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Prof. Paul Nelson

Solutions Sheet 12

Injective modules, Ext functor and Artin rings

Let R be a commutative ring, k an algebraically closed field.

1. Let M be a finitely presented module over a ring R, φ : Rn → M a surjective
R-linear map. Prove that kerφ is finitely generated.

(Hint: use Snake Lemma, Exercise 2 Sheet 11.)

Solution. Since M is finitely presented, there is a short exact sequence

0 → kerψ → Rm ψ→M → 0 ,

where kerψ is a finitely generated submodule of Rm. We also have the short exact
sequence given by

0 → kerφ→ Rn φ→M → 0 .

Let γ : M → M be the identity map. Since free modules are projective, there
exists an R-linear map β : Rm → Rn making the right-hand square of the diagram
commute, i.e. such that γ ◦ ψ = φ ◦ β. The restriction of β to kerψ gives
then a map α : kerψ → kerφ making also the left-hand square of the diagram
commute. The Snake Lemma gives an isomorphism between the finitely generated
R-modules kerφ/Im(α) ≃ Rn/Im(β). Since Im(α) is also finitely generated, being
an homomorphic image of kerψ, we conclude that kerφ is finitely generated. See
also the proof of Proposition 7, section 1.5 in [2].

2. An R-module Q is called injective if, for every monomorphism of R-modules
α : N → M and every homomorphism of R-modules β : N → Q, there exists
an homomorphism of R-modules γ : M → Q such that β = γ ◦ α.

(a) Prove the following statement: let Q be an R-module, and assume that for
every ideal I ⊂ R and every homomorphism of R-modules β : I → Q there
is an extension of β to an R-module homomorphism R → Q. Then Q is
injective.

(Hint: use Zorn’s lemma to construct the desired extension.)

(b) Use the previous point to show that an abelian group Q is an injective Z-
module if and only if it is divisible, i.e. for every q ∈ Q and every 0 ̸= n ∈ Z
there exists q′ ∈ Q such that nq′ = q.

Solution. For (a), see [3], Lemma A3.4. For (b), see [3], Proposition A3.5.
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3. Given an R-module M , an injective resolution of M is an exact sequence of R-
modules

0 →M → Q0 → Q1 → Q2 → · · ·
in which the Qi, i ⩾ 0 are injective modules.

(a) Assuming (without proving it) that every module can be embedded into an
injective module, prove that any R-module admits an injective resolution.

(b) Give an example of an injective resolution of Z as Z-module.

(Hint: an immediate consequence of point (b) of the previous exercise is that,
if Q is an injective abelian group and K is a subgroup, then Q/K is an
injective abelian group.)

Solution.

(a) Let M be an R-module, and embed it into an injective module Q0. Then, let
Q1 be an injective module in which the cokernel Q0/M embeds. Continuing
in this fashion an injective resolution of M is obtained.

(b) The additive group Q is an injective Z-module by Exercise 2 (b); in particular,
the quotient group Q/Z is also injetive as a Z-module. Therefore, an injective
resolution of Z is given by

0 → Z → Q → Q/Z → 0 → 0 → · · · .

4. The purpose of this exercise is to give another example of a derived functor (we
already saw the functor Tor, which is left-derived, in the lecture).

The functor HomR(M,−), where R is a commutative ring and M is a fixed R-
module, is left-exact, i.e. it transforms exact sequences of the form 0 → N ′ →
N → N ′′ into exact sequences of the same form. If N is an arbitrary R-module,
let

I : 0 → N → I0 → I1 → · · ·
be an injective resolution of N (it always exists by the previous exercise), and form
the associated complex

HomR(M, I) : 0 → HomR(M, I0) → HomR(M, I1) → · · · .

We define the Ext functor ExtiR(M,N) to be the homology moduleH−i(HomR(M, I)),
for all integer i ⩾ 0. As in the case of the Tor functor, it can be shown that the
definition does not depend on the choice of the injective resolution of N .

(a) Let x ∈ R be a nonzerodivisor. For anyR-moduleM , compute ExtiR(R/(x),M).
In particular, compute ExtiZ(Z/nZ,Z/mZ) for any integers n,m.

(b) Prove that a finitely generated abelian group A is free (as a Z-module) if and
only if Ext1Z(A,Z) = 0.
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Solution.

(a) As remarked in [3], section A3.11, the modules ExtiR(R/(x),M) can be com-
puted also from a projective resolution F : · · · → F1 → F0 → R/(x) → 0 of
R/(x); more specifically,

ExtiR(R/(x),M) = H−i(HomR(F,M)) ,

where HomR(F,M) is the complex

HomR(F,M) : 0 → HomR(F0,M) → HomR(F1,M) → · · · .

Now, since x is a nonzerodivisor in R, a projective resolution of R/(x) is

given by · · · 0 → 0 → R
f→ R → R/(x) → 0, where f denotes multiplication

by x in R. Applying HomR(−,M) gives the complex

0 → HomR(R/(x),M) → HomR(R,M) → HomR(R,M) → 0 → 0 → · · · ,

which identifies canonically with the complex

0 → {m ∈M : xm = 0} →M
g→M → 0 → 0 → · · · ,

where g denotes multiplication by x in the module M . It thus follows imme-
diately that

ExtiR(R/(x),M) =


{m ∈M : xm = 0} if i = 0;

M/xM if i = 1;

0 if i > 1.

Specializing to the case R = Z, x = n, M = Z/mZ (viewed as a Z-module),
we get

ExtiZ(Z/nZ,Z/mZ) =


{k ∈ {0, 1 . . . ,m− 1} ≃ Z/mZ : m|nk} if i = 0;

Z/(m,n)Z if i = 1;

0 if i > 1.

(b) Assume that A is a finitely generated abelian group which is free as a Z-
module. Thus a free resolution of A is given by · · · 0 → 0 → A

id→ A → 0.
Hence Ext1Z(A,Z) is a quotient of HomZ(0,Z) = 0, and is therefore trivial.

Conversely, if a finitely generated abelian group A satisfies Ext1Z(A,Z) = 0,
then by the fundamental theorem for finitely generated abelian groups we
have that A ≃ Zn ⊕ Z/q1Z ⊕ · · · ⊕ Z/qrZ, where n ⩾ 0, qi ⩾ 1, r ⩾ 0 are
integers. By the analogous property for the Hom functor, it can be easily
seen that

0 = Ext1Z(A,Z) ≃ Ext1Z(Z,Z)n ⊕ Ext1Z(Z/q1Z,Z)⊕ · · · ⊕ Ext1Z(Z/qrZ,Z) .
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An easy computation, similar to the one in the previous point, shows that
Ext1Z(Z,Z) = 0,while Ext1Z(Z/qiZ,Z) = Z/qiZ. Thus, necessarily, qi = 1 for
all ⩽ i ⩽ r, so that A ≃ Zn is free.

5. Let R be a noetherian ring. Prove that the following are equivalent:

(a) R is an Artin ring;

(b) Spec(R) is discrete (w.r.t. the Zariski topology) and finite;

(c) Spec(R) is discrete (w.r.t. the Zariski topology).

Solution. [(b) =⇒ (c)] Obvious.

[(c) =⇒ (a)] If Spec(R) is discrete, then in particular every point is closed. Since
closed points in the spectrum correspond to maximal ideals, this shows that every
prime ideal of R is maximal. Thus dimR = 0, and since R is noetherian by
assumption, we deduce that R is an Artin ring.

[(a) =⇒ (b)] If R is an Artin ring, then every prime ideal is maximal, so that every
point of Spec(R) is closed for the Zariski topology; moreover R has just a finite
number of prime ideals, so that Spec(R) is a finite set. The unique topology on a
finite set for which every singleton is closed is the discrete topology.

6. Let k be a field, and consider the ring R = k[X2, X3]/(Xn), where n is a sufficiently
large integer (e.g. n ⩾ 10). Prove that R has just one prime ideal and conclude
that it is zero-dimensional.

Solution. First of all, let us remark that k[X2, X3] is the subring of k[X] consisting
of all polynomials with vanishing first-order term. This is because every integer
n ⩾ 2 can be written as a linear combination 2α+3β, where α, β ⩾ 0 are integers,
hence any power Xn, n ⩾ 2 lies in k[X2, X3]. To prove the given statement, it is
sufficient to show that the maximal ideal (X2, X3) (consisting of all polynomials
with vanishing zero-order and first-order term) of k[X2, X3] is the unique prime
ideal containing the principal ideal (Xn), n ⩾ 2. Thus, let p′ be a prime ideal of
k[X2, X3] containg Xn = X2Xn−2 = X3Xn−3. If p′ contains both X2 and X3, we
are done by maximality of (X2, X3), otherwise, by primality of p′, either Xn−2 ∈ p′

or Xn−3 ∈ p′. The proof is completed by induction on n ⩾ 2, the case n = 2 being
trivial.
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