algorithm in R[X] produces γ, ε ∈ R[X] such that deg ε <
n − r and (f − gkhk)α = γhk + ε. Since (f − gkhk)α ∈ mkR[X], we have
0 ≡ γhk + ε modulo mkR[X]; as hk is monic, it has degree n− r also in the
ring (R/mk)[X], so that uniqueness of the division algorithm in (R/mk)[X]
forces γ, ε ∈ mkR[X]. Therefore,

f − gkhk ≡ εgk + δhk mod mk+1R[X]

where δ = γgk + (f − gkhk)β ∈ mkR[X]. Since both f − gkhk and εgk have
degree < n, so does δhk, which implies that deg δ < r. We thus see that the
polynomials gk+1 = gk + δ and hk+1 = hk + ε are monic of degree r, n− r and
satisfy f ≡ gk+1hk+1 modulo mk+1R[X], fk+1 = f̄ , gk+1 = ḡ.

For the purpose of the following point, let us also remark that gk+1 and hk+1

are the unique polynomials satisfying the previous properties (this can be
proved by induction on k).

(b) If 1 ⩽ i < j, then f − gjhj ∈ mjR[X] ⊂ miR[X], so that f ≡ gjhj modulo
miR[X]. By the uniqueness claim in the previous point, this forces gi ≡ gj
and fi ≡ fj modulo miR[X]. This shows that the sequence of coefficients are
Cauchy in R (for the m-adic topology), hence by completeness they converge,
defining two polynomials g, h of degree r and n− r respectively. Using con-
vergence of the coefficients and the fact that ḡk = ḡ, h̄k = h̄ for all k ⩾ 1, we
deduce that ḡ and h̄ are the reductions modulo m of g and h.

It remains to prove that f = gh. First, an easy computation shows that
the coefficients of gkhk converge (in R) towards the corresponding coeffcients
of gh. Since every coefficient of f − gkhk belongs to mk by construction,
this shows that every coefficient of f − gh is in mk. As k is arbitrary, all
the coefficients of f − gh are in

∩
k m

k = 0, where the last equality follows
from the assumption on R together with Corollary 10.19 in [1]. The proof is
concluded.
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6. Prove the following corollary of Hensel’s lemma: let k be a field, f(T,X) a poly-
nomial in two variables with coefficients in k, and assume that a ∈ k is a simple
root of the polynomial f(0, X) ∈ k[X]. Then there exists a unique power series
X(T ) ∈ k[[T ]] such that X(0) = a and f(T,X(T )) = 0 identically in k[[T ]].

(Hint: apply Hensel’s lemma as stated in [2], Theorem 7.3, to R = k[[T ]] and
m = (T ).)

Solution. Let R = k[[T ]], which is complete with respect to the maximal ideal
m = (T ). We can see the polynomial f(T,X) as a polynomial f̃(X) in the variable
X with coefficients in R. The assumption that a ∈ k is a simple root of f(0, X) ∈
k[X] means precisely that f̃(a) ≡ 0 modulo m. Hensel’s lemma (as stated in
Theorem 7.3, [2]) gives that there exists a unique element X(T ) ∈ R such that
f̃(X(T )) = 0 and X(T ) ≡ a modulo m. Spelling out this two conditions, this
means that f(T,X(T )) = 0 identically in k[[T ]] and X(0) = a.
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