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Dimension theory, valuation rings and Dedekind domains

1. Let R be a commutative ring. Show that the n-th symbolic power p(n) of a prime
ideal p ⊂ R is the smallest p-primary ideal containing pn (here n ⩾ 1 is an integer).

Solution. First, we show that p(n) is a p-primary ideal. We know that the extension
pe of p in Rp is a maximal ideal, which implies that its n-th power (pe)n is primary.
Now

p(n) = (pn)ec = ((pn)e)c = ((pe)n)c ,

and since contraction preserves the property of being primary, we conclude that
p(n) is primary. Let us know compute its radical:

r(p(n)) = r((pn)ec) = (r(pn)e)c = (r(pn))ec = pec = p ,

thus p(n) is p-primary.

If q ⊃ pn is p-primary and x ∈ p(n), there exists s ∈ R∖ p such that sx ∈ pn ⊂ q.
Since s /∈ r(q) = p, we have sm /∈ q for all integer m ⩾ 1. As q is primary, it
follows that x ∈ q. We have shown that p(n) ⊂ q, so that p(n) is the smallest
p-primary ideal containing pn.

2. Let (A,m) be a Noetherian local ring of dimension d. Let k := A/m denote its
residue field. Let f1, . . . , fr ∈ m. Set A := A/(f1, . . . , fr). Let m ⊂ A denote the
image of m.

(a) Show that dimk(m/m2) ⩾ dim(A) ⩾ d− r.

(b) Assume that A is regular. Let f1, . . . , fr ∈ m/m2 denote the images of
f1, . . . , fr. Show that the following are equivalent:

i. A is regular of dimension d− r.

ii. f1, . . . , fr are linearly independent over k.

Solution.

(a) Since (A,m) is noetherian and local, (Ā, m̄) is also noetherian and local.
Therefore, Corollary 8 in section 2.4 of [2] gives us that dim Ā ⩽ dimĀ/m̄ m̄/m̄2,
which gives the first inequality (noticing that k ≃ Ā/m̄).

We now want to prove that dim Ā ⩾ d − r. Call s the dimension of Ā,
and choose y1, . . . , ys ∈ A whose images ȳ1, . . . , ȳs ∈ Ā form a system of
parameters for m̄. In particular, m̄ is the only prime containing (ȳ1, . . . , ȳs).
It follows that m is the only prime containing (f1, . . . , fr, y1, . . . , ys). From
this we deduce the upper bound dimA ⩽ r + s.
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(b) The proof of Proposition 18 in section 2.4 of [2] shows that ii. is equivalent to
the fact that f1, . . . , fr can be extended to a regular system of parameters for
A (specifically f1, . . . , fr can be extended to a regular system of parameters for
A if and only if f̄1, . . . , f̄r can be extended to a k-basis of m/m2). Thus, if this
condition is met, let f1, . . . , fr, fr+1, . . . , fd be a regular system of parameters
for A. Then dim Ā is d − r and the d − r elements f̄r+1, . . . , f̄d generate m̄,
so that Ā is regular.

Conversely, assume that Ā is regular of dimension d− r, and let fr+1, . . . , fd
be elements of m whose images in m̄ form a regular system of parameters for
Ā. If x ∈ m, then x ≡

∑d
i=r+1 cifi modulo (f1, . . . , fr), for some coefficients

ci ∈ A. In other words, x −
∑d

i=r+1 cifi ∈ (f1, . . . , fr). We infer from this
that f1, . . . , fd generate m, whence f1, . . . , fr can be extended to a regular
system of parameters for A.

3. Let k be a field, and denote by R = k[[X1, . . . , Xn]] the ring of formal power series
in n variables with coefficients in k. Prove that R is a regular, noetherian local
ring of dimension n.

Solution. Recall that R is the completion of the polynomial ring k[X1, . . . , Xn]
with respect to the maximal ideal (X1, . . . , Xn). Since k[X1, . . . , Xn] is noetherian
by the Hilbert basis theorem, it follows that R is also noetherian. We also know
(from the section on completions) that m = (X1, . . . , Xn) is the unique maximal
ideal of R, which is therefore local. Moreover, it is clear that m/m2 ≃

⊕n
i=1 kxi,

i.e. it is an n-dimensional vector space over k. By Corollary 8 in section 2.4 of [2],
we have dimR ⩽ n. On the other hand, there is a chain of prime ideals consisting
of (0) ⊊ (X1) ⊊ (X1, X2) ⊊ · · · ⊊ (X1, . . . , Xn), so that dimR ⩾ n. We conclude
that dimR = n = dimk m/m2, which also tells us that R is regular (see Proposition
18, section 2.4 in [2]).

4. Let R be a Dedekind domain, a ̸= 0 an ideal in R.

(a) Show that every ideal in R/a is principal.

(b) Deduce that any ideal in R can be generated by at most 2 elements.

Solution.

(a) Assume first that p ̸= 0 is a prime ideal. Then, for any integer n ⩾ 1, we have
R/pn ≃ Rp/p

nRp, and Rp is a discrete valuation ring (since R is a Dedekind
domain), hence a principal ideal domain. Therefore, every ideal of R/pn is
principal.

Now let a ̸= 0 be an arbitrary ideal of R; using Proposition 9.1 of [1], we can
choose a prime factorization a =

∏
pni
i , where the pi are prime. The canonical

map R →
∏

iR/pni
i is surjective (because the pni

i are pairwise coprime in R)
with kernel a. Thus R/a is isomorphic to a finite product of principal ideal
rings, thus it is a principle ideal ring itself.
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(b) Suppose that c ⊂ R is an ideal which is not principal, and let a ∈ c be a
given non-zero element. Then the ideal c/(a) in R/(a) is principal, generated
by some element b+ (a) for some b ∈ c. It follows that c = (a, b).

5. Let G be a totally ordered abelian group, k a field. Denote by R the vector space
over k with basis (eα)0⩽α∈G (i.e, the vector space of formal k-linear combinations
of the elements eα, 0 ⩽ α ∈ G). Define a product between basis elements by means
of the formula eα · eβ = eα+β, for every 0 ⩽ α, β ∈ G, and extend it by k-linearity
to the whole of R. Prove that this operation makes R into a valuation ring with
value group G and valuation

v

(∑
α

rαeα

)
= min{α ∈ G : rα ̸= 0} ,

where the rα are elements of the field k.

Solution. Let K be the field of fraction of R, and extend v to K by means of
the assignment v(x/y) = v(x) − v(y) for any 0 ̸= x, y ∈ R. It is clear that
v(xy) = v(x) + v(y) for any x, y ̸= 0 in R (simply by the definition of v on R and
of the multiplication operation). To conlcude the proof that v is a valuation on
K, we need to show the ultrametric inequality v(x+ y) ⩾ min{v(x), v(y)}, where
we may assume without loss of generality that x, y ∈ R (by the group-morphism
property of v). If x =

∑
rαeα, y =

∑
sαeα and α0 ∈ G is the minimal element α

of G such that rα + sα ̸= 0, then at least one between rα0 and sα0 is not zero, so
that either v(x) ⩽ α0 or v(y) ⩽ α0.

Finally, it is clear by construction that R = {x ∈ K : v(x) ⩾ 0}, so that R is a
valuation ring with value group G and valuation v.

6. Let R be an integral domain. Prove the following statements:

(a) R is a valuation ring if and only if, for every pair of ideals a, b ⊂ R, we have
a ⊂ b or b ⊂ a;

(b) if R is a valuation ring and p ⊂ R is a prime ideal, then Rp and R/p are both
valuation rings.

Solution.

(a) Assume first that R is a valuation ring, and let a, b ⊂ R be two ideals. If
a ⊈ b, choose an element f ∈ a ∖ b. For all g ∈ b we know that f/g /∈ R,
otherwise f would be in b. Since R is a valuation ring, we must have g/f ∈ R,
and thus g ∈ a. We have shown that b ⊂ a.

Conversely, if x = f/g is an element of the field of fractions of R, we have
that either (f) ⊂ (g) or (g) ⊂ (f), so that either x ∈ R or x−1 ∈ R. Hence,
R is a valuation ring.
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(b) It suffices to apply (a), by the inclusion-preserving correspondence between
ideals of R/p (resp. Rp) and the ideals of R containing p (resp. contained in
p).
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