Solutions Sheet 11

Completions, projective modules and the Tor functor

Let R be a commutative ring, k an algebraically closed field.

- 1. Let P be a module over a commutative ring R. Prove that the following conditions are equivalent:
 - (a) for any exact sequence $M' \to M \to M''$ of R-modules, the associated sequence

$$\operatorname{Hom}(P,M') \to \operatorname{Hom}(P,M) \to \operatorname{Hom}(P,M'')$$

is exact;

- (b) P is projective;
- (c) any short exact sequence of *R*-modules of the form $0 \to M' \to M \to P \to 0$ splits (see Exercise 4, Sheet 4 for the definition);
- (d) P is isomorphic to a direct factor (see Exercise 2, Sheet 4 for the definition) of a free R-module.

(Hint for $(d) \Rightarrow (a)$: prove that the condition expressed in (a) is stable under direct sum, i.e. that a direct sum $\bigoplus_i P_i$ of *R*-modules satisfies the condition if and only if each factor P_i satisfies it.)

Solution. $[(a) \Rightarrow (b)]$ Let $f: M \to M''$ be a surjective map of R-modules. This gives a short exact sequence $0 \to M' \to M \to M'' \to 0$, with $M' = \ker f$. BY assumption, the sequence $0 \to \operatorname{Hom}(P, M') \to \operatorname{Hom}(P, M) \to \operatorname{Hom}(P, M'') \to 0$ is exact. In particular, the map $\operatorname{Hom}(P, M) \to \operatorname{Hom}(P, M'')$ is surjective. This means that every R-linear map $\varphi: P \to M''$ can be lifted to an R-linear map $\tilde{\varphi}: P \to M$, i.e. a map satisfying $\varphi = f \circ \tilde{\varphi}$. Therefore, P is a projective module. $[(b) \Rightarrow (c)]$ Let $0 \to M' \to M \to P \to 0$ be a short exact sequence of R-modules. Thus P is isomorphic to M/M' (more precisely, to the quotient of M by a submodule isomorphic to M', which we will canonically identify with M' itself). Denote by $\varphi: P \to M/M'$ this isomorphism. Now, since P is projective and the canonical projection map $\pi: M \to M/M'$ is surjective, there exists an R-linear map $s: P \to M$ such that $\pi \circ s = \varphi$. This implies that $f \circ s = \mathrm{id}_P$, where $f: M \to P$ is the map appearing in the original short exact sequence. Thus, the sequence admits a section, whence it splits.

 $[(c) \Rightarrow (d)]$ Choose a short exact sequence $0 \rightarrow N \rightarrow F \rightarrow P \rightarrow 0$ of *R*-modules, where *F* is a free *R*-module (this can always be done for any module *P*, without

the projective assumption). The hypothesis implies that such a sequence splits. Exercise 4, Sheet 4 now gives that P is isomorphic to a direct factor of F. The conclusion is achieved.

 $[(d) \Rightarrow (a)]$ We first claim that if P = F is a free *R*-module, then the condition expressed in (a) holds. The claim is obviously true if F = R, by the canonical isomorphism $\operatorname{Hom}(R, N) \simeq N$ for any *R*-module *N*.

Our aim will be now to prove the following assertion: if $(P_i)_{i \in I}$ is an arbitrary collection of *R*-modules then their direct sum $P = \bigoplus_{i \in I} P_i$ satisfies (*a*) if and only if each P_i satisfies it. Indeed, we have

$$\operatorname{Hom}(P, N) = \operatorname{Hom}\left(\bigoplus_{i \in I} P_i, N\right) \simeq \prod_{i \in I} \operatorname{Hom}(P_i, N)$$

for any *R*-module *N*. To conclude, it just suffices to recall that sequences $0 \rightarrow A_i \xrightarrow{\alpha_i} B_i \xrightarrow{\beta_i} C_i \rightarrow 0$ of *R*-modules are exact if and only if the associated "product sequence"

$$0 \to \prod_{i \in I} A_i \xrightarrow{\prod_{i \in I} \alpha_i} \prod_{i \in I} B_i \xrightarrow{\prod_{i \in I} \beta_i} \prod_{i \in I} C_i \to 0$$

is exact.

Therefore, we deduce that the desired implication is true whenever P = F is a free module. This immediately extends to direct factors of a free module by what we just proved.

2. Prove the Snake Lemma: if $0 \to A \to B \to C \to 0$, $0 \to A' \to B' \to C' \to 0$ are short exact sequences of *R*-modules, and $\alpha \colon A \to A', \beta \colon B \to B', \gamma \colon C \to C'$ are *R*-linear maps defining a morphism between the two exact sequences (i.e. such that the resulting diagram commutes), then there is an exact sequence

 $0 \to \ker \alpha \to \ker \beta \to \ker \gamma \to \operatorname{coker} \alpha \to \operatorname{coker} \beta \to \operatorname{coker} \gamma \to 0 .$

Solution. The Snake Lemma is thoroughly proven in [2], Lemma 1 (and Corollary 2), section 1.5.

- 3. (a) Let P be a projective module over a ring R. Show that $\operatorname{Tor}_{i}^{R}(M, P) = 0$ for every R-module M and every integer i > 0.
 - (b) i. Show that an *R*-module *M* is flat if and only if $\text{Tor}_1^R(M, N) = 0$ for any *R*-module *N*.
 - ii. Show that an *R*-module *M* is flat if and only if $\operatorname{Tor}_{i}^{R}(M, N) = 0$ for any *R*-module *N* and any integer i > 0.

Solution.

- (a) If P is projective, a projective resolution of P is given by the exact sequence $\cdots 0 \to 0 \to P \xrightarrow{\text{id}} P \to 0$, from which the conclusion trivially follows.
- (b) By definition, M is flat if tensoring with M transforms exact sequences into exact sequences. Therefore, it is automatic by the definition of the Tor functor that flatness of M implies $\operatorname{Tor}_{i}^{R}(M, N) = 0$ for any R-module N and any integer i > 0.

It thus remains to show that M is flat whenever $\operatorname{Tor}_1^R(M, N) = 0$ for any R-module N. Given a short exact sequence of modules $0 \to N' \to N \to N'' \to 0$, we have a long exact sequence in homology

$$\cdots \to \operatorname{Tor}_1(M, N') \to \operatorname{Tor}_1(M, N) \to \operatorname{Tor}_1(M, N'') \to M \otimes N' \to M \otimes N \to M \otimes N'' \to 0$$

Since by assumption $\operatorname{Tor}_1(M, N'') = 0$, the sequence

$$0 \to M \otimes N' \to M \otimes N \to M \otimes N'' \to 0$$

is exact.

4. Let R be a commutative ring, $x \in R$ a nonzerodivisor. Prove that

$$\operatorname{Tor}_1(R/(x), M) \simeq \{m \in M : xm = 0\}$$

(which incidentally explains the name "Tor", since it is connected with torsion elements in this elementary example).

Solution. It is equivalent to determine $\operatorname{Tor}_1(M, R/(x))$ by commutativity of the functor Tor. We may assume the free resolution of R/(x) to be given by

 $\dots \to 0 \to R \xrightarrow{f} R \to R/(x) \to 0$, where f is the map defined by f(y) = xy for all $y \in R$ (injective because x is a nonzerodivisor). By definition of the Tor functor, we have

$$\operatorname{Tor}_1(M, R/(x)) \simeq \frac{\ker \left(M \otimes R \xrightarrow{\operatorname{id} \otimes f} M \otimes R \right)}{\operatorname{Im}(M \otimes 0 \to M \otimes R)} = \ker \left(M \otimes R \xrightarrow{\operatorname{id} \otimes f} M \otimes R \right) \,.$$

Identifying $M \otimes R$ with M in the canonical way, the map id $\otimes f$ becomes the assignment $m \to xm$ for all $m \in M$. The proof is concluded.

5. Let R be a local ring with maximal ideal \mathfrak{m} , M an R-module. We say that a free resolution

$$F: \dots \to F_{i+1} \xrightarrow{\varphi_{i+1}} F_i \xrightarrow{\varphi_i} \dots F_0 \to M \to 0$$

of M is minimal if each φ_i has image contained in $\mathfrak{m}F_{i-1}$.

If F is a minimal resolution of M as above and rank $F_i = b_i$ for all $i \in \mathbb{N}$, then prove that

$$\operatorname{Tor}_{i}^{R}(R/\mathfrak{m}, M) \simeq (R/\mathfrak{m})^{b_{i}}$$
.

The b_i are called the *Betti numbers* of M, by analogy with the corresponding algebraic topology context, in which F is a chain complex.

Solution. By definition, we have

$$\operatorname{Tor}_{i}^{R}(R/\mathfrak{m}, M) = \frac{\ker \left(R/\mathfrak{m} \otimes R^{b_{i}} \to R/\mathfrak{m} \otimes R^{b_{i-1}} \right)}{\operatorname{Im}(R/\mathfrak{m} \otimes R^{b_{i+1}} \to R/\mathfrak{m} \otimes R^{b_{i}})} \,. \tag{1}$$

To get what we want, it suffices to prove that every map

$$R/\mathfrak{m}\otimes R^{b_i}\to R/\mathfrak{m}\otimes R^{b_{i-1}}$$

is the zero map. If this is so, we may indeed deduce from (1) that

$$\operatorname{Tor}_{i}^{R}(R/\mathfrak{m},M) = R/\mathfrak{m} \otimes R^{b_{i}} \simeq (R/\mathfrak{m} \otimes R)^{b_{i}} \simeq (R/\mathfrak{m})^{b_{i}}$$

The fact that each map $R/\mathfrak{m} \otimes R^{b_i} \to R/\mathfrak{m} \otimes R^{b_{i-1}}$ is the zero map is an immediate consequence of the fact that $\varphi_i(F_i) \subset \mathfrak{m}F_{i-1}$, since R/\mathfrak{m} is annihilated (as an *R*-module) by \mathfrak{m} .

- 6. Let R be a noetherian ring, $\mathfrak{m} \subset R$ an ideal, $\hat{\mathfrak{m}}$ the corresponding ideal in the \mathfrak{m} -adic completion \hat{R} .
 - (a) Prove that $\hat{\mathfrak{m}}$ is contained in the Jacobson radical of R.
 - (b) Deduce from the previous point that, if R is a noetherian local ring and \mathfrak{m} is its maximal ideal, then \hat{R} is a (noetherian) local ring with maximal ideal $\hat{\mathfrak{m}}$.

Solution. For the proof of the two statements, see [1], Proposition 10.15 iv) and 10.16.

References

- [1] M.Atiyah, Y.McDonald (1994), *Introduction to commutative algebra*, Addison-Wesley Publishing Company.
- [2] S.Bosch (2012), Algebraic Geometry and Commutative Algebra, Springer.
- [3] D.Eisenbud (2004), Commutative Algebra with a View towards Algebraic Geometry, Springer.