D-MATH Commutative Algebra HS 2018

Prof. Paul Nelson
Solutions Sheet 12

INJECTIVE MODULES, EXT FUNCTOR AND ARTIN RINGS

Let R be a commutative ring, k an algebraically closed field.

1. Let M be a finitely presented module over a ring R, ¢: R" — M a surjective
R-linear map. Prove that ker ¢ is finitely generated.

(Hint: use Snake Lemma, Ezercise 2 Sheet 11.)

Solution. Since M is finitely presented, there is a short exact sequence

0= kerdh = R™ B M =0,

where ker ¢ is a finitely generated submodule of R™. We also have the short exact
sequence given by
0—skerop - R" 3 M —0.

Let v: M — M be the identity map. Since free modules are projective, there
exists an R-linear map #: R™ — R™ making the right-hand square of the diagram
commute, i.e. such that v oY = @ o . The restriction of 5 to kert gives
then a map a: kerty — kerp making also the left-hand square of the diagram
commute. The Snake Lemma gives an isomorphism between the finitely generated
R-modules ker p/Im(a) ~ R"/Im(f). Since Im(«) is also finitely generated, being
an homomorphic image of ker v, we conclude that ker ¢ is finitely generated. See
also the proof of Proposition 7, section 1.5 in [2].

2. An R-module @ is called injective if, for every monomorphism of R-modules
a: N — M and every homomorphism of R-modules f: N — @, there exists
an homomorphism of R-modules v: M — @ such that 5 =~vyoa.

(a) Prove the following statement: let ) be an R-module, and assume that for
every ideal I C R and every homomorphism of R-modules g: I — (@) there
is an extension of f to an R-module homomorphism R — ). Then @ is
injective.

(Hint: use Zorn’s lemma to construct the desired extension.)

(b) Use the previous point to show that an abelian group @) is an injective Z-
module if and only if it is divisible, i.e. for every ¢ € () and every 0 #n € Z
there exists ¢’ € @) such that ng’ = q.

Solution. For (a), see [3], Lemma A3.4. For (b), see [3], Proposition A3.5.
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3. Given an R-module M, an injective resolution of M is an exact sequence of R-
modules
0=M—=>0Q = Q1 —Qa— -

in which the @;,7 > 0 are injective modules.

(a) Assuming (without proving it) that every module can be embedded into an
injective module, prove that any R-module admits an injective resolution.

(b) Give an example of an injective resolution of Z as Z-module.
(Hint: an immediate consequence of point (b) of the previous exercise is that,

if @ is an injective abelian group and K is a subgroup, then Q/K is an
injective abelian group.)

Solution.

(a) Let M be an R-module, and embed it into an injective module Qg. Then, let
()1 be an injective module in which the cokernel Qy/M embeds. Continuing
in this fashion an injective resolution of M is obtained.

(b) The additive group Q is an injective Z-module by Exercise 2 (b); in particular,
the quotient group Q/Z is also injetive as a Z-module. Therefore, an injective
resolution of Z is given by

0-Z—-Q—-Q/Z—-0—-0—---.

4. The purpose of this exercise is to give another example of a derived functor (we
already saw the functor Tor, which is left-derived, in the lecture).

The functor Hompg(M, —), where R is a commutative ring and M is a fixed R-
module, is left-exact, i.e. it transforms exact sequences of the form 0 — N’ —
N — N” into exact sequences of the same form. If N is an arbitrary R-module,
let

I:0=-N—->ILj—>1—- -

be an injective resolution of N (it always exists by the previous exercise), and form
the associated complex

Hompg(M,I): 0 — Homg(M, Iy) — Homg(M, I,) — - - -

We define the Ext functor Ext’ (M, N) to be the homology module H_;(Homp(M, I)),
for all integer ¢ > 0. As in the case of the Tor functor, it can be shown that the
definition does not depend on the choice of the injective resolution of N.

(a) Let x € Rbe anonzerodivisor. For any R-module M, compute Ext’(R/(z), M).
In particular, compute Exty, (Z/nZ,Z/mZ) for any integers n, m.

(b) Prove that a finitely generated abelian group A is free (as a Z-module) if and
only if Exty,(A,Z) = 0.



Solution.

(a)

As remarked in [3], section A3.11, the modules Ext’(R/(z), M) can be com-
puted also from a projective resolution F' : --- — Fy — Fy — R/(x) — 0 of
R/(x); more specifically,

Ext(R/(x), M) = H_;(Homg(F, M)) ,
where Hompg(F, M) is the complex
Hompg(F, M) : 0 — Hompg(Fy, M) — Hompg(Fy, M) — - -
Now, since x is a nonzerodivisor in R, a projective resolution of R/(x) is
given by ---0 — 0 — R N RN R/(z) — 0, where f denotes multiplication
by x in R. Applying Hompg(—, M) gives the complex
0 — Homg(R/(z), M) = Homg(R, M) — Homgr(R,M) -0 —0— --- |
which identifies canonically with the complex

O={meM:am=0->M3M-0—-0—--,

where g denotes multiplication by z in the module M. It thus follows imme-
diately that

{meM:a2m =0} ifi=0;
Ext%(R/(x), M) = M/xM if i = 1;
0 if 0 > 1.

Specializing to the case R = Z, x = n, M = Z/mZ (viewed as a Z-module),
we get

{ke{0,1...,m—1} ~Z/mZ :mnk} ifi=0;
Exty(Z/nZ,Z/mZ) = { Z/(m,n)Z if i = 1;
0 if e > 1.

Assume that A is a finitely generated abelian group which is free as a Z-

module. Thus a free resolution of A is given by ---0 - 0 — A 4450
Hence Ext}(A,7Z) is a quotient of Homy(0,Z) = 0, and is therefore trivial.
Conversely, if a finitely generated abelian group A satisfies Exty(A,Z) = 0,
then by the fundamental theorem for finitely generated abelian groups we
have that A ~ Z"® Z/GZ @ -+ & Z/q,Z, where n > 0, ¢; > 1, r > 0 are
integers. By the analogous property for the Hom functor, it can be easily
seen that

0 = Ext}(A,Z) ~ Exty(Z,Z)" & BExty(Z/ @72, 7) ® - - - & BExt}(Z/q, 7, 7) .
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An easy computation, similar to the one in the previous point, shows that
Ext}(Z,7Z) = 0,while Ext}(Z/q:7Z,7) = Z/¢7Z. Thus, necessarily, ¢; = 1 for
all <7< r, sothat A~ Z" is free.

5. Let R be a noetherian ring. Prove that the following are equivalent:

(a) R is an Artin ring;
(b) Spec(R) is discrete (w.r.t. the Zariski topology) and finite;
(c) Spec(R) is discrete (w.r.t. the Zariski topology).

Solution. [(b) = (c)] Obvious.

[(c) = (a)] If Spec(R) is discrete, then in particular every point is closed. Since
closed points in the spectrum correspond to maximal ideals, this shows that every
prime ideal of R is maximal. Thus dim R = 0, and since R is noetherian by
assumption, we deduce that R is an Artin ring.

[(a) = (b)] If R is an Artin ring, then every prime ideal is maximal, so that every
point of Spec(R) is closed for the Zariski topology; moreover R has just a finite
number of prime ideals, so that Spec(R) is a finite set. The unique topology on a
finite set for which every singleton is closed is the discrete topology.

6. Let k be a field, and consider the ring R = k[X?, X3]/(X™), where n is a sufficiently
large integer (e.g. n > 10). Prove that R has just one prime ideal and conclude
that it is zero-dimensional.

Solution. First of all, let us remark that k[X?, X®] is the subring of k[ X] consisting
of all polynomials with vanishing first-order term. This is because every integer
n > 2 can be written as a linear combination 2a+ 35, where «, 8 > 0 are integers,
hence any power X", n > 2 lies in k[X? X3]. To prove the given statement, it is
sufficient to show that the maximal ideal (X?, X3) (consisting of all polynomials
with vanishing zero-order and first-order term) of k[X?, X?] is the unique prime
ideal containing the principal ideal (X™), n > 2. Thus, let p’ be a prime ideal of
k[X?, X3] containg X" = X2X" 2 = X3X" 3. If p’ contains both X? and X3, we
are done by maximality of (X2, X?), otherwise, by primality of p’, either X" 72 € p’
or X"=3 € p’. The proof is completed by induction on n > 2, the case n = 2 being
trivial.
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